用户名: 密码: 验证码:
高温合金定向凝固杂晶形成规律及其控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温合金涡轮叶片作为航空发动机和工业燃气轮机关键部件,其性能与凝固组织密切相关。在高温合金叶片定向凝固常存在一些问题,如:叶片的缘板处形成杂晶,晶体取向偏差过大,成分偏析,粗大枝晶和粗大强化相等有害相的生成等,严重影响了高温合金叶片的性能。因此,控制高温合金定向凝固过程中的凝固缺陷,改善其凝固组织性能,对于高温合金叶片制造具有非常重要的意义。
     本文围绕高温合金叶片制备过程中存在一些凝固缺陷问题进行研究。以镍基高温合金为研究对象,采用模拟叶片的变截面试样,实验研究了镍基高温合金单个试样和多组试样定向凝固过程中杂晶的形成规律,探讨了磁场对高温合金凝固组织以及变截面处杂晶的影响;利用Procast软件模拟了实际熔模组铸件凝固过程中变截面处杂晶的形成规律。论文主要内容和结果如下:
     1.变截面试样定向凝固过程中杂晶的形成规律
     在镍基高温合金DZ417G变截面试样(变截面平台尺寸为2mm)的定向凝固过程中,发现在拉速小于100μm/s时,在截面变化前后,均可获得生长取向一致的枝晶组织;当抽拉速度大于150μm/s时,截面变化后的平台拐角处有杂晶形成,且杂晶区域随着拉速的增大而增大。同时测量了平台拐角处的内外温差,发现该温差达到8.5℃后,将出现杂晶,表明8.5℃温差是出现杂晶的临界值。当温度梯度由70℃/cm提高到120℃/cm时,变截面处出现杂晶的抽拉速度为175μm/s,表明温度梯度的增大能够有效的抑制变截面处杂晶的形成。
     进行了强磁场控制杂晶的探索,发现在变截面试样高温合金DZ417G定向凝固过程中施加12T磁场后,在150μm/s的拉速下仍可获得生长取向一致的枝晶组织,没有杂晶形成,测温曲线表明,此时变截面处温差达到10℃,表明磁场具有抑制杂晶的作用。其原因可归结为强磁场增大了固/液界面能,引起形核温度的降低(临界形核过冷度变大),从而抑制了变截面处杂晶的形成。
     2.磁场对高温合金定向凝固组织的影响
     进而考察了磁场对凝固组织的影响。在磁场下高温合金DZ417G的定向凝固过程中,发现施加磁场后,一次枝晶间距随着磁场的增大先减小后增大,当磁场强度达到6T时,一次枝晶间距达到最小;随着拉速的增大,磁场对一次枝晶间距的影响程度减弱。
     但在较低的拉速下施加磁场(≤10μm/s),可使试样边缘的柱状晶组织破碎形成等轴晶组织,并随着磁场的增加,等轴晶组织逐渐由试样边缘向中心扩展,最终全部转变为等轴晶组织;当试样尺寸增大时,试样不仅边缘处柱状枝晶遭到破坏,且中心区域的枝晶也出现破碎,形成等轴晶组织,且凝固组织中出现“斑状”组织。这主要是因为磁场诱发的液相中热电磁对流和磁阻尼,及固相中热电磁力三种效应共同所致。在高拉速下(≥40μm/s),磁场对凝固组织作用时间减小,进而对凝固组织作用减弱,柱状枝晶组织保持规则形态。
     3.截面突变试样熔模组铸件定向凝固过程中杂晶的形成规律
     对于单晶高温合金DD483对称变截面试样熔模组铸件定向凝固过程,在2mm/min的拉速下,发现当变截面尺寸在10mm至15mm之间时,杂晶仅出现在背阴侧;而当变截面尺寸大于20mm时,在受热和背阴侧,截面变化后的平台拐角处均有杂晶形成。加入随形挡板后,受热侧变截面区域为单晶组织,而背阴侧变截面区域依然有杂晶。其原因为随形挡板可减少加热侧保温炉热区向冷区的辐射传热,提高凝固界面处温度梯度,但对背阴侧的辐射较小影响的缘故。说明利用挡板技术可有效提高温度梯度,减少杂晶。根据以上结果,设计了非对称变截面试样,获得了完整的单晶试棒。因此,需综合控制拉速、温度梯度、挡板、变截面尺寸等参数来消除杂晶。
     4.熔模组铸件定向凝固过程中变截面处杂晶形成规律的数值模拟
     结合以上实验结果,利用ProCAST模拟软件,按照试样实际尺寸的大小建模,对实际熔模组试样定向凝固过程中温度场进行了模拟,模拟结果与实测结果误差在5%以内,说明模拟结果可靠。利用该模型对变截面试样(Φ40mm/Φ60mm)定向凝固过程中拉速、保温炉加热温度、模壳厚度对温度分布和杂晶形成倾向的影响进行了分析。计算结果表明降低拉速有利于避免杂晶,在受热侧,仅当拉速大于4mm/min时,平台拐角处熔体过冷度超过形核过冷度,导致该区域有杂晶生成;在背阴侧,几种拉速下背阴侧平台拐角处熔体过冷度始终大于其形核过冷度,因此变截面区域总有杂晶形成。提高加热温度有利于减轻杂晶倾向,当保温炉加热温度为1450℃时,受热侧和背阴侧变截面区域平台拐角处熔体过冷度均大于形核过冷度,因而该处将有杂晶形成;当加热温度大于1500℃时,仅有背阴侧平台拐角处熔体过冷度大于形核过冷度,出现杂晶;增大模壳厚度将增大杂晶的倾向,本研究条件下,仅当模壳厚度大于8mm时,受热侧平台拐角处熔体过冷度将大于形核过冷度,可形成杂晶,而几种模壳厚度下背阴侧变截面平台拐角处熔体过冷度始终大于形核过冷度,因而该区域总有杂晶形成。
Performance of superalloy turbine blades as key components for aircraftengines and industrial gas turbines is closely related to solidification microstructures.However, a number of problems occur during directional solidification such as straygrains formation, misorientation, elements segregation, coarse dendrite and coarseprecipitated phase, which greatly influence performance of the superalloy blades.Therefore, it is of great importance for manufacturing the supealloy blade to controlthe solidification defects and improve the microstructures and mechanical propertiesof superalloys.
     The work is devoted to solidification defects in the process of manufacturingNi-based superalloy blades. The formation of stray grains in cross-section area ofsingle sample and multiple samples during directional solidification was investigated.The effect of high magnetic field on microstructures and stray grains was explored.In addition, the formation mechanism of stray grains in large-scale production wassimulated using the commercial software ProCAST during conventional directionalsolidification. The main results are summarized as follows:
     1.Formation of stray grains in directionally solidified Ni-based superalloywith cross-section change regions
     During directional solidification of superalloy DZ417G samples withcross-section change size of2mm, it was found that the growth direction of dendritesdid not change and no stray grain appeared in the reentrant corner at the withdrawalvelocities lower than100μm/s. When the withdrawal velocity was beyond150μm/s,the stray grain formed in the cross-section region. Additionally, when the horizontaltemperature difference was8.5℃, stray grain formed in cross-section change region,which meant that the temperature was the critical value of formation of stray grains.With increasing withdrawal velocity, the size of stray grain increased obviously. It isindicated that the temperature difference of8.5℃is the critical condition for the formation of stray grains. When the temperature gradient increased from70℃/cm to120℃/cm, the withdrawal velocity of formation of stray grains corresponded to175μm/s. It was shown that the high temperature gradient suppressed the formationof stray grain in cross-section change region during directional solidification.
