用户名: 密码: 验证码:
高强韧锌基合金ZA30的研制及其摩擦磨损性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌基合金熔炼温度低及无工业污染,以锌基合金替代铜合金有助于实现节能减排及可持续发展。然而目前国内外所研制的锌基合金室温塑韧性低,用其制造的零部件常常因断裂而过早失效,成为制约锌基合金推广应用的瓶颈,因此研制高强韧锌基合金具有重要的学术意义和应用价值。
     本文通过研究Al、Cu、硼钛复合盐变质和稀土变质对锌基合金力学性能的影响,研制了抗拉强度407~418MPa、延伸率12.1%-17.3%的高强韧锌基合金ZA30。研究发现:在铝含量27%-35%范围内,锌基合金的抗拉强度逐渐降低,延伸率则先升后降,在29%-31%处于最大值。这是由于α(A1)相增加、非平衡共晶组织减少导致强度和延伸率增加、(α+η)共析体减少、显微缩松增大导致强度和延伸率降低综合作用的结果。在铜含量1.5%-3.5%范围内,锌基合金的抗拉强度逐渐增大,延伸率则先升后降,在2%-2.5%处于最大值。硼钛复合盐或稀土铈对锌基合金进行变质处理,均可细化合金组织,并使非平衡共晶组织分布得均匀且不连续,提高抗拉强度,显著提高延伸率。就变质效果而言,硼钛复合盐优于稀土铈。
     本文在MPX-2000型销盘式摩擦磨损试验机上,进行了与ZA27、ZCuSn6Zn6Pb3、ZCu10P1、ZCuA110Fe3四种合金在不同润滑、不同载荷条件下的滑动摩擦磨损性能的对比试验,为ZA30的推广应用提供了试验基础。试验结果表明:在2#通用锂基脂润滑并分别加载200N、400N条件下,ZA30合金的耐磨性优于其它四种合金。在46#工业齿轮油润滑并分别加载400N、600N、800N、1000N条件下,ZA30的耐磨性明显优于ZA27、ZCuSn6Zn6Pb3、ZCuAL10Fe3,略优于ZCuSn10P1,但在1000N时略低于ZCuSn10P1。在此基础之上,本文在十多家企业进行了工业试验,验证了实验室结论的正确性。
     借助扫描电镜和X射线能谱仪等分析手段探讨了5种合金的磨损机理。扫描电镜的磨损形貌显示,在相同试验条件下,ZA30的磨痕深度均浅于其它四种合金,验证了磨损试验的数据。磨损形貌还显示,随着载荷的增加,五种合金均由磨粒磨损向粘着磨损转化。X射线能谱分析证实对磨钢盘表面存在ZA30和三种铜合金的转移膜及化学反应膜。
     通过对磨损试验数据的进一步分析和归纳,发现磨粒磨损应细分为犁削型磨粒磨损和剥落型磨粒磨损,犁削型磨粒磨损的耐磨性优于剥落型磨粒磨损;当四种合金都处于低位磨损状态时,其耐磨性的次序为:ZA30> ZCuSn10P1> ZCuSn6Zn6Pb3> ZCuAL10Fe3.当载荷、滑动速度、润滑使合金由低位磨损状态(磨粒磨损)向高位磨损状态(粘着磨损)转化时,其转化次序为:ZCuSn6Zn6Pb3> ZCuSn10P1> ZA30> ZCuAL10Fe3。四种合金的耐磨性次序相应改变。
Owing to lower melting temperature and less industrial pollution of zinc-based alloy, replacement for copper alloy helps to achieve energy saving, emission reduction and sustainable development. However, current developed zinc-based alloys at domestic and abroad has lower plasticity at room temperature, therefore, parts made of the alloy often lose effectiveness due to premature rupture, which becomes an bottleneck to wide application of zinc-based alloy. Developing zinc-based alloy with higher strength and plasticity has academic significance and application value.
