用户名: 密码: 验证码:
油气管道在线内检测技术若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油气管道在线检测技术是保障管道运输安全的重要手段,管道在线检测的原理有多种,漏磁法和超声波法的应用最为广泛。新兴的电磁超声技术作为一种激发原理特殊的超声,因不需要耦合介质等优点,引起了无损检测领域的高度重视,本论文以管道检测的漏磁技术和电磁超声技术为重点进行研究。
     针对缺陷漏磁检测定量化、智能化的难题,结合油气管道检测现场的实际需求,通过理论分析和大量实验,系统分析了管道缺陷漏磁检测技术。首先根据漏磁检测的工作原理,引出基于解析法的偶极子管道缺陷理论模型,并分别以有限长矩形、无限长矩形和锥形缺陷为例做了相应的漏磁场分布研究。针对磁偶极子模型的不足,将有限元法应用到缺陷漏磁场分析中,实现了常见管道样本缺陷的漏磁场仿真。研究了漏磁信号特征的有关影响因素,例如缺陷的外形尺寸、传感探头提离距离、检测仪移动速度、管壁磁化水平、磁铁形状和管道内应力等,得到了各种因素对漏磁检测的影响规律,为相关补偿提供了理论指导。研究了感应线圈漏磁检测信号的小波去噪方法,并详细阐述了应用插值技术去除坏死通道的影响的方法。引入缺陷漏磁信号的模式识别方法,根据实测信号典型管道附件的信号特征,对环焊缝、直焊缝和螺旋焊缝进行了模式识别研究,同时根据缺陷尺寸参数识别结果采用最大安全工作压力方法进行了管道缺陷安全性评价研究。为实际应用的管道检测设备编制了漏磁检测数据分析系统软件,实现了缺陷漏磁场数据的显示,缺陷及焊缝的自动识别量化和评估。论文研究了漏磁检测的缺陷定量分析问题,将神经网络和模式识别方法应用到缺陷漏磁检测中,通过实验和仿真结合的方法建立了缺陷特征样本库,采用BP网络建立了缺陷特征量提取的网络模型;采用RBF网络建立缺陷轮廓的网络映射,并在此基础上提出一种收敛速度更快,精度更易控制的小波基函数神经网络缺陷识别算法。
     电磁超声技术可以进行油气管道应力腐蚀裂纹的探测。本文推导了电磁超声激发和接收过程的模式方程,并采用有限元的方法建立了EMAT换能器脉冲电涡流的有限元模型,分析了电涡流的趋肤效应,及各种因素对电涡流分布的影响,建立了感应涡流在静磁场作用下,受到洛仑兹力作用激发和接收超声波的模型。电磁超声信号由于受到噪声的污染质量较差,课题采用电磁超声探伤仪获取实测信号,并针对接收信号属于非稳态时变信号的特点,提出采用一种非线性自适应的时域信号处理方法进行信号去噪。
Oil and gas pipeline in-line inspection is an important mean to ensure pipeline transmission safety. There are many principles of pipeline in-line inspection, and Magnetic flux Leakage (MFL) and ultrasonic method are used widely. Rising electromagnetic acoustic (EMA) technique, as a type of ultrasonic with special excitating principle, attracts highly attention in Nondestructive Testing (NDT) field, because of its need-no-couplant merit. MFL and EMA techniques are researched in this dissertation.