     The effect of high magnetic field on stray grains was explored. It was found thatat the withdrawal velocity of150μm/s, the growth direction of dendrites did notchange and no stray grain appeared in the reentrant corner in the magnetic field of12T. In the case, the temperature difference was10℃. It was indicated that the highmagnetic field suppressed the formation of stray grains in cross-section changeregion during directional solidification. The suppression of stray grain may beattributed to increase of solid-liquid interfacial energy in the magnetic field whichmade the nucleation temperature decrease and nucleation of stray grains on thecross-section change region more difficult.
     2.Effect of the magnetic field on microstructures of Ni-based superalloyduring directional solidification
     The effect of magnetic field on microstructures in directionally solidifiedDZ417G alloy was explored. When the magnetic field was applied, the primarydendrite arm spacing decreased and then increased with increasing the magnetic fieldand reached a minimum in6T. With increase of withdraw velocity, the effect ofmagnetic field on primary dendrite arm spacing became weak.
     At low withdrawal velocities (≤10μm/s), a few columnar dendrites on the edgeof sample were fractured and changed into equiaxed grains. With the increase ofmagnetic field, the number of equiaxed grains increased and they gradually extendedfrom the edge to the center of sample and finally changed into equiaxed grains.When the size of samples increased, columnar dendrites at the edge and centersimultaneously were fractured and equiaxed grains formed. Some frecklemacrosegregation appeared. The phenomena could be attributed to thermoelectricmagnetic convection and magnetic damping in liquid phase and the thermoelectric magnetic force in solid phase induced by the magnetic field. At a high withdrawalvelocity (≥40μm/s), the magnetic field effect became weak and the well-developedcolumnar dendrite structures were obtained.
     3.Formation mechanism of stray grains in large-scale production withcasting clusters in directionally solidified Ni-based superalloy with cross-sectionchange regions
     During directional solidification of superalloy DD483with symmetricalcross-section change regions, it was found that at the withdrawal velocities of2mm/min, the formation of stray grains only appeared on the shadow side when thecross-section change of sample was between10mm to15mm. When thecross-section change increased above20mm, the stray grains formed on two sides ofsample in cross-section change region. Applying arbitrary shape baffle, well-ordereddendrite structures were obtained on the heating side and stray grains still existed onthe shadow side. The suppression of stray grains could be attributed to reduction ofradiation heat transfer. The temperature gradient on the heating side was improvedby arbitrary shape baffle, which made the nucleation of stray grains on cross-sectionchange region more difficult. But the effect of baffle on radiation heat transfer on theshadow side became weak. It was indicated that the baffle technique could obviouslyimprove the temperature gradient and reduce the formation of stray grains.According to above results, the single crystal can be obtained by properly adjustingthe size of cross-section change region on the shadow side. Therefore,it is necessaryto comprehensively control solidification parameters like withdrawal velocity,temperature gradient, baffles, variable cross-section size to eliminate stray crystals.
     4. Numerical simulation of formation mechanism of stray grains inlarge-scale production with casting clusters of multiple blades using ProCAST
     According to above experimental results, ProCAST software was used tosimulate the temperature field during directional solidification of single superalloyDD483. The difference between simulated cooling curves and experimental ones was less than5%and thus the simulated results were rather reliable. Using thismodel, analysis on effect of the withdrawal velocity, heating temperature and shellthickness on the temperature distribution and stray grain during directionalsolidification of the sample (Φ40mm/Φ60mm) with cross-section change region wascarried out. The results indicated that reduction of the withdrawal velocity will helpto eliminate stray grains. On the heating side, when the withdrawal velocity reachesto4mm/min, the undercooling was larger than nucleation undercooling and straygrains appeared. The stray grains appeared on the shadow side because undercoolingin the corner of cross-section was always larger than nucleation undercooling atvarious withdrawal velocities. The increase of the heating temperature reducedformation tendency of stray grains. When the heating temperature was1450℃,theundercooling on two sides of the corner of cross-section change regions was largerthan nucleation undercooling, the stray grains formed on two sides of sample withcross-section change region. When the heating temperature was larger than1500℃,the formation of stray grains only appear on the shadow side, because theundercooling on the shadow side was larger than nucleation undercooling. Formationtendency of stray grains increased with increasing the shell thickness. On the heatingside, only when the shell thickness was larger than8mm, stray grains could form incross-section change region. On the shadow side, the undercooling in the corner ofcross-section at different shell thickness was always larger than nucleationundercooling and thus stray grains always formed.
引文
[1]郭建亭.高温合金材料学[M].北京:科学出版社,2008.
    [2] Reed R C. The superalloys: fundamentals and applications [M]. Cambridge UniversityPress,2006.
    [3]黄乾尧,李汉康.高温合金[M].北京:冶金工业出版社,2000.
    [4]陈国良.高温合金学[M].北京:冶金工业出版社,1988.
    [5]师昌绪,李恒德,周廉.材料科学与工程手册(上卷)[M].北京:化学工业出版社,2004.
    [6]胡壮麒,刘丽荣,金涛,孙晓峰.镍基单晶高温合金的发展[J].航空发动机,2005(3):1-7.
    [7] Pollock T, Tin S. Nickel-Based Superalloys for Advanced Turbine Engines:Chemistry, Microstructure, and Properties [J]. Journal of Propulsion and Power,2006,22(2):361-374.
    [8] Jackson M P, Reed R C. Heat treatment of UDIMET720Li: the effect of microstructureon properties [J]. Materials Science and Engineering: A,1999,259(1):85-97.
    [9] Hopgood A A, Martin J W. The creep behaviour of a Nickel-based single-crystalsuperalloy [J]. Materials Science and Engineering,1986,82:27-36.
    [10] Gabb T P, Draper S L, Hull D R, et al. The role of interfacial dislocation networks inhigh temperature creep of superalloys [J]. Materials Science and Engineering: A,1989,118:59-69.
    [11] Acharya M V, Fuchs G E. The effect of long-term thermal exposures on themicrostructure and properties of CMSX-10single crystal Ni-base superalloys [J].Materials Science and Engineering: A,2004,381(1-2):143-153.
    [12] Tetzlaff U, Mughrabi H. Enhancement of the High Temperature Tensile Creep Strengthof Monocrystalline Nickel-Base Superalloys by Pre-rafting in Compression [C]. Pollock,TM, Kissinger, RD, Bowman, RR, Green, KA, McLean, M. Champion, PA, USA: ASM,Superalloys2000,273-282.
    [13] Stevens R A, Flewitt P E J. The effects of γ′precipitate coarsening during isothermalaging and creep of the nickel-base superalloy IN-738[J]. Materials Science andEngineering,1979,37(3):237-247.
    [14] Chen Q Z, Jones N, Knowles D M. The microstructures of base/modified RR2072SXsuperalloys and their effects on creep properties at elevated temperatures [J]. ActaMaterialia,2002,50(5):1095-1112.
    [15] Murakumo T, Kobayashi T, Koizumi Y, et al. Creep behaviour of Ni-base single-crystalsuperalloys with various γ′volume fraction [J]. Acta Materialia,2004,52(12):3737-3744.
    [16] Caron P, Henderson P J, Khan T, McLean M. On the effects of heat treatments on thecreep behaviour of a single crystal superalloy [J]. Scripta Metallurgica,1986,20(6):875-880.
    [17] Sharghi-Moshtaghin R, Asgari S. The influence of thermal exposure on the γ′precipitatescharacteristics and tensile behavior of superalloy IN-738LC [J]. Journal of MaterialsProcessing Technology,2004,147(3):343-350.
    [18] Ro Y, Koizumi Y, Harada H. High temperature tensile properties of a series ofnickel-base superalloys on a γ/γ′tie line [J]. Materials Science and Engineering: A,1997,223(1-2):59-63.
    [19]郑运荣,张德堂.高温合金与钢的彩色金相研究[M].北京:国防工业出版社,1999.
    [20]李玉清,刘锦岩.高温合金晶界间隙相[M].北京:冶金工业出版社,1990.
