用户名: 密码: 验证码:
中低纬电离层模拟与数据同化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球电离层上连外层空间,下接中层大气,是日地环境系统中承上启下的重要环节和关键层次。对电离层的研究可以促进认识日地空间系统的整体行为、进而更好地为人类的空间活动服务,因此有重要的意义。近年来,随着人类空间活动和通讯系统的增多,对电离层的基本状态和电离层扰动的监测和预报的需求也越来越强烈。在此背景下,基于模式和观测的数据同化方法被引进到电离层领域,并且在电离层现报和预报上显示了较好的应用前景。本文围绕中低纬电离层模拟与数据同化展开研究,构建了中低纬电离层经验和理论模型,进行了一系列基本物理问题的模拟研究,并对电离层数据同化中若干关键技术进行了试验研究。本文的主要工作如下:
     1、利用观测数据进行了电离层建模研究,并分析了电离层长期变化趋势。武汉电离层观测站是世界上观测历史最悠久的台站之一,利用该站的观测数据,已经建立了系列的经验模型,如TEC、foF2、hmF2等经验模型,本文首先利用武汉站长达近40年的foE观测值建立了一个精度较高的经验模式,比较研究显示该模式精度要优于IRI等其它全球经验模式。这一方面是对以前武汉站系列参数经验模式一个有力的补充,同时还对中国电离层模式的建设有参考价值。此外,还利用BP神经网络方法构建了东亚/澳大利亚区域foF2高精度模型,并利用武汉单站数据对建立的模式进行了验证,结果显示神经网络模式具备相对较高的精度。同时利用该神经网络模型系统分析了东亚/澳大利亚扇区foF2的长期变化趋势。分析结果显示东亚/澳大利亚的foF2以平均0.05%/年的速度下降。单纯温室效应并不能解释这个现象,还可能与其它因素如太阳地磁活动、中性浓度、温度和速度等的长期变化有关。
     2、建立了一个电离层理论模式,对若干电离层现象进行了数值模拟研究。本小组在中性风场、电离层电场、中纬一维模式和低纬二维模式建模方面已经有了很多积累,本文在这些工作的基础上,通过求解等离子体连续性方程、动量方程和能量方程,构建了一个高精度、高时空分辨率、快速灵活的中低纬电离层理论模式(TIME-IGGCAS)。通过与众多经验模式和观测数据进行比较对模式的有效性进行了验证,比较结果表明,模式模拟的结果无论是数量级上还是各种变化形态上都与经验模式和观测符合得很好;模式能再现大部分电离层异常特征,如赤道异常、冬季异常、和半年异常;但模式在日出日落时段、在低高度模拟结果有相对较大的偏差,需要进一步加以改进,利用这个模式进行的模拟研究有:
     (1)模拟了赤道异常区的气候学特征。重点分析了南北驼峰和赤道槽的位置和对应处的TEC值、谷宽和峰谷比。模拟显示赤道异常区有显著的地方时、季节和太阳活动变化。赤道槽的位置一般随季节的变化在磁赤道的两侧附近变化;南北驼峰在至日时有显著的不对称;赤道异常在冬季正午发展的最好、在分点午后发展的最好、在夏季下午发展的最好;谷宽和峰谷比的季节变化比较显著。这些结果可以由向赤道风、跨赤道风和太阳直射点的季节变化来解释。
     (2)模拟了赤道异常区对电场扰动的响应。当扰动电场漂移速度是向上(下)时,电子浓度在赤道附近磁纬小于15度的范围内出现负(正)暴,而在较高的纬度(20度附近)出现正(负)暴,在正负暴之间有一个大约3度宽的过渡带;在地磁纬度大于30度的区域,电子浓度的扰动已经很弱;扰动电场的效应会在扰动电场消失后持续较长的时间;无论电场漂移是正扰动还是负扰动,EIA扰动都随电场漂移扰动幅度的增加而线性增加,这个在电场扰动发生时或者发生后都是满足的。
     (3)模拟了利用赤道台站hmF2的时间变化率来表示电场漂移速度的有效性。由于电离层电场观测的缺乏,许多研究者提出了一些间接的办法来获取电离层垂直漂移速度,这中间就包括利用赤道台站hmF2的时间变化率这种办法。本文利用TIME-IGGCAS模式模拟了这种方法表示电场漂移速度的有效性,及这种有效性随地方时、季节、和太阳活动的变化。同时对这种计算方法在扰动状态下的可靠性也作了探讨。模拟结果显示这种方法在日出、日落、及日落后几小时非常有效(0600-0730, 1700-2100 LT),但是在其它的地方时,用这种方法得到的速度严重偏小。在扰动时,hmF2的剧烈变化可以用来确定扰动电场的发生。