     Concentrating on the difficult problems that pipe defects are not evaluated quantitatively and intelligently by MFL inspection, pipeline defects MFL inspection technology is analyzed systematically, by theoretical analysis and experiments or testing. Firstly, based on MFL inspection principle, this dissertation presented dipole pipeline defect model based on analytical method, and had analyzed finite-length rectangle defect, infinite-length rectangle defect, and cone defect magnetic flux field distribution. Aimed at the lack of magnetic dipole model, finite-element method (FEM) is applied to defect leak magnetic field analysis, and the distribution of ordinary defect MFL field is simulated. The affecting factors of MFL signal features, such as defect geometry patameters, lift-off value, the speed of testing device, pipe magnetization degree, permanent magnet shape, operating pressure, are researched, then got some important law and offer theorical direction for defect signal compenstation. Research induce coil MFL inspection signal wavelet de-noise method, and explain the way to wipe off the affect of bad channel signals by interpolation. The pattern recognition method of pipe MFL signals is put forward, then girth welds, straight welds and spiral welds recognition is researched based on the feature of typical pipeline accessories practical signals. At the same time, by virtue of recognition of defect parameters, the maximum safe working pressure method is adopted to rank defects. MFL inspection data analysis software for the using pipeline inspection device is designed in this dissertation, to display MFL data and identify, quantize and evaluate pipeline defects and welds. This dissertation researched pipeline defect inspection quantitative analysis problem, applied neural network and pattern recognition methods to MFL defect inspection, and established the defect feature sample store by experiment and simulation method. The application of BP neural network is discussed firstly to extract defect feature, and established a net mapping
引文
[1] 臧铁军,臧天红,我国管道运输的发展概况,管道技术与设备,1998(4):1~4
    [2] 张奇兴,我国管道运输的现状和发展,中国石化,1998(8),37~39
    [3] 王为民,国内外石油管道输送技术发展综述,管道技术与设备,1997,(4):4~8
    [4] 柴业森,石永春,埋地管道整体性评估,油气储运,1999,18(11):38~41
    [5] 刘海峰,胡剑,杨俊,国内油气长输管道检测技术的现状与发展趋势,天然气工业,2004,24(11):147~151
    [6] 高福庆,管道内检测技术应用与发展,石油规划设计.2000,11(1):40~41
    [7] 高福庆,张世华,刘景美,管道腐蚀监测标准与管道安全工程,管道技术与设备,1999(3):39~40
    [8] 张复兴,新国标,GB/T12606 《钢管漏磁探伤方法》的制定说明,无损检测,2000,22(2):78~79
    [9] Song X C, Wu X J, Kang Y H, An inspection robot for boiler tube using magnetic flux leakage and ultrasonic methods, Insight, 2004,46(5): 275~277
    [10] 金涛,阙沛文,小波分析对漏磁检测噪声消除实验的分析,传感技术学报,2003,16(3):260~262
    [11] 陈文革,魏劲松,超声无损检测的应用研究与进展,无损检测,2001(4)
    [12] 刘镇清,刘骁,超声无损检测的若干新进展,无损检测,2000(9):263
    [13] 许守平 译,张广纯 校,ASTM E816-96 利用电磁超声换能器(EMAT)技术进行超声检查的标准方法,无损探伤,2003,27(4):20~28
    [14] 张建卫 译,张广纯 校,ASTM E1774-96 电磁超声换能器(EMAT)标准导则,无损探伤,2003,(2):18~23
    [15] 张伟代译,张广纯 校,ASTM E1962-98 利用电磁超声换能器(EMAT)技术进行超声表面检查的标准检测方法,无损探伤,2003,(6),30~35
    [16] Shcherbinin V E, Pashagin, A I, Influence of the extension of a defect on the magnitude of its magnetic field, Soviet Journal of Nondestructive Testing, 1972,8(4):441~447
    [17] Shcherbinin V E, Pashagin, A I, Fields of defects on the inner and outer surfaces of a tube during circular magnetization, Soviet Journal of Nondestructive Testing, 1972,8(2):134~138
    [18] Edwards D M, Some current problems in itinerant electron magnetism, Journalof Magnetism and Magnetic Materials, 1979, 15-18(pt1):262~268
    [19] Palmer R B, Interaction of relativistic particles and free electromagnetic waves in the presence of a static helical magnet, Journal of Applied Physics, 1972, 43(7):3014~3023