    [21] Qin X Z, Guo J T, Yuan C, Chen C L, Hou J S, Ye H Q. Decomposition of primary MCcarbide and its effects on the fracture behaviors of a cast Ni-base superalloy [J]. MaterialsScience and Engineering: A,2008,485(1-2):74-79.
    [22] Chen J, Lee J H, Jo C Y, Choe S J, Lee Y T. MC carbide formation in directionallysolidified MAR-M247LC superalloy [J]. Materials Science and Engineering: A,1998,247(1-2):113-125.
    [23] Wang H M, Zhang J H, Tang Y J, Hu Z Q. Rapidly solidified MC carbide morphologiesof a laser-glazed single-crystal nickel-base superalloy [J]. Materials Science andEngineering: A,1992,156(1):109-116.
    [24] Bae J S, Lee J H, Kim S S, Jo C Y. Formation of MC-γ/γ′eutectic fibers and their effecton stress rupture behavior in D/S Mar-M247LC superalloy [J]. Scripta Materialia,2001,45(5):503-508.
    [25] Chen Q Z, Jones C N, Knowles D M. Effect of alloying chemistry on MC carbidemorphology in modified RR2072and RR2086SX superalloys [J]. Scripta Materialia,2002,47(10):669-675.
    [26]蔡玉林,郑运荣.高温合金的金相研究[M].北京:国防工业出版社,1986.
    [27] Yang J X, Zheng Q, Sun X F, Guan H R, Hu Z Q. Relative stability of carbides and theireffects on the properties of K465superalloy [J]. Materials Science and Engineering: A,2006,429(1-2):341-347.
    [28] Liu L R, Jin T, Zhao N R, Sun X F, Guan H R, Hu Z Q. Formation of carbides and theireffects on stress rupture of a Ni-base single crystal superalloy [J]. Materials Science andEngineering: A,2003,361(1-2):191-197.
    [29]郑运荣.铸造镍基高温合金中的初生μ相[J].金属学报,1999,35(12):1242-1245.
    [30] Sims C T, Stoloff N S, Hagel W C. Superalloys II [M]. New York: Wiley,1987.
    [31] Fernandez R, Lecomte J C, Kattamis T Z. Effect of solidification parameters on thegrowth geometry of MC carbide in IN-100dendritic monocrystals [J].1978,9(10):1381-1386.
    [32] Liu L, Sommer F, Fu H Z. Effect of solidification conditions on MC carbides in anickel-base superalloy IN738LC [J]. Scripta Metallurgicaet Materialia,1994,30(5):587-591.
    [33] Beattie H J Jr, Hagel W C. Compositional Control of Phases Precipitating in ComplexAustenitic Alloys [J]. Transactions of the Metallurgical Society of AIME,1965,233(2):277-287.
    [34] Wlodek S T. Structure of IN100[J]. Transactions of the Metallurgical Society of AIME,1964,57(1):110-119.
    [35] Blavette D, Caron P, Khan T. An atom probe investigation of the role of rheniumadditions in improving creep resistance of Ni-base superalloys [J]. Scripta Metallurgica,1986,20(10):1395-1400.
    [36] Schneider M C, Gu J P, Beckermann C, Boettinger W J, Kattner U R. Modeling ofmicro-and macrosegregation and freckle formation in single-crystal nickel-basesuperalloy directional solidification [J]. Metallurgical and Materials Transactions A,1997,28(7):1517-1531.
    [37] Kong Y H, Chen Q Z. Effect of minor additions on the formation of TCP phases inmodified RR2086SX superalloys [J]. Materials Science and Engineering A,2004,366(1):135-143.
    [38] Rae C M F, Hook M S, Reed R C. The effect of TCP morphology on the development ofaluminide coated superalloys [J]. Materials Science and Engineering A,2005,396(1-2):231-239.
    [39] Goswami T. Conjoint bending torsion fatigue-fractography [J]. Materials and Design,2002,23(4):385-390.
    [40] Srinivasa N, Prasad Y V R K. Hot working characteristics of nimonic75,80A and90superalloys: a comparison using processing maps [J]. Journal of Materials ProcessingTechnology,1995,51(1-4):171-192.
    [41] Nembach E, Pesicka J, Langmaack E. The high-temperature decrease of the yieldstrength of the γ′-strengthened superalloys NIMONIC PE16and NIMONIC105[J].Materials Science and Engineering: A,2003,362(1-2):264-273.
    [42] Bruni C, Forcellese A, Gabrielli F. Hot workability and models for flow stress ofNIMONIC115Ni-base superalloy [J]. Journal of Materials Processing Technology,2002,125-126:242-247.
    [43]陈荣章,王罗宝,李建华.铸造高温合金发展的回顾与展望[J].航空材料学报,2000,20(1):55-61.
    [44]张祖谦,刘志忠.涡轮叶片用高温合金发展中的几个问题[J].国际航空,1978,4:43-48.
    [45]黄福祥.苏联高温合金制造技术的发展[J].航空材料学报,1989,9(4):57-64.
    [46] White C H. Nickel base alloys (for gas turbine components)[J]. The development of gasturbine materials. London, Applied Science Publishers,1981:89-119.
    [47] Meetham G W. Superalloys in gas turbine engines [J]. Metall. Mater. Technol.,1982,14(9):387-392.
    [48]傅恒志.铸钢和铸造高温合金及其熔炼[M].西安:西北工业大学出版社,1985.
    [49]傅恒志.先进材料定向凝固[M].北京:科学出版社,2008.
    [50] Deeker R F, Freeman J W. The mechanism of beneficial effects of boron and zirconiumon creep Properties of a complex heat resistant alloy [J]. Trans.AIME,1960,218:277-285.
    [51] Nategh S, Sajjadi S A. Dislocation network formation during creep in Ni-base superalloyGTD-111[J]. Materials Science and Engineering: A,2003,339(1-2):103-108.
    [52] Okada I, Torigoe T, Takahashi K, Izutsu D. Development of Ni base superalloy forindustrial gas turbine [C]. Champion, PA, United states: Minerals, Metals and MaterialsSociety, Superalloys2004,707-712.
    [53] Huang H, Koo C. Characteristics and mechanical properties of polycrystalline CM247LC superalloy casting [J]. Materials Transactions,2004,45(2):562-568.
    [54] Yamazaki M. Design and development of Ni-base superalloy and Ti alloys [R]. Tokyo:National Research Institute for Metals,1992.
    [55] Pratt Whitney Aircraft. TM Specification PWA1422F [S].1972.
    [56] Seo S M, Kim I S, Lee J H, Jo C Y, Miyahara H, Ogi K. Microstructural evolution indirectionally solidified Ni-base superalloy IN792+Hf [J]. Journal of Materials Scienceand Technology,2008,24(1):110-114.
    [57]陈荣章,佘力,张宏炜,王罗宝.DZ125定向凝固高温合金的研究[J].航空材料学报,2000(4):14-19.
    [58]陈荣章,王罗宝,王玉屏.高强度定向凝固高温合金DZ22的研究和应用[J].航空材料学报,1991(1):1-11.
    [59] Cetel A D, Duhl D N. Second generation columnar grain nikel-base superalloy [C].Champion, PA, United states: Minerals, Metals and Materials Society, Superalloys1992,287-296.
    [60] Harris K, Eriekon G L, Sikkenga S L, Brentnall W D, Aurreeoeehea J M, Kubaryeh K G.Development of the rhenium containing superalloys CMSX-4&CM186LC for singlecrystal blade and directionally solidified vane applications [C]. Champion, PA, Unitedstates: Minerals, Metals and Materials Society, Superalloys1992,297-306.
    [61] Bobeck Gene E, Miner R V. Effects of cobalt concentration on the relative resistance tooctahedral and cube slip in nickel-base superalloys [J]. Metallurgical and MaterialsTransactions A,1987,19(11):2733-2739.