     Through research of the effects of Al, Cu, boron-titanium composite salt modification and RE modification on the mechanical properties of zinc-based alloys, a new zinc-based alloy ZA30 with 407-418MPa tensile strength and 12.1%~17.3% elongation has been developed. It is found that when aluminum content lies between 27%~35%, tensile strength of zinc-based alloy gradually reduces while the elongation rises initially, and gradually drops with maximum around 29%~31%. This is a combined consequence of increasing strength and elongation due to a (Al) phase increment and reduction of non-equilibrium eutectics, decreasing strength and elongation from reduction in (α+η) eutectoids and micro-shrinkage increment. It is also noticed that when copper content lies between 1.5%~3.5%, tensile strength of zinc-based alloy gradually increases while the elongation rises initially, and gradually drops with maximum around 2%~2.5%. Modification of boron-titanium compound salt or Rare Earth on zinc-based alloy, could refine microstructure, and evenly and discontinuously distribute non-equilibrium eutectic, which increases tensile strength and significantly increases elongation. In terms of modification effect, boron-titanium composite salt is superior to RE.
     Comparative study on wear resistance of 5 sliding-bearing alloys, such as ZA30, ZA27, ZCuSn6Zn6Pb3, ZCuA110Fe3 and ZCuSn10P1 was performed under different lubrication and loads on MPX-2000 wear tester, which provides an experimental verification for ZA30 applications. The results show that under the 2# lithium grease lubrication and the load of 200N,400N respectively, ZA30 wear resistance is superior to the other four kinds of alloys. Under 46# gear oil lubrication and the load of 400N, 600N,800N,1000N respectively, ZA30 shows obviously superior wear resistance than ZA27, ZCuSn6Zn6Pb3, ZCuAL10Fe3, and slightly better than ZCuSn10P1, except that ZA30 is slightly lower than ZCuSn10P1 at 1000N. Based on the above results, more than 10 site tests have been carried out and the lab conclusions have been verified.
     With scanning electron microscopy and X-ray spectroscopy, wear mechanism of five kinds of alloys have been explored. The after-wearing SEM morphology shows that under the same experimental conditions, ZA30 has more shallow wear traces than that of the other four kinds of alloys, which is consistent with the results in the above friction and wear comparative tests. Wear morphology also shows that as the load increases, abrasive wear transforms to adhesive wear in five alloys. X-ray spectrum analysis confirms the existence of transfer film and chemical reaction film of ZA30 and three copper alloys on the grinding surface of steel plate.
     Through further analysis and induction for wear test data, it is found that abrasive wear should be sub-divided into plow-type abrasive wear and spall-type abrasive wear, and wear resistance of plow-type abrasive wear is better than that of spall-type abrasive wear. It is also found that when ZA30, ZCuSn6Zn6Pb3, ZCuA110Fe3 and ZCuSn10P1 are all in low wear condition, the order of wear resistance is ZA30> ZCuSn10P1> ZCuSn6Zn6Pb3> ZCuAL10Fe3, with change of load, sliding velocity, lubrication, etc, the wear condition would transfer from low wear to severe one, the order of transfer is ZCuSn6Zn6Pb3> ZCuSn10P1> ZA30> ZCuAL10Fe3, the order of wear resistance changes correspondingly.
引文
1. S.F. Ratke, Transactions of 6th SDCE International Die Casting Congress[C], Technical Paper No.104, Cleveland, OH,1970
    2.杨留栓,王洪敏,陈全德等,高铝锌合金[M],西安,西北工业大学出版社,1997
    3. D.Apetelian, M.Paliwal, D.Herrschaft. Casting with Zinc Alloys[J]. J.Metals 1981(11):12~20。
    4. E.Gervais, H.Levert, M.Bess. the Development of a Family of Zinc-Base Foundry Alloys[J].AFS Transactions,1980 (88):183-194