    [20] Rafi G Z, Moini-Mazandaran R, Faraji-Dana R, A new time domain approach for analysis of vertical magnetic dipole radiation in front of lossy half-space, Journal of Electromagnetic Waves and Applications, 2000,14(6):831~832
    [21] Zhong W C, Theoretical fundamentals of magnetic dipole for longitudinal magnetization of a square steel component, Materials Evaluation, 1999,57(9):937~939
    [22] Minkov D, Takeda Y, Shoji T, et al, Estimating the sizes of surface cracks based on hall element measurements of the leakage magnetic field and a dipole model of a crack, Applied Physics a- Materials Science & Processing, 2002,74(2):169~176
    [23] Yarotskii V A, Estimation of magnetic dipole detection parameters, Measurement Techniques, 1997,40(7):684~688
    [24] Hwang J H, Lord, W, Finite element analysis of the magnetic field distribution inside a rotating ferromagnetic bar, IEEE Transactions on Magnetics, 1974,10(4):1113~1118
    [25] Hwang J H, Lord, W, Finite element modeling of magnetic field/defect interaction, Journal of Testing & Evaluation, 1975,3(1):21~25
    [26] Silk M G, Williams N R, Bainton K F, Potential role of NDT techniques in the monitoring of fixed offshore structures, British Journal of Non-Destructive Testing, 1975,17(3):83~87
    [27] Lord W, Bridges J M, Yen W, Residual and active leakage fields around defects in ferromagnetic materials, Materials Evaluation, 1978,36(8):47~54
    [28] Foerster F, Nondestructive inspection by the method of magnetic leakage fields, Theoretical and experimental foundations of the detection of surface cracks of finite and infinite depth, Soviet Journal of Nondestructive Testing, 1982,18(11):841~859
    [29] McMillan N, Insitu pipeline inspection using the magnetic flux leakage technique, International Pipeline Technology Exhibition & Conference, 1984,79~88
    [30] Uetake I, Ito H, Magnetic leakage flux studied as a function of relative orientation between longitudinal direction of defect and magnetic field direction, Transactions of National Research Institute for Metals, 1984,26(1):63~72
    [31] Uetake I, Ito H, Lift-off effect and its application to the defect size estimation in the magnetic leakage flux method, Transactions of National Research Institute for Metals, 1986,28(2):177~187
    [32] D. L. Autherton, Finite element calculations on the effects of permeability variation on magnetic flux leakage signals, NDT International, Vol 20. No 4, August 1987, P239
    [33] Kenneth H.Huebner, Earl A.Thornton,有限元素法,王至勤译著,北京,世界图书出版公司北京公司,1993
    [34] D. L. Atherton, Finite element calculations and computer measurements of magnetic flux leakage patterns for pits, British Journal of NDT, May 1988, P159.
    [35] Eduardo Altschuler, Nonlinear model of flaw detection in steel popes by magnetic flux leakage, NDT & E International, Vol 28 1995(1):35~39
    [36] K. Krzywosz, Comparision of Electromagnetic Techniques for Nondestructive Inspection of Ferromagnetic Tubing, 42 Materials Evaluation 48, January, 1990
    [37] C. N. Owston, The Manetic Flux Leakage Technique of Non-Destructive Testing,British Journal of NDT, November 1974, P164.
    [38] E. Lalwa and L. Pielarski, Design of Hall-effect sensors for magnetic testing of steel ropes, NDT International, Vol 20,No 5, October 1987, P295
    [39] E. Kalwa ,K. Pielarski, Design of inductive sensors for magnetic testing f steel ropes, NDT International, Vol 20,No 6, October 1987, P347.
    [40] 李路明,用有限元方法优化漏磁检测,无损检测,1997,19(6):154~158
    [41] R. Bames ,D. L. Atherton, Effects of Bending Stesses on magnetic flux leakage patterns, NDT & E International, Vol 26, No 1, 1993, P3.