    [62] Ross E W, O'Hara K S. Rene142: A high strength, oxidation resistant DS turbine airfoilalloy [C]. Champion, PA, United states: Minerals, Metals and Materials Society,Superalloys1992,257-266.
    [63]黄朝晖,贾新云,谭永宁,等.第二代定向高温合金DZ6热处理研究[J].航空材料学报,2008,(6):1-4.
    [64]赵坦.第二代定向柱晶高温合金DZ59研究[D].南京理工大学博士论文,2009.
    [65] Kobayashi T, Sato M, Koizumi Y, Harada H, Yamagata T, Tamura A, Fujioka J.Development of a third generation DS superalloy [C]. Champion, PA, United states:Minerals, Metals and Materials Society, Superalloys2000,323-328.
    [66] Kobayashi T, Koizumi Y, Yokokawa T, Harada H. Development of a4th generation DSsuperalloy [J]. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals,2002,66(9):897-900.
    [67] Versnyder F I, Shank M E. The development of columnar grain and single crystal hightemperature materials through directional solidification [J]. Materials Science andEngineering,1970,6(4):213-247.
    [68] Gell M, Duhl D N, Giamei A F. Development of single crystal superalloy turbine blades
    [C]. Champion, PA, United states: Minerals, Metals and Materials Society, Superalloys1980,205-214.
    [69] Jackson J J, Donachie M J, Gell M, Henricks R J, Hide S A. The effect of volume percentof fine γ' on creep in DS Mar-M200+Hf [J]. Metallurgical Transactions A,1977,8(10):1615-1620.
    [70] Khan T, Caron P. Effect of processing conditions and heat treatments on mechanicalproperties of single-crystal superalloy CMSX-2[J]. Materials Science and Technology,1986,2(5):486-492.
    [71] Ross E W, O'Hara K S. Rene N4: A first generation single crystal turbine airfoil alloywith improved oxidation resistance, low angle boundary strength and superior long timerupture strength [C]. Champion, PA, United states: Minerals, Metals and MaterialsSociety, Superalloys1996,19-25.
    [72] Henderson M B, Buffiere J Y, Pan L M, Shollock B A, McLean M. High temperatureanisotropic deformation of SRR99modelling and microstructural aspects [C]. Champion,PA, United states: Minerals, Metals and Materials Society, Superalloys1996,291-296.
    [73] Cetel A D, Duhl D N. Second-generation nickel-base single crystal superalloy [C].Champion, PA, United states: Minerals, Metals and Materials Society, Superalloys1988,235-244.
    [74] Hemmersmeier U, Feller-Kniepmeier M. Element distribution in the macro-andmicrostructure of nickel base superalloy CMSX-4[J]. Materials Science and EngineeringA,1998,248(1-2):87-97.
    [75] Caron P, Khan T. Evolution of Ni-based superalloys for single crystal gas turbine bladeapplications [J]. Aerospace Science and Technology,1999,3(8):513-523.
    [76] Caron P, Khan T. Development of a new nickel based single crystal turbine blade alloyfor very high temperatures [C]. proceedings of the first European Conference onAdvanced Materials and Processes, EUROMAT, Aachen, Germany,1989,333-338.
    [77] Akhtar A, Hook M S, Reed R C. On the oxidation of the third-generation single-crystalsuperalloy CMSX-10[J]. Metallurgical and Materials Transactions A,2005,36(11):3001-3017.
    [78] Walston W S, O'Hara K S, Ross E W, Pollock T M. Rene N6: third generation singlecrystal superalloy [C]. Champion, PA, United states: Minerals, Metals and MaterialsSociety, Superalloys1996,27-34.
    [79] Zhang J X, Wang J C, Harada H, Koizumi Y. The effect of lattice misfit on thedislocation motion in superalloys during high-temperature low-stress creep [J]. ActaMaterialia,2005,53(17):4623-4633.
    [80] Lavigne O, Ramusat C, Drawin S, Caron P, Boivin D, Pouchou J L. Relationshipsbetween microstructural instabilities and mechanical behaviour in new generationnickel-based single crystal superalloys [C]. Champion, PA, United states: Minerals,Metals and Materials Society, Superalloys2004,667-675.
    [81] Kawagishi K, Yeh A, Yokokawa T, Kobayashi T, Koizumi Y, Harada H. Developmentof an Oxidation-Resistant High-Strength Sixth-Generation Single-Crystal SuperalloyTMS-238[C]. Champion, PA, United states: Minerals, Metals and Materials Society,Superalloys2012,189-195.
    [82] Muktinutalapati N R. Materials for Gas Turbines-An Overview [J]. Advances in GasTurbine Technology,2011,13:293-314.
    [83] А. П Д, Н. Т В, В. Р А. Способ изготовления отливок из жаропрочных сплавов снаправленной и монокристаллической структурой [J]. Авторское свидетельство№839153,1980.
    [84]王庆绥,吴仲棠.DD3单晶合金高温低周疲劳行为研究[J].材料工程,1993,(1):12-17.
    [85]李嘉荣,钏振纲,唐定中.低成本第二代单晶高温合金DD6[J].金属学报,1999,35(l2):S266-S269.
    [86] Kobayashi T, Koizumi Y, Nakazawa S, Ymagata T, Harada H. Design of high rheniumcontaining single crystal superalloys with balanced intermediate and high Temperaturecreep strengths [C]. Advances inTurbine Materials,Design and Manufeaturing, London,The Institute of Materials,1997,766-773.
    [87] Argence D, Vernault C, Desvallees Y, Fournier D. MC-NG: A4th generationsingle-crystal superalloy for future aeronautical turbine blades and vanes [C]. Champion,PA, United states: Minerals, Metals and Materials Society, Superalloys2000,829-837.
    [88] Zietara M, Cetel A, Czyrska-Filemonowicz A. Microstructure stability of4th generationsingle crystal superalloy, PWA1497, during high temperature creep deformation [J].Materials Transactions,2011,52(3SI):336-339.
    [89] Koizumi Y, Kobayashi T, Yokokawa T, Zhang J X, Osawa M, Harada H, Aoki Y, AraiM. Development of next-generation Ni-base single crystal superalloys [C]. Champion,PA, United states: Minerals, Metals and Materials Society, Superalloys2004,35-43.
    [90] Sato A, Harada H, Yeh A, Kawagishi K, Kobayashi T, Koizumi Y, Yokokawa T, ZhangJ X.. A5th generation SC superalloy with balanced high temperature properties andprocessability [C]. Champion, PA, United states: Minerals, Metals and Materials Society,Superalloys2008,131-138.
    [91] Versnyder F L, Guaro R W. Directional grain structures for high-temperature strength [J].Trans. ASM,1960,52:485-493.
    [92] Gell M, Sullivan C P, Versnyder F L. Casting and properties of unidirectionallysolidified superalloys [J]. Solidification Technology,1974:141-164.
    [93] Erickson J S, Owczarski W A, Curran P M. Advances in fabricating aerospace structures.process speeds up directional solidification [J]. Metal Progress,1971,109(3):58-60.
    [94] Carter P, Cox D, Gandin C A, Reed R. Grain selection in single-crystal superalloycastings [J]. Solidification and Casting,2002:106-120.
    [95] Konter M, Kats E, Hofmann N. A novel casting process for single crystal gas turbinecomponents [C]. Champion, PA, United states: Minerals, Metals and Materials Society,Superalloys2000,189-200.
    [96] Nakagawa Y G, Ohotomo Y, Saiga Y. Heat treatment, microstructure, and creep strengthof γ/γ'-α eutectic directionally solidified by fluidized bed quenching [C]. Champion, PA,United states: Minerals, Metals and Materials Society, Superalloys1980,267-274.
    [97] Giamei A F, Tschinkel J G. Liquid metal cooling: a new solidification technique [J].Metallurgical Transactions A,1976,7(9):1427-1434.