    5. ASTM Designation B669-82.
    6. J. Barnhurst, E. Gervais, F. D. Bayles. Gravity Casting of Zinc-Aluminum Alloys-Solidification Behavior of ZA-8, ZA-12 and ZA-27[J]. AFS Transactions,1983 (91):569-584
    7.李振镰,高强度锌基合金的研究,特种铸造及有色合金[J],1985(2):10-16
    8.卜明权,高强度铸造锌基合金的研制[J],材料工程,1991(1):34-37
    9.杜艳玲,姜淑艳,黄积荣等,提高ZA27合金韧性的途径[J],特种铸造及有色合金,1989(5):22-26
    10.舒震,刘金水,高铝锌基合金的研究[J],湖南大学学报,1987(3):40-45
    11.修世飞,张恩洪,新型锌基合金耐磨材料的研制[J],特种铸造及有色合金,1991(4):13-15
    12.程燮忠,高铝耐磨锌基合金的性能研究[J],东南大学学报,1994(11):59-64
    13.陈全德,李顺成,马霆等,ZnAlCuMn合金的成分对组织和性能的影响[J],洛阳工学院学报,1985(2):1-12
    14.唐孝杰,王晓沛,ZA27合金网状η和ε相的形成[J],特种铸造及有色合金,1991(3):8-9
    15.王青澄,李晨曦,吴世常等,铸造锌铝合金一次结晶和组织特点[J],沈阳工业大学学报,1991(1):19-31
    16.王青澄,李晨曦,杨国毅等,ZA27合金的铸态组织及晶界共晶体[J],沈阳 工业大学学报,1994(3):19-25
    17.马霆,何彦永,高铝锌合金的铸态组织和机械性能关系分析[J],热加工工艺,1992(1):17-21
    18.舒震,刘金水,论高铝锌合金的组织形成过程[J],湖南大学学报,1988(2):42-48
    19.马霆,宋延沛,凝固时施加震动对ZA27合金组织及性能的影响[J],热加工工艺,1989(4):19-21
    20.马霆,ZA27合金的壁厚效应及凝固时施加震动的影响[J],热加工工艺,1990(1):29-33
    21.马霆,ZA27合金金属型铸造时的凝固特性、伴生缺陷和壁厚效应[J],热加工工艺,1990(4):6-11
    22.段守坤、曾松岩、蒋祖龄等,高铝锌合金的收缩特性[J],特种铸造及有色合金,1991(2):3-5
    23.李建新,李金富,叶孔容,过滤净化对ZA—27合金组织及性能的影响[J],机械工程材料,1993(1):33-35
    24.赵沛廉,贺少怀,韩培悌等,高强度锌基合金摩擦特性的试验研究[J],太原工业大学学报,1990(4):95-100
    25.梁梅芬,高强度铸造锌合金在干摩擦条件下摩擦磨损特性之研究[J],固体润滑,1991(2):114-119
    26.谢敬佩,朱跃峰,马霆,铝、铜对锌基合金磨损性能影响的研究[J],洛阳工学院学报,1991(3):10-13
    27.董绍铭,彭宽,铸造高铝锌基合金摩擦特性的试验研究[J],特种铸造及有色合金,1985(4):12-16
    28.张忠明,王锦程,徐东辉等,铝、铜、镁对铸态锌基合金组织和阻尼性能的影响[J],中国有色金属学报,1999增刊1:1-6
    29. F.Habiby, M.J.McNallan. Macrosegregation and Underside Shrinkage in Sand-Cast Zinc 27%-Aluminum Alloy(ZA-27) [J]. AFS Transactions,1984(92): 263-270
    30. R.J.Barnhurst, E.Gervais. Gravity Casting of Zinc-Aluminum(ZA) Alloys: Dependence of Mechanical Properties on Soundness,Microstructure,and Inclusion Content[J]. AFS Transactions,1985(93):591-602
    31. P.Dionne, J.I.Dickson, J.P.Bailon. the Influence of the As-Cast Microstructure on the Fracture Toughness of a Zn-Al Foundry Alloy(ZA-27) [J]. AFS Transactions, 1984(92):693-702
    32. A.F.Skenazi, J.Pelerin, D.Coutsouradis, et al. Some Recent Developments in the Improvement of the Mechanical Properties of Zinc Foundry Alloys [J]. Metall., 1983(137):898-902