    [42] W. R. Tweddell, Frequency Spectral Analysis of Rayleigh Waves to Size Surface-Breaking Cracks, 1348 Materials Evaluation 48 November, 1990
    [43] K Mandal ,D.L. Atherton, J. Phys. D ,A study of magnetic flux-leakage signals ,Appl. Phys.,1998,31(22),3211~3217
    [44] L.Clapham ,A neutron diffraction study of local stress concentrations surrounding defects in pipeline steel ,Physica B,1998,(241-243),1240~1243
    [45] S.Mukhopadhyay, G.P.Srivastava ,Characterisation of metal loss defects from magnetic flux leakage signals with discrete wavelet transform, NDT&E nternational,2000,(33), 57~65
    [46] K .Mandal , Investigations of magnetic flux leakage and magnetic Barkhausen noise signals from pipeline steel, Phys. D: Appl. Phys,1997,30(6),p 962-973
    [47] K. Hwang, S.Mandayam, S,S,Udpa, etal, A Application of wavelet basis function neural networks to NDE, IEEE Trans. On magnets, Vol 38, No.6 3633~3642
    [48] Song XiangYu, Qi Feihu, Fast Convergence Algorithm for Wavelet neural network used for signal or function approximation, Proceedings of ICSP’96, 1401~1404
    [49] 陈念贻,模式识别优化技术及其应用,北京:中国石化出版社,1997 年,149~200
    [50] 莫锦秋,周晓军,基于模糊子集理论的无损检测缺陷模式识别,中国机械工程,1999,10(6):664~666
    [51] 蒋奇,王太勇,刘秋宏等,基于径向基函数神经网络的管道缺陷漏磁场分析,无损检测,2002,24(12):515~518
    [52] Shen-Tun Li, Shu-ching Chen, Function approximation using robust wavelet neural networks, ICTAI’02,1998(2):49~53
    [53] Emilio Ribes-Gomez, Sean Mcloone, George W. Irwin, Orthogonal wavelet network construction using local regularization, 2002 First International IEEE Symposium,271~276
    [54] 3-D defect profile reconstruction from magnetic flux leakage signatures using wavelet basis function neural networks/ Hwang, Kyungtae(IOWA STATE UNIVERSITY). 2000
    [55] Jaein Lim, Data Fusion for NDE Signal Characterization (IOVA STATE UNIVERSITY). 2001
    [56] Sunho Yang, Finite element modeling of current perturbation method of nondestructive evaluation application, phD Dissertation, Iowa State University Ames, Iowa
    [57] 李路明,表面裂纹宽度对漏磁场 Y 分量的影响,清华大学学报(自然科学版),1999,2
    [58] 黄松岭,李路明,管道漏磁检测中的信号处理,无损检测,2000,22(2):55~57
    [59] 李路明,张家骏,用有限元方法优化漏磁检测,无损检测,1997,19(6):154~158
    [60] 吴先梅,钱梦碌,有限元法在管道漏磁检测中的应用,无损检测,2000,Vol.22No.4,147~150
    [61] 汪友生,缺陷参数与漏磁信号相互关系的实验研究,合肥工业大学学报(自然科学版),1998,10
    [62] 杨理践,陈晓春,油气管道漏磁检测的信号处理技术,沈阳工业大学学报,1999,21(6):516~518
    [63] 蒋奇,王太勇,基于径向基函数神经网络的管道缺陷漏磁场分析,无损检测,2002,24(12):515~518
    [64] 金涛,阙沛文,李亮,管道缺陷漏磁检测大容量高保真数据压缩研究,应用基础与工程科学学报,2005,13(2):154-161
    [65] Ong J K, Kerr D, Bouazza-Marouf K, Defign of a semi-autonomous modular robotic vehicle for gas pipeline inspection, Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering, 2003,217(12):109~122
    [66] Caleyo F, Hallen J M, Gonzalez J L, Pipeline inspection – 1 – reliability-based method assesses corroding pipelines, Oil & Gas Journal, 2003,101(1):54~58
    [67] Anon, Pipeline inspection failure blamed for oil spill, Pipeline & Gas Journal, 2002,229(9);2~5
    [68] 王惠文,关于无缝钢管在线漏磁探伤影响因素的探头,无损探伤,1992(4):13~16
    [69] 汪友生,基于漏磁通的缺陷信号分析,北京工业大学学报,1999,25(3):25~30
    [70] 王庆国,潘华锦,郝爱民,漏磁通无损检测中铁磁材料内部磁场分布的研究,无损检测,2001,23(1):6~8
    [71] 解源,华增芳,钢管漏磁探伤与电涡流探伤的比较,无损探伤,1999(6):35~36,10
    [72] 金虹,漏磁检测技术在我国管道腐蚀检测上的应用和发展,管道技术与设备 2003(1):43~46
    [73] 金虹,肖兴江,PTC 漏磁腐蚀检测数据分析系统及其应用,油气储运,2000,19(7):41~42
    [74] 沈林福,管志民,我国研制成功管道内检测装置,科学日报,2002,1(8)
    [75] 杨理践,王玉梅等,智能化管道检测装置的研究,无损检测,2002,24(3):100~102
    [76] 陈晓春,有限元在管道漏磁检测技术中的应用研究,硕士学位论文,沈阳工业大学,2000,1
    [77] Dai Xiao-wei, Electromagnetic Acoustic transducers: Physical principles and finite element modeling, Ph.D Dissertation, Worcester Polytechnic Institute,1991
    [78] R.H.Randall, F.C. Rose, C. Zener, Intercrystalline thermal currents as a source of internal friction, Rhys. Rev., Col.56,pp.343,1939