    [98] Shalin R E, Pankratov V A. Single-crystal casting of nickel-base superalloys bydirectional rapid solidification [J]. Metallurgical science and Technology,1992,10(1):3-10.
    [99] Elliott A J, Pollock T M. Thermal analysis of the bridgman and liquid-metal-cooleddirectional solidification investment casting processes [J]. Metallurgical and MaterialsTransactions A,2007,38(4):871-882.
    [100] Zhang J, Lou L H. Directional solidification assisted by liquid metal cooling [J]. Journalof Materials Science&Technology,2007,23:289-300.
    [101] Lohmüller A, Esser W, Grossmann J, H rdler M, Preuhs J, Singer R F. Improved qualityand economics of investment castings by liquid metal cooling-the selection of coolingmedia [C]. Champion, PA, United states: Minerals, Metals and Materials Society,Superalloys2000,181-188.
    [102] Bondarenko Y A, Kablov E N. Directional crystallization of high-temperature alloys withelevated temperature gradient [J]. Metal Science and Heat Treatment,2002,44(7):288-291.
    [103] Elliott A J, Tin S, King W T, Huang S C, M. Gigliotti F X, Pollock T M. Directionalsolidification of large superalloys castings with radiation and liquid-metal cooling: Acomparative assessment [J]. Metallurgical and Materials Transactions A,2004,35(10):3221-3231.
    [104] Streat N, Weinberg F. Macrosegregation during solidification resulting from densitydifferences in the liquid [J]. Metallurgical and Materials Transactions B,1974,5(12):2539-2548.
    [105] Pollock T M, Murphy W H. The breakdown of single-crystal solidification in highrefractory nickel-base alloys [J]. Metallurgical and Materials Transactions A,1996,27(4):1081-1094.
    [106] Purvis A L, Hanslits C R, Diehm R S. Modeling characteristics for solidification insingle-crystal, investment-cast superalloys [J]. JOM,1994,46(1):38-41.
    [107] Tin S, Pollock T M. Predicting freckle formation in single crystal Ni-base superalloys [J].Journal of Materials Science,2004,39(24):7199-7205
    [108] Zhao X B, Lin L, Zhang W G, Qu M, Zhang J, Fu H Z. Analysis of competitive growthmechanism of stray grains of single crystal superalloys during directional solidificationprocess [J]. Rare Metal Materials and Engineering,2011,40(1):9-13.
    [109] Stanford N, Djakovic A, Shollock B, McLean M, D'Souza N, Jennings P. Defect grains inthe melt-back region of CMSX-4single crystal seeds [C]. Champion, PA, United states:Minerals, Metals and Materials Society, Superalloys2004,719-726.
    [110] Yang X L, Lee P D, D'Souza N. Stray grain formation in the seed region of single-crystalturbine blades [J]. JOM,2005,57(5):40-44.
    [111] D'Souza N, Jennings P A, Yang X L, Dong H B, Lee P D, McLean M. Seeding ofsingle-crystal superalloys-Role of constitutional undercooling and primary dendriteorientation on stray-grain nucleation and growth [J]. Metallurgical and MaterialsTransactions B,2005,36(5):657-666.
    [112] Ardakani M G, D''Souza N, Wagner A, Shollock B A, McLean M. Competitive graingrowth and texture evolution during directional solidification of superalloys [C].Champion, PA, United states: Minerals, Metals and Materials Society, Superalloys2000,219-228.
    [113] Clemens M L, Price A, Bellows R S. Advanced solidification processing of an industrialgas turbine engine component [J]. JOM,2003,55(3):27-31.
    [114] Durand-Charre M. The microstructure of superalloys [M]. CRC,1998.
    [115] Zhao X B, Liu L, Yu Z H, Zhang W G, Zhang J, Fu H Z. Influence of directionalsolidification variables on the microstructure and crystal orientation of AM3under highthermal gradient [J]. Journal of Materials Science,2010,45(22):6101-6107.
    [116] D'Souza N, Ardakani M G, Wagner A, Shollock B A, McLean M. Morphological aspectsof competitive grain growth during directional solidification of a nickel-base superalloy,CMSX4[J]. Journal of Materials Science,2002,37(3):481-487.
    [117] Ma D, Grafe U. Microsegregation in directionally solidified dendritic-cellular structure ofsuperalloy CMSX-4[J]. Materials Science and Engineering A,1999,270(2):339-342.
    [118] Zhao X B, Liu L, Zhang W G, Liu G, Zhang J, Fu H Z. Segregation behavior of alloyingelements in different oriented single crystal nickel based superalloys [J]. Materials Letters,2009,63(30):2635-2638.
    [119] Matan N, Cox D C, Carter P, Rist M A, Rae C M F, Reed R C. Creep of CMSX-4superalloy single crystals: Effects of misorientation and temperature [J]. Acta Materialia,1999,47(5):1549-1563.
    [120] Sass V, Glatzel U, Feller-Kniepmeier M. Anisotropic creep properties of the nickel-basesuperalloy CMSX-4[J]. Acta Materialia,1996,44(5):1967-1977.
    [121] McLean M. Directionally solidified materials for high temperature service [M]. MetalsSociety,1983.
    [122] Karunaratne M S A, Cox D C, Carter P, Reed R C. Modelling of the Microsegregation inCMSX-4Superalloy and Its Homogenisation During Heat Treatment [C]. Champion, PA,United states: Minerals, Metals and Materials Society, Superalloys2000,263-272.
    [123] Kearsey R M, Beddoes J C, Jaansalu K M, Thompson W T, Au P. The effects of Re, Wand Ru on microsegregation behaviour in single crystal superalloy systems [C].Champion, PA, United states: Minerals, Metals and Materials Society, Superalloys2000,801-810.
    [124] Giamei A F, Keat B H. On the nature of freckles in nickel base superalloys [J]. Metall.Trans,1970:2185-2192.
    [125] Liu L, Huang T W, Zhang J, Fu H Z. Microstructure and stress rupture properties ofsingle crystal superalloy CMSX-2under high thermal gradient directional solidification[J]. Materials Letters,2007,61(1):227-230.
    [126] Lecomte-Beckers J. Study of microporosity formation in nickel-base superalloys [J].Metallurgical transactions. A,1988,19(9):2341-2348.
    [127] Schadt R, Wagner I, Preuhs J, Sahm P R. New Aspects of Freckle Formation duringSingle Crystal Solidification of CMSX-4[C]. Champion, PA, United states: Minerals,Metals and Materials Society, Superalloys2000,211-218.
    [128] Whitesell H S, Overfelt R A. Influence of solidification variables on the microstructure,macrosegregation, and porosity of directionally solidified Mar-M247[J]. MaterialsScience and Engineering: A,2001,318(1-2):264-276.
    [129] Ma D, Ziehm J, Wang W, Bührig-Polaczek A.. Freckle Formation in DirectionallySolidified Superalloy Components with Expanding Cross-Section [C], IOP Conf. Series:Materials Science and Engineering.2012,27:012034.
    [130] Chen Q Z, Kong Y H, Jones C N, Knowles D M. Porosity reduction by minor additionsin RR2086superalloy [J]. Scripta Materialia,2004,51(2):155-160.
    [131] Bürgel R, Portella P D, Preuhs J. Recrystallization in Single Crystals of Nickel BaseSuperalloys [C]. Champion, PA, United states: Minerals, Metals and Materials Society,Superalloys2000,229-238.
    [132] Mukherji D, R sler J, Krüger M, Heilmaier M, B litz M C, V lkl R, Glatzel U,Szentmiklósi L. The effects of boron addition on the microstructure and mechanicalproperties of Co–Re-based high-temperature alloys [J]. Scripta Materialia,2012,66(1):60-63.
    [133] Liu L, Huang T, Qu M, et al. High thermal gradient directional solidification and itsapplication in the processing of nickel-based superalloys [J]. Journal of MaterialsProcessing Technology,2010,210(1):159-165.