    33. R.J.Barnhurst, D.Jacob. Gravity Casting of Zinc-Aluminum Alloys:Development of Foundy Parameters for Casting in Sand [J]. AFS Transactions,1988(96): 321-328
    34. M.Sahoo, L.V.Whiting. Foundry Characteristics of Sand Cast Zn-Al Alloys [J]. AFS Transactions,1984(92):861-870
    35. M.Sahoo, L.V.Whiting, D.W.G..White. Control of Underside Shrinkage in Zinc-Aluminum Foundry Alloys by the Addition of Trace Elements [J]. AFS Transactions,1985(93):475-479
    36. D.Argo, R.J.Barnhurst, F.Dehart, et al.. Practical Aspects of Iron Permanent Mold of ZA Alloys [J]. AFS Transactions,1989(97):757-766
    37.康积行,张国灵,高铝锌基合金的凝固模式[J],特种铸造及有色合金,1993(2):1-3
    38.陈云贵,涂铭旌,高升吉等,稀土对ZA27合金底缩影响的机制[J],中国稀土学报,1997(4):325-329
    39.曾松岩、段守坤、蒋祖龄等,高强韧低膨胀锌合金的探讨[J],铸造技术,1991(5),20-23
    40.秦永健,黄积荣,改善锌基合金热强度和耐磨性的研究[J],机械工程材料,1992(6):25-28
    41.耿浩然,马家骥,贾均,ZAS35高强韧锌基耐磨合金的研制[J],特种铸造及有色合金,1999(增刊1):64-66
    42.张利明,陈美玲,阎承康等,ZA33-3锌基高强度耐磨合金的组织与性能[J],热加工工艺,1995(3):45-47
    43.邹勇志,曾建民,冯建情,高铝锌基合金组织与性能的研究[J],铸造技术,2004(3):203-205
    44.舒震、刘金水、袁斌等,提高高铝锌合金高温性能及耐磨性的研究[J],湖南大学学报,1995(4):70-76
    45.王智民、黄积荣、张冀粤,含铝量对锌基合金耐磨性的影响[J],西安理工大学学报,1995(4):257-260
    46. B. K. Prasad, Effects of partially substituting copper by silicon on the physical, mechanical, and sliding wear properties of a Zn-37.5%Al-based alloy, Mater. Charact.,2000(44):301-308
    47. T.Savaskan, O.Bican, Effects of silicon content on the microstructural and mechanical and sliding wear properties of Zn-40Al-2Cu-(0-5)Si alloys[J], Mater. Sci. Eng. A,2005(404):259-269
    48.舒震,梁梅芬,文光灿等,硅合金化耐磨锌合金[J],机械工程材料,1987(6):16-18
    49.赵浩峰,饶群力,李永莲,球硅增强锌铝合金的组织和性能的研究[J],材料科学与工艺,1997(4):103-106
    50.赵沛廉、张金山,锰对ZA—27合金高温性能的影响[J],材料科学与工艺:1996(3),34-37
    51.周明、赵玉涛、周伯仪等,Mn对ZA27合金组织与性能的影响,江苏理工大学学报,1998(1):60-64
    52.苏德煌,锂对ZA27合金高温力学性能的影响[J],特种铸造及有色合金,1998(6):26-27
    53.张涛、李著信、苏毅,钨对锌基合金ZA27力学性能的影响[J],机械工程材料,2000(6):19-21
    54.耿浩然、张硕、马家骥,锑对高铝锌基合金性能的影响[J],机械工程材料,1991(3):10-13
    55.亓效刚,孙高祚,耿浩然等,锑对ZA27合金性能与组织的影响[J],铸造,2003(10):758-761
    56.郝远、寇生中、李定等,微量元素Sb、 Te在ZA27合金中的作用[J],甘肃 工业大学学报,1994(3):20-23
    57.舒震、刘金水,高铝锌合金ZA27的盐类变质[J],湖南大学学报,1987(3):40-45