    [79] S.I.Aksenov, B.P. Vikin, K.V. Vladimirskii, The excitation of ultrasonic vibrations by ponderomotive forces, J. Exper. Theoret. Phys, USSR, Vol28, p762, 1995
    [80] C.C.Grimes, S.J.Buchsbaum, Interaction between helicon waves and sound waves in potassium, Phys. Rev. Letters, Vol12, p357,1964
    [81] J.R.Houck, H.V.Bohm, B.W.Maxfield, J.W.Wilkins, Direct electromagnetic generation of acoustic waves. Phys. Rev. Letters, Vol19, p224,1967
    [82] Harold L, Grubin, Direct electromagnetic generation of conpressional waves in metals in static magnetic fields, IEEE Trans. on Sonic and ultrasonics, SU-17, pp227,1970
    [83] M.R.Gaerttner, W.D.Wallace, B.W.Maxfield, Experiments relating to the theory of magnetic direct generation of ultrasound in metals. Phys. Rev. Vol184, pp702,1969
    [84] Yu.M.Shkarlet, Sov.J.Nondestr, Test.(English Translation). Vol.10.pp.320.1974
    [85] R.B.Thompson, A model for the electromagnetic generation of ultrasonic guided waves in ferromagnetic metal polycrystals, IEEE Trans. Sonics Ultrasonics. SU-25, 7~15, 1978
    [86] R.B.Thompson, A model for the electromagnetic generation and detection of Rayleigh and Lamb waves, IEEE Trans. Sonics Ultrasonics. Vol SU-20, 340~346, 1976
    [87] H.M.Frost, Electromagnetic ultrasound transducers: principles, practice, and applications, Physical Acoustics, Vol.XIV, 179~275, Academic Press, Inc. 1979
    [88] 张勇,陈强,孙振国,汤晓华,用于无损检测的电磁超声换能器研究进展,无损检测,Vol.26(6),June,2004:275~279
    [89] Reinhold Ludwig, Willian Lord, A finite element formulation for the study of ultrasonic NDT systems, IEEE Trans. Ultrasonic, Ferroelectrics and Frequency Control, Vol.35, No.6, 809~820, November 1988.
    [90] Reinhold Ludwig, Theoretical basis for a unified conservation law description of the electromagnetic acoustic transduction process. IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, Vol.39, No.4, 476~480, July 1992
    [91] Reinhold Ludwig, Numerical implementation and model predictions of a unified conservation law description of the electromagnetic acoustic transduction process, IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, Vol.39, No.4, 481~488, July 1992
    [92] R. Ludwig, Z. You, R. Palanisamy, Numerical simulation of an electromagnetic acoustic transducer-receiver system for NDT Application, IEEE Trans. Magnetics, Vol.29, No.3, 2081~2089, May 1993
    [93] Kaltenbacher M,Ettinger K, Lerch R,Finite element analysis of coupled electromagnetic acoustic systems,IEEE Tran Magnetics,1999,35(3):1610~1613
    [94] Kaltenbacher M, Lerch R, Ettinger K, Computer optimization of electromagnetic acoustic transducers, Proceedings of the IEEE Ultrasonics Symposium, New York, 1998:1029~1034
    [95] Jafari, Shapooradadi R, Sinclair AN, Improved finite element method for EMAT analysis and design, IEEE Tran Magnetics, 2001,37(4):2821~2823
    [96] Hirotsugu Ogi, Masahiko Hirao, Toshihiro Ohtani, Line-focusing of ultrasonic SV wave by electromagnetic acoustic transducer, Journal of the Acoustical of America, 1998, Vol.103:2411~2415
    [97] Hirotsugu Ogi, Masahiko Hirao, Toshihiro Ohtani, Line-focusing electromagnetic acoustic transducers for the detection of slit defects, IEEE Tran Ultrasonics, Febroelectrics and Frequency Control, 1999,46(2):341~366
    [98] Maxfield BW, Fortunko CM, The design and use of electromagnetic acoustic wave transducers(EMATs), Material Evaluation, 1983,41(11):1399~1408
    [99] Edwards C, Nurse G, Palmer SB, Integrated optical fiber EMAT device for applications in ultrasonic NDT, British Journal of Non-Destructive Testing, 1990,32(2):76~78
    [100] Guo Zhiqi, Achenbach JD, Krishnaswamy Sridhar, EMAT generation and laser detection of single lamb wave models, Ultrasonics, 1997,35(6):423~429