    [134]黄太文,刘林,张卫国,等.抽拉速率跃迁对定向凝固单晶高温合金DD3一次枝晶间距和微观偏析的影响[J].金属学报,2009,(10):1225-1231.
    [135]刘志义,傅恒志.DD8镍基高温合金单晶制备中的杂晶长大机制[J].金属学报,2000,36(1):1-6.
    [136] Yang X L, Ness D, Lee P D, D'Souza N. Simulation of stray grain formation duringsingle crystal seed melt-back and initial withdrawal in the Ni-base superalloy CMSX4[J].Materials Science and Engineering A,2005,413-414:571-577.
    [137] Jackson K A, Hunt J D, Uhlmann D R, Seward T P. On the origin of the equiaxed zone incasting [J]. Transactions of the Metallurgical Society of AIME,1966(236):149-157.
    [138] Zhou Y. Formation of stray grains during directional solidification of a nickel-basedsuperalloy [J]. Scripta Materialia,2011,65(4):281-284.
    [139] Yasuda H, Ohnaka I, Kawasaki K, Sugiyama A, Ohmich T i, Iwane J, Umetani K. Directobservation of stray crystal formation in unidirectional solidification of Sn-Bi alloy byX-ray imaging [J]. Journal of Crystal Growth,2004,262(1-4):645-652.
    [140] Mathiesen R H, Arnberg L. Stray crystal formation in Al-20wt.%Cu studied bysynchrotron X-ray video microscopy [J]. Materials Science and Engineering: A,2005,413-414:283-287.
    [141] Dong Q, Zhang J, Dong J, Xie H L, Li Z J, Dai Y B, Liu Y. In situ observation ofcolumnar-to-equiaxed transition in directional solidification using synchrotronX-radiation imaging technique [J]. Materials Science and Engineering: A,2011,530:271-276.
    [142] Imwinkelried T, Desbiolles J L, Gandin C A, Rappaz M, Rossmann S, Thévoz Ph,Piwonka T S, Voller V, Katgermann L. Modeling of Dendritic Single CrystalSolidification at the Macro-and Microscopic Levels [C]. Application to Turbine Blades,1993,63-70.
    [143] Bussac A de, Gandin C A. Prediction of a process window for the investment casting ofdendritic single crystals [J]. Materials Science and Engineering: A,1997,237(1):35-42.
    [144] Meyer ter M, Dedecke D, Paul U, Sahm P R. Undercooling Related Casting Defects inSingle Crystal Turbine Blades [C]. Champion, PA, United states: Minerals, Metals andMaterials Society, Superalloys1996,471-480.
    [145] Napolitano R E, Schaefer R J. Convergence-fault mechanism for low-angle boundaryformation in single-crystal castings [J]. Journal of Materials Science,2000,35(7):1641-1659.
    [146] Ma D, Wu Q, Hollad S, et al. Investigation on the asymmetry of thermal condition andgrain defect formation in the customary directional solidification process [C], IOP Conf.Series: Materials Science and Engineering.2012,27:012037.
    [147] Yang X L, Dong H B, Wang W, Lee P D. Microscale simulation of stray grain formationin investment cast turbine blades [J]. Materials Science and Engineering: A,2004,386(1-2):129-139.
    [148] Chedzey H A, Hurle D T J. Avoidance of Growth-striae in Semiconductor and MetalCrystals grown by Zone-melting Techniques [J]. Nature,1966,210:933-934.
    [149] Li X, Fautrelle Y, Ren Z. Influence of an axial high magnetic field on the liquid-solidtransformation in Al-Cu hypoeutectic alloys and on the microstructure of the solid [J].Acta Materialia,2007,55(4):1377-1386.
    [150] Murakami K, Fujiyama T, Koike A, Okamoto T. Influence of melt flow on the growthdirections of columnar grains and columnar dendrites [J]. Acta Metallurgica,1983,31(9):1425-1432.
    [151] Cowling T G. Magnetohydrodynamics [J]. Reports on Progress in Physics,1962,25:244-286.
    [152] Tiller W A, Jackson K A, Rutter J W, Chalmers B. The redistribution of solute atomsduring the solidification of metals [J]. Acta Metallurgica,1953,1(4):428-437.
    [153] Utech H P, Flemings M C. Elimination of solute banding in indium antimonide crystalsby growth in a magnetic field [J]. Journal of Applied Physics,1966,37:2021-2024.
    [154] Witt A F, Herman C J, Gatos H C. Czochralski-type crystal growth in transversemagnetic fields [J]. Journal of Materials Science,1970,5(9):822-824.
    [155] Sen S. Influence of magnetic field on vertical Bridgman-Stockbarger growth of InxGa1-xSb [J]. Journal of Crystal Growth,1987,43(4):526-530.
    [156] Hoshikawa K, Kohda H, Hirata H, Nakanishi H. Low oxygen content czochralski siliconcrystal growth [J]. Japanese Journal of Applied Physics,1980,19:33-36.
    [157] Oreper G M, Szekely J. The effect of an externally imposed magnetic field on buoyancydriven flow in a rectangular cavity [J]. Journal of Crystal Growth,1983,64(3):505-515.
    [158] Kang J, Okano Y, Hoshikawa K, Fukuda T. Influence of a high vertical magnetic field onTe dopant segregation in InSb grown by the vertical gradient freeze method [J]. Journalof Crystal Growth,1994,140(3-4):435-438.
    [159] Ostrogorsky A G, Mueller G. Model of the effective segregation coefficient applied tolow-convection solidification in microgravity [J]. Journal of Crystal Growth,1993,128(1-4):207-212.
    [160]安田秀幸,大中逸雄,古久保洋二,等.一方向凝固(Bi, Sb)2Te3のマクロ偏析におよぼす磁場の効果[J].日本金属学会誌,1997,61:1288-1295.
    [161] Li X, Fautrelle Y, Ren Z. Influence of thermoelectric effects on the solid-liquid interfaceshape and cellular morphology in the mushy zone during the directional solidification ofAl-Cu alloys under a magnetic field [J]. Acta Materialia,2007,55(11):3803-3813.
    [162] Kishida Y, Takeda K, Miyoshino I, Takeuchi E. Anisotropic effect of magneto-hydrodynamics on metal solidification [J]. ISIJ International,1990,30(1):34.
    [163] Moreau R, Laskar O, Tanaka M, Camel D. Thermoelectric magnetohydrodynamic effectson solidification of metallic alloys in the dendritic regime [J]. Materials Science andEngineering A,1993,173(1-2):93-100.
    [164] Tewari S N, Shah R, Song H. Effect of magnetic field on the microstructure andmacrosegregation in directionally solidified Pb-Sn alloys [J]. Metallurgical and MaterialsTransactions A,1994,25:1535-1544.
    [165] Lehmann P, Moreau R, Camel D, Bolcato R. Modification of interdendritic convection indirectional solidification by a uniform magnetic field [J]. Acta Materialia,1998,46(11):4067-4079.
    [166] Shercliff J A. Thermoelectric magnetohydrodynamics [J]. Journal of Fluid Mechanics,1979,91:231-251.
    [167] Khine Y Y, Walker J S. Thermoelectric magnetohydrodynamic effects during Bridgmansemiconductor crystal growth with a uniform axial magnetic field [J]. Journal of CrystalGrowth,1998,183(1-2):150-158.
    [168] Khine Y Y, Walker J S, Szofran F R. Thermoelectric magnetohydrodynamic flow duringcrystal growth with a moderate or weak magnetic field [J]. Journal of Crystal Growth,2000,212(3):584-596.
    [169] Yesilyurt S, Vjusic L, Motakef S, Szofran F R, Croell A. The influence ofthermoelectromagnetic convection (TEMC) on the Bridgman growth of semiconductors[J]. Journal of Crystal Growth,2000,211:360-364.