    58.刘金水、舒震、李传平,Ti对Zn—Al合金组织性能的影响[J],金属学报,1993(11):487-490
    59.倪锋、徐晓峰、张柯柯等,KBF4对Zn—28.4%Al合金变质作用的研究[J],热加工工艺,2004(11):3-6
    60.胡海明,吕乐扬,刘勇,A1—Ti—B变质剂对ZA27合金组织及性能的影响[J],机械工程材料,1997(6):23-25
    61.侯平均,倪峰,龙锐等,高铝锌合金的钛和锆变质机理研究[J],铸造设备研究,2003(1):12-15
    62.金钟,硼钛、稀土元素对ZA27性能影响的初步探讨[J],特种铸造及有色合金,1988(1):7-11
    63.刘杰、刘智勇、彭日升等,高铝锌合金微量元素合金化的组织和性能[J],物理测试,1994(5):5-9
    64.曾明、魏晓伟、向朝进,高铝锌基合金的变质处理及细化机理的研究[J],四川工业学院学报,1998(1):7-14
    65.李俊、钱翰城、李晓东等,对ZA27合金用几种变质剂的试验与评价[J],机械工程材料,1994(5),17-19
    66.张东风,韩万有,赵新,稀土、稀土—硼对ZA27铸造锌铝合金显微组织及性能的影响[J],鞍钢技术,1996(11):36-41
    67.施忠良、顾明元、吴人清,Ce对ZA27合金组织和性能的影响[J],上海交通大学学报,1996(2):93-97
    68.张福金,舒震,高铝锌合金中铈变质的研究[J],特种铸造及有色合金,1992(2):1-4
    69.陈琰、谢敬佩、陈全德,Ce对ZA27合金组织性能的影响[J],特种铸造及有色合金,2004(2):63-65
    70.李利君,李虎成,杨通等,La对ZA27合金组织、机械性能及摩擦磨损特性的影响[J],铸造技术,1995(3):43-48
    71.骆灼旋,陈华信,陈炽伦等,稀土在高铝锌基合金的作用[J],铸造技术,1989(2):26-29
    72.王智民、黄积荣、张冀粤,混合稀士对高铝锌基合金组织与性能的影响[J],西安理工大学学报,1995(1):32-37
    73.彭日升,刘杰,刘智勇等,稀土变质ZA—27合金的组织和性能[J],热加工工艺,1992(2):37-40
    74.许春香,赵沛廉,混合稀土对ZA27合金高温力学性能的影响[J],材料科学与工艺,1999(3):105-108
    75.於冬娥,稀土元素对Zn-27%A1锌基合金组织和性能的影响[J],江西工业大学学报,1990(2):37-43
    76.马明臻,韦天华,马述波等,添加稀土元素改善ZA-27合金综合力学性能的研究[J],材料科学与工艺,1994(2):56-59
    77.刘或,刘度云,马柏生,稀土对ZnAl27合金组织性能影响的研究[J],华东工学院学报,1991(1):62-67
    78.闫承俊,王吉岱,孙静等,稀土氧化物强化高铝锌基合金的研究[J],铸造技术,2006(3):266-268
    79.陈德全,陈琰,ZA27合金热处理工艺的研究[J],洛阳工学院学报,1986(2):68-75
    80.陈德全,吴逸贵,张荣山,ZA27合金自然时效过程的研究[J],洛阳工学院学报,1987(2):33-40
    81.吴逸贵,陈德全,杨首勤,ZA27合金人工时效过程中的组织与性能关系的透射电镜分析[J],洛阳工学院学报,1989(4):55-62
    82.刘金水,舒震,张福全,热处理对高铝锌合金组织和性能的影响[J],湖南大学学报,1993(3):54-58
    83.谢敬佩,祝要民,王晓颖等,高耐磨、高阻尼锌铝合金研究[J],特种铸造及有色合金,1999(2):10-13
    84.吕振林,黄积荣,王智民等,热处理对高铝锌基合金组织与性能的影响[J],西安理工大学学报,1994(1):31-35
    85.王智民,刘宝第,张冀粤,高铝锌基合金热处理过程组织转变机理[J],西安 理工大学学报,2000(3):256-260
    86.张德生,袁培燕,陈庆刚等,热处理改善ZA27MnSi合金组织性能的机理[J],山东工业大学学报,1996(4):479-483
    87.陈美玲,丁立英,姜守本,热处理对ZA33-3合金组织及力学性能的影响[J],铸造,1995(5):1-6
    88.许晓磊,于志伟,史雅琴等,ZnAl40合金时效过程中组织结构变化的跟踪观察[J],电子显微学报,2002(4):442-445
    89.王狂飞,白聿钦,热处理工艺对ZA27合金组织与性能的影响[J],机械工程材料,1999(1):23-26
    90. T.Savaskan, S.Murphy, Decomposition of Zn-Al alloys on quench-aging [J], Mater. Sci. Techn.,1990(6):695-673