    [101] Leonard Scrantz, System, Method and Apparatus for the Ultrasonic Inspection of Liquid Fielded Tubulars and Vessels, United States: US5619423,1994
    [102] Hancock Jimmy W, MaclAucLauchlan, Daniel T, Murphy Ralph D, Electromagnetic Acoustic Transducer(EMAT) Inspection of Cracks in BoilerTubes, United States: US6282964,2001
    [103] http://www.qnetworld.com
    [104] Masahiko Hirao, Hirotsugu Ogi, An SH-wave EMAT technique for gas pipeline inspection, NDT & E International, 1999,32(3):127~132
    [105] http://www.mfi.de
    [106] http://www.tru-tec.com
    [107] http://www.mcdermott.com
    [108] Murayama Riichi, Fujisawa Kazuo, Fukuoka Hidekazu, Development of an on-line evaluation system of formability in cold-rolled steel sheets using electromagnetic acoustic transducer (EMATs) NDT&E International, 1996,29(3):141~146
    [109] 彭贵新,韩延芝,罗禄生,热钢板在线自动化电磁超声探伤系统,中国:CN1063848C,1996
    [110] MacLauchlan DT, Burns LR, Alers GA, Measurement of stress in steel structures with SH wave EMATs, Review of Process in Quantitative Non-destructive Evaluation, 1988,7(b):1399~1404
    [111] Bennett Husson D, Kino Simon D, Gordon S, Measurement of stress with surface wave, Material Evaluation, 1985,43(1):92~100
    [112] 张广纯,陆原,李希英,电磁超声自动探伤技术,中国:CN1022202C,1993
    [113] 陈苏劲,张广纯,梁杰宇,电磁探伤装置,中国:CN2090061U,1991
    [114] 虞和济,陈长征,张省,周建男著,基于神经网络的智能诊断,北京:冶金工业出版社,2000,5
    [115] 李岳生,样条与插值,上海:上海科学技术出版社,1983
    [116] B Fu,D Stephens,etc., Methods for assessing corroded pipeline,BG Technology,UK,2 October 2000
    [117] 周志华,曹存根,神经网络及其应用,北京:清华大学出版社,2004
    [118] [俄]A.H.加卢什金 著,阎平凡 译,神经网络理论,北京:清华大学出版社,2002
    [119] 史忠植 著,知识发现,北京:清华大学出版社,2002,1
    [120] Jun Zhang,Gilbert G,Walter,Yubo Miao,and Wan Ngai Wayne Lee,Wavelet Neural Networks for Function Learning , IEEE Transaction on Signal Processing,1995,43(6):1485~1497
    [121] S.Mukhopadhyay,G.P.Srivastava,Characterisation of metal loss defects from magnetic flux leakage signals with discrect wavelet transform,NDT&E Internatioanl,2000(33):57~65
    [122] K.Hwang , S.Mandayam , S.S.Udpa , L.Udpa , W.Lord , M.Atzd , Characterization of gas pipeline inspection signals using wavelet basisfunction neural networks,NDT&E Internatioanl 2000(33):531~545
    [123] Qinghua Zhang,Albert Benveniste,Wavelet Networks. IEEE Transaction on Neural Networks,1992,3(6):889~898
    [124] 梁学章,何甲兴等,小波分析,北京:国防工业出版社,2004
    [125] J.T.Tou,R.C.Gonzalez,Pattern Recognition Principles,Reading MA:Addison-Wesley,1979
    [126] Yeomans M,Ashworth B,Development of 36” EmatScan Crack Detection (CD) Tool [R],Proceedings of IPC’02,4th International Pipeline Conference, Calgary,Canada,2002:1543-1548
    [127] Reza Jafari Shapoorabadi,Electromagnetic Acoustic Transducer Analysis by The Finite Element Method,[PHD],University of Toronto,2002
    [128] [美] B.A. Auld 著,孙承平 译,固体中的声场和波,北京:科学出版社,1982
    [129] Abbate A,Koay J,Frankel J,et al,Signal detection and noise suppression using a wavelet transform signal processor:Application to ultrasonic flaw detection,IEEE Transactions on Ultrasonic,Ferroelectrics and Frequency Control,1997,44(1):14-26.
    [130] Legendre S,Massicotte D,Goyette J,et al,Neural classification of Lamb wave ultrasonic weld testing signals using wavelet coefficients , IEEE Transactions on Instrumentation and Measurement,2001,50(3):672-678.
    [131] Case T J,and Wang R C,Flaw identification from time and frequency features of ultrasonic waveforms,IEEE Transactions on Ultrasonic,Ferroelectrics and Frequency Control,1996,43(4):592-600.
    [132] Ziarani A K,Extraction of Nonstationary Sinusoids[D],Toronto,Canada, Toronto University,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700