    [170] Dold P, Szofran F R, Benz K W. Thermoelectromagnetic convection in vertical Bridgmangrown germanium-silicon [J]. Journal of Crystal Growth,2006,291(1):1-7.
    [171] Yasuda H, Yoshimoto T, Mizuguchi T, Tamura Y, Nagira T, Yoshiya M. Effect of themelt flow on the solidified structure of middle carbon steel by means of the levitationmethod using alternating and static magnetic fields [J]. ISIJ International,2007,47(4):612-618.
    [172] Zhang X, Cramer A, Lange A, Gerbeth G. Model experiments on macroscopicthermoelectromagnetic convection [J]. Magnetohydrodynamics,2009,45(1):25-42.
    [173]李茂,任维丽,任忠鸣,等.纵向强磁场对Al-0.85%Cu合金定向凝固界面稳定性和形态的影响[J].中国有色金属学报,2011,(6):1292-1298.
    [174] Li X, Fautrelle Y, Ren Z, Gagnoud A, Moreau R, Zhang Y D, Esling C. Effect of a highmagnetic field on the morphological instability and irregularity of the interface of abinary alloy during directional solidification [J]. Acta Materialia,2009,57(5):1689-1701.
    [175] Li X, Zhang Y, Fautrelle Y, Ren Z M, Esling C. Experimental evidence for liquid/solidinterface instability caused by the stress in the solid during directional solidification undera strong magnetic field [J]. Scripta Materialia,2009,60(7):489-492.
    [176] Li X, Ren Z M, Fautrelle Y. Effect of a vertical magnetic field on the dendritemorphology during Bridgman crystal growth of Al-4.5wt%Cu [J]. Journal of CrystalGrowth,2006,290(2):571-575.
    [177] Li X, Ren Z, Fautrelle Y. Effect of a high axial magnetic field on the microstructure in adirectionally solidified Al-Al2Cu eutectic alloy [J]. Acta Materialia,2006,54(20):5349-5360.
    [178] Zhu W, Ren Z, Ren W, Zhong Y B, Deng K. Effects of high magnetic field on theunidirectionally solidified Al-Al2Cu eutectic crystal orientations and the inducedmicrostructures [J]. Materials Science and Engineering: A,2006,441(1-2):181-186.
    [179]沈裕,任忠鸣,李喜,任维丽.纵向磁场对Al-40%Cu过共晶合金定向凝固显微组织的影响[J].金属学报,2011,(4):417-422.
    [180] Shen Y, Ren Z M, Li X, Ren W L, Xi Y. Effect of a low axial magnetic field on theprimary Al2Cu phase growth in a directionally solidified Al-Cu hypereutectic alloy [J].Journal of Crystal Growth,2011,336(1):67-71.
    [181] Li X, Fautrelle Y, Ren Z. Effect of a high magnetic field on the microstructure indirectionally solidified Al-12wt%Ni alloy [J]. Journal of Crystal Growth,2007,306(1):187-194.
    [182] Li X, Fautrelle Y, Ren Z M, Zhang Y D, Esling C. Effect of a high magnetic field on theAl–Al3Ni fiber eutectic during directional solidification [J]. Acta Materialia,2010,58(7):2430-2441.
    [183] Li X, Ren Z, Fautrelle Y. Alignment behavior of the primary Al3Ni phase in Al-Ni alloyunder a high magnetic field [J]. Journal of Crystal Growth,2008,310(15):3488-3497.
    [184] Li X, Ren Z, Fautrelle Y. Effect of high magnetic fields on the microstructure indirectionally solidified Bi-Mn eutectic alloy [J]. Journal of Crystal Growth,2007,299(1):41-47.
    [185]吴琼,任忠鸣,李喜,邓康,钟云波,马娟萍.强磁场对定向凝固Bi/MnBi共晶组织影响的初步研究[J].自然科学进展,2004,14(7):830-832.
    [186]马娟萍,任忠鸣,邓康,李喜,吴琼.强磁场对定向凝固Pb-Sn共晶生长影响的初步研究[J].自然科学进展,2004,14:837-840.
    [187] Li C, Ren Z, Ren W. Effect of magnetic fields on solid-melt phase transformation in purebismuth [J]. Materials Letters,2009,63(2):269-271.
    [188] Li C, Ren Z, Ren W, et al. Design and application of differential thermal analysisapparatus in high magnetic fields [J]. Review of Scientific Instruments,2009,80(7):073907.
    [189] Yasuda H, Tokieda K, Ohnaka I. Effect of magnetic field on periodic structure formationin Pb-Bi and Sn-Cd peritectic alloys [J]. Materials Transactions, JIM,2000,41(8):1005-1012.
    [190] Steinbach S, Ratke L. The effect of rotating magnetic fields on the microstructure ofdirectionally solidified Al-Si-Mg alloys [J]. Materials Science and Engineering: A,2005,413-414:200-204.
    [191] Zimmermann G, Weiss A, Mbaya Z. Effect of forced melt flow on microstructureevolution in AlSi7Mg0.6alloy during directional solidification [J]. Materials Science andEngineering: A,2005,413-414:236-242.
    [192] Willers B, Eckert S, Michel U, Haase I, Zouhar G.. The columnar-to-equiaxed transitionin Pb-Sn alloys affected by electromagnetically driven convection [J]. Materials Scienceand Engineering: A,2005,402(1-2):55-65.
    [193] Sha Y, Su C, Lehoczky S L. Growth of HgZnTe by directional solidification in amagnetic field [J]. Journal of Crystal Growth,1997,173(1-2):88-96.
    [194] Zhao Z, Qi T, Hu P, Ren H G, L Liu. Alignment and permeability of Al-7Si alloydirectional solidification with the application of a pulsed magnetic field [J]. Materials andManufacturing Processes,2012,27(5):561-566.
    [195] Noeppel A, Ciobanas A, Wang X D, Zaidat K, Mangelinck N, Budenkova O, Weiss A,Zimmermann G, Fautrelle Y. Influence of forced/natural convection on segregationduring the directional solidification of Al-based binary alloys [J]. Metallurgical andMaterials Transactions B,2010,41(1):193-208.
    [196] Ebisu Y. A numerical method of macrosegregation using a dendritic solidification model,and its applications to directional solidification via the use of magnetic fields [J].Metallurgical and Materials Transactions B,2011,42(2):341-369.
    [197]郭建亭.一种性能优异的低成本定向凝固镍基高温合金DZ417G [J].金属学报,2002,(11):1163-1174.
    [198] Das N. Advances in nickel-based cast superalloys [J]. Transactions of the indian instituteof metals,2010,63(2-3):265-274.
    [199] Gu J P, Beckermann C, Giamei A F. Motion and remelting of dendrite fragments duringdirectional solidification of a nickel-base superalloy [J]. Metallurgical and MaterialsTransactions A,1997,28(7):1533-1542.
    [200] Goldschmidt D, Paul U, Sahm P R. Porosity clusters and recrystallization in single-crystalcomponents [C]. Champion, PA, United states: Minerals, Metals and Materials Society,Superalloys1992,155-164.
    [201]胡汉起.金属凝固原理[M].北京:机械工业出版社,2000.
    [202]肖纪美.合金相与相变[M].北京:冶金工业出版社,1987.
    [203] Ludwig A, Steinbach I, Hofmann N, Balliel M, Woerkom M van, Sahm P R. Modeling ofundercooling effects during the directional solidification of turbine blades [C].Proceedings of the Sixth Conference on Modeling Casting and Welding Processes, PalmCoast, FL, USA, Publ by Minerals, Metals&Materials Soc (TMS),1993,87-94.
    [204]刘海霞,吴强,司乃潮.不同拉伸速度对Al-5%Cu定向凝固组织的影响[J].铸造,2005(1):40-43.
    [205]金文中.K417高温合金真空熔铸凝固过程的电磁控制[D].大连理工大学博士论文,2008.