    91. B.K.Prasad, A.K.Patwardhan, A.H.Yegneswarm, Microstructure-Property Characterization of Some Zn-Al Alloys:Effects of Heat Treatment Parameters[J], Z. Metallkd,1996 (87):967-971
    92. Ph.DELNEUVILLE, TRIBOLOGICAL BEHAVIOUR OF ZnAl ALLOYS (ZA27) COMPARED WITH BRONZE WHEN USED AS A BEARING MATERIAL WITH HIGH LOAD AND AT VERY LOW SPEED[J], Wear, 1985(105):283-292
    93. T.Savaskan, S.Murphy, MECHANICAL PROPERTIES AND LUBRICATED WEAR OF Zn-25A1-BASED ALLOYS [J], Wear,1987(116):211-224
    94. B.K.Prasad, Effect of microstructure on the sliding wear performance of a Zn-Al-Ni alloy [J], Wear,2000(240):100-112
    95. Li Jian, E.E.Laufer, J.Masounave, Wear in Zn-Al-Si alloys [J], Wear,1993 (165):51-56
    96.赵浩峰,张凤林,赵沛廉,稀士化合物增强ZA27合金耐磨性的研究[J],中国稀土学报,1999(3):227-230
    97.韩树楷,刘或,施忠良,稀土对高强锌合金耐磨性和耐蚀性的影响[J],中国稀土学报,1996(1):47-51
    98.项宏瑶,宫本奎,马恒玉等,稀土对高强度锌基合金耐磨性的影响[J],机械 工程材料,1996(1):3032
    99.武素玲,成子岩,张恩洪,ZA43高铝锌基耐磨合金[J],特种铸造及有色合金,1991(6):6-9
    100.施忠良,吴炳尧,林萍华等,高铝锌基合金的摩擦磨损性能与磨损机制[J],摩擦学学报,1994(2):134-144
    101.张成华,孙少纯,严学华等,加入合金元素Si对ZA27合金耐磨性能的影响[J],中国铸造制备与技术,2001(6):26-28
    102.吴尧,沈保罗,高升吉,重载低速对高塑性锌合金磨损行为的影响[J],铸造,1995(4):15-19
    103.张伟,黄积荣,王家忻,高铝锌基合金(30%-45%)耐磨性能的研究[J],特种铸造及有色合金,1992(4):6-10
    104.李虎成、李利君、杨通等,ZA27合金摩擦磨损特性研究[J],特种铸造及有色合金,1993(4):1-5
    105.中国机械工程学会铸造分会编,铸造手册第3卷(铸造非铁合金),第二版,机械工业出版社,2002年
    106.张玉平,张琰,竺一苇,杂质元素对锌铝合金性能的影响[J],太原重型机械学院学报,1991(2):59-69
    107.M. A. Pol lord, Effects of Cu, Mg, Pb, and Sn on the Corrosion of Sand Cast Alloy in Wet Steam [J], Metall. Trans. B,1977(3):157-168
    108.傅旭力,李军,刘友鹏,微量元素ZA27合金腐蚀及老化性能的影响[J],东南大学学报,1992(5):109-113
    109.刘贵立,李荣德,稀土及杂质元素对ZA27合金晶间腐蚀的影响[J],化学物理学报,2004(10):649-651
    110.陈美玲,葛继平,丁立英等,ZA27合金的耐蚀性能[J],中国有色金属学报,1995(12):136-140
    111.苏德煌,添加铁或锰对ZA27合金高温拉伸性能的影响[J],材料科学与工艺,1998(3):52-55
    112.温诗铸,黄平,摩擦学原理[M],北京:清华大学出版社,2002年
    113.郑靖,周仲荣.四种牙科高分子修复材料摩擦学行为的对比研究[J].润滑与密封,2006(1):17-19
    114.李元元,夏伟,温利平等,铝青铜合金的基本特性与摩擦学性能的关系[J],摩擦学学报,1996(2):130-136
    115.王宏明,李桂荣,赵玉涛等,电磁铸造法制备的(Al2O3+Al3Zr) P/A359复合材料的磨损行为[J].稀有金属材料与工程,2006(4):669-672
    116.梁艳峰,周敬恩,董晟全,等.原位增强Al-4.5Cu合金的高温干摩擦磨损行为研究[J].特种铸造及有色合金,2006(8):515-517
    117.崔国明,曾建民,汤宏群,等.TiB2p/Al-10Sn复合材料的制备及摩擦磨损性能研究[J].铸造技术,2006(4):337-340

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700