    [206] Elliott A J, Tin S, King W T, et al. Directional solidification of large superalloys castingswith radiation and liquid-metal cooling: A comparative assessment [J]. Metallurgical andMaterials Transactions A,2004,35(10):3221-3231.
    [207]何国,李建国,毛协民,傅恒志.单晶高温合金固液界面形状及对凝固组织的影响[J].航空材料学报,1995,(1):9-14.
    [208] D'Souza N, Ardakani M G, McLean M, Shollock B A. Directional and single-crystalsolidification of Ni-base superalloys: Part I. The role of curved isotherms on grainselection [J]. Metallurgical and Materials Transactions A,2000,31(11):2877-2886.
    [209] Asai S, Sassa K, Tahashi M. Crystal orientation of non-magnetic materials by impositionof a high magnetic field [J]. Science and Technology of Advanced Materials,2003,4(5):455-460.
    [210] Sun Z, Zhang L, Guo M, Vleugels J, Van der Biest O, Blanpain B, Non-magneticanisotropic-materials preparation by a strong magnetic field during the solidification of ahypereutectic Al-Cu alloy [J]. EPL,2010,89(640026).
    [211] Li X, Fautrelle Y, Zaidat K, Gagnoud A, Ren Z M, Moreau R, Zhang Y D, Esling C.Columnar-to-equiaxed transitions in al-based alloys during directional solidificationunder a high magnetic field [J]. Journal of Crystal Growth,2010,312(2):267-272.
    [212] Youdelis W V, Dorward R C. Directional solidification of aluminium-copper alloys in amagnetic field [J]. Canadian Journal of Physics,1966,44:139-151.
    [213] Li C J, Yang H, Ren Z M, Ren W L, Wu Y Q. On nucleation temperature of purealuminum in magnetic fields [J]. Progress In Electromagnetics Research Letters,2010,15:45-52.
    [214] Li X, Fautrelle Y, Ren Z. High-magnetic-field-induced solidification of diamagnetic Bi[J]. Scripta Materialia,2008,59(4):407-410.
    [215] Li C, Ren Z, Ren W, Wu Y, Zhong Y, Deng K. Nucleation and growth behaviors ofprimary phase in Al-Cu hypereutectic alloy in high magnetic fields [J]. Progress InElectromagnetics Research Letters,2010,18:71-84.
    [216] Hellawell A. The grain structure of castings: some aspects of modelling [R]. NationalAeronautics and Space Administration1995.
    [217] Chandrasekhar S. On the inhibition of convection by a magnetic field [J]. PhilosophicalMagazine Series7,1952,43(340):501-532.
    [218] Cowling T G. Magnetohydrodynamics [J]. Reports on Progress in Physics,1962,25(1):244-286.
    [219] Chandrasekhar S. On the inhibition of convection by a magnetic field: II [J].Philosophical Magazine Series7,1954,45(370):1177-1191.
    [220] Mills K C, Youssef Y M, Li Z, Su Y. Calculation of thermophysical properties ofNi-based superalloys [J]. ISIJ International,2006,46(5):623-632.
    [221] Zhang T, Ren W, Dong J, Li X, Ren Z M, Cao G H, Zhong Y B, Deng K, Lei Z S, Guo JT. Effect of high magnetic field on the primary dendrite arm spacing and segregation ofdirectionally solidified superalloy DZ417G [J]. Journal of Alloys and Compounds,2009,487(1-2):612-617.
    [222] Magomedov M N. On the magnetic-field-induced changes in the parameters of phasetransitions [J]. Technical Physics Letters,2002,28(2):116-118.
    [223] Li C J, Chen L, Ren Z M. Application of ring method to measure surface tensions ofliquids in high magnetic field [J]. Review of Scientific Instruments,2012,83(0439064).
    [224]卢玉章,王大伟,张健,等.液态金属冷却法制备单晶铸件凝固过程的实验与模拟[J].铸造,2009(3):245-248.
    [225]李响妹.DZ417G高温合金定向凝固过程中的数值模拟[D].上海大学硕士论文,2010.
    [226] Li X, Gagnoud A, Ren Z, Fautrelle Y, Moreau R. Investigation of thermoelectricmagnetic convection and its effect on solidification structure during directionalsolidification under a low axial magnetic field [J]. Acta Materialia,2009,57(7):2180-2197.
    [227] Wang X D, Ciobanas A, Baltaretu F, Bianchi A M, Fautrelle Y. Control of themacrosegregations during solidification of a binary alloy by means of a AC magneticfield [J]. Materials Science Forum,2006,508:163-168.
    [228] Ren Z M, Jin J Z. Formation of a separated eutectic in Al-Si eutectic alloy [J]. Journal ofmaterials science,1992,27:4663-4666.
    [229] Khine Y Y, Walker J S. Thermoelectric magnetohydrodynamic effects during Bridgmansemiconductor crystal growth with a uniform axial magnetic field [J]. Journal of CrystalGrowth,1998,183(1-2):150-158.
    [230] Li X, Ren Z M, Cao G H, Gagmoud A, Fautrelle Y. Influence of an axial uniformmagnetic field on the solid/liquid interface curvature and macrosegregation indirectionally solidified the Al-0.85wt.%Cu alloy [J]. Materials Letters,2011,65(21-22):3340-3343.
    [231] Moore J J, Shah N A. Mechanisms of formation og A-and V-segregation in cast steel [J].International metals reviews,1983,28(6):338-356.
    [232] Mehrabian R, Keane M, Flemings M C. Interdendritic fluid flow and macrosegregation;influence of gravity [J]. Metall. Trans,1970,1(5):1209-1220.
    [233] Callen H B. The application of onsager's reciprocal relations to thermoelectric,thermomagnetic, and galvanomagnetic effects [J]. Physical Review,1948,73(11):1349-1358.
    [234] Moreau R. Magnetohydrodynamics [M]. Dordrecht; Boston: Kluwer AcademicPublishers,1990.
    [235]李喜.强静磁场下二元合金凝固行为研究[D].上海大学博士论文,2009.
    [236] Hui J, Tiwari R, Wu X, Tewari S N, Trivedi R. Primary dendrite distribution and disorderduring directional solidification of Pb-Sb alloys [J]. Metallurgical and MaterialsTransactions A,2002,33(11):3499-3510.
    [237] Steinbach S, Ratke L. The influence of fluid flow on the microstructure of directionallysolidified AlSi-base alloys [J]. Metallurgical and Materials Transactions A,2007,38(7):1388-1394.
    [238] Dupouy M D, Camel D, Favier J J. Natural convective effects in directional dendriticsolidification of binary metallic alloys: Dendritic array primary spacing [J]. ActaMetallurgicaet Materialia,1992,40(7):1791-1801.
    [239] Ren Z M, Jin J Z, Guo K R. Effect of fluid flow on dendritic structure of Al-Si alloy [J].Journal of Materials Science,1991,26(13):3599-3602.
    [240] Curreri P A, Lee J E, Stefanescu D M. Dendritic solidification of alloys in low gravity [J].Metallurgical and Materials Transactions A,1988,19(11):2671-2676.
    [241]于靖,许庆彦,李嘉荣,袁海龙,刘世忠,柳百成.镍基高温合金多叶片定向凝固过程数值模拟[J].金属学报,2007,43(10):1113-1120.
    [242] Kermanpur A, Varahram N, Davami P, Rappaz M. Thermal and grain-structuresimulation in a land-based turbine blade directionally solidified with the liquid metalcooling process [J]. Metallurgical and Materials Transactions B,2000,31(6):1293-1304.
    [243] Kermanpur A, Mehrara M, Varahram N, Davami P. Improvement of grain structure andmechanical properties of a land based gas turbine blade directionally solidified withliquid metal cooling process [J]. Materials Science and Technology,2008,24(1):100-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700