     (4)最后,首次模拟研究了地磁场构型变化对电离层长期趋势的影响。在利用测高仪观测分析电离层的长期变化趋势时,发现单纯的温室效应并不能造成这么大的变化,因此我们提出了地磁场的长期变化可能会造成电离层的长期变化。为了证实这个说法,利用TIME-IGGCAS模式首次模拟研究了地磁场构型变化对电离层长期趋势的影响。模拟结果说明:由于地磁构型的变化会导致中性风对电离层的作用发生变化,进而导致电离层的长期趋势发生变化;由于全球地磁构型变化的差异很大,导致这种由地磁构型变化引起的电离层长期趋势有显著的地区差异;模拟的长期趋势有显著的季节和地方时变化,且这种变化有地区差异;这可能与因为地磁构型变化导致的别的电离层驱动因素作用的相应变化有关,通过与已有的观测结果作对比,模拟结果可以在部分程度上解释为什么目前得到的电离层趋势的地方时和季节变化会有很大差异;地磁场构型变化导致的电离层趋势不能忽略,这点在地磁场变化比较剧烈的区域尤其重要。以上这些模拟工作一方面解决了相应的物理问题,另一方面进一步说明了模式的稳定性和可靠性,这为以后继续使用该模式进行模拟研究及在此基础上建立数据同化模式奠定了基础。
     3、利用建立的TIME-IGGCAS模式,结合实际电离层观测数据,进行了系列电离层数据同化试验研究。
     (1)基于最小二乘法,我们进行了一个电离层观测系统数据同化试验,试验结果一方面表明理论模式的稳定可靠,另一方面表明利用最小二乘法进行电离层数据同化和外驱动参量估算的可行性。基于同样的方法,我们利用东亚/澳大利亚扇区42个GPS台站的观测和TIME-IGGCAS模式同化模拟了2004年11月7-9日超级磁暴期间东亚/澳大利亚扇区电离层/热层的响应特征,同时估算电离层外驱动参量包括O/N2、子午风和垂直电场漂移速度,并把模拟的结果跟GPS、测高仪等观测作了对比,估算的外参量也尽量利用观测作了验证。结合模拟和观测结果,本次超级磁暴期间东亚/澳大利亚扇区的响应特征大致是:晚上向赤道风和东向扰动电场导致电子浓度的增强;白天北半球主要是正暴,南半球主要是负暴,这可能是半球间O/N2的不对称性、夏季到冬季的跨赤道风和扰动电场共同作用的结果。在这些因素共同作用下,使得电离层扰动的幅度和相位随地方时和纬度发生复杂的变化。
     (2)为了电离层数据同化中构建准确的误差协方差矩阵,利用观测统计分析了电离层的空间相关性。在电离层数据同化中,背景误差协方差对同化效果有很大的影响,为了准确的表述背景误差协方差,需要准确的知道电离层的相关性。因此,我们利用美国喷气动力实验室全球电离层地图在2000年和2005年的数据和MillStone Hill非相关散射雷达在2002年10月长达一个月的观测统计分析了电离层逐日变化的空间相关性,并分析了电离层在三个方向的相关距离的地方时、季节和纬度变化,还尝试性的对这些变化特性做出了解释,最后重点讨论了磁共轭点之间强相关性的可能原因、电离层相关距离的各种变化的可能因素及电离层暴对相关距离的影响。总的来说,电离层相关距离在垂直方向上随高度增加而增加;电离层的相关性在白天大于晚上、中纬大于低纬、太阳活动高年大于太阳活动低年,北半球中纬有显著的季节变化。我们的统计结果一方面从相关性的角度证实了影响电离层的因素存在不同的空间尺度,另外为进行电离层数据同化时构建误差协方差矩阵提供了参考。
     (3)结合一个一维中纬理论模式和MillStone Hill非相干散射雷达观测,首次尝试了高级资料同化方法——集合Kalman滤波法(EnKF),在电离层数据同化中的应用。同化结果表明:与三维变分(3D-Var)相比,EnKF能动态的模拟电子浓度的高度相关系数。EnKF同化的结果显示电离层电子浓度的垂直相关系数有显著的高度和地方时变化,非相干散射雷达观测也证明了这点。EnKF集合扩展与集合平均相对观测的偏差有几乎相同的时间和高度变化,这说明在同化时增加扰动的方式和考虑各种误差的方式是正确可行的,说明EnKF同化是成功的。与没有同化相比,3D-Var和EnKF方法都可以获得相对较小的RMSE。EnKF可以更好的把观测的影响从数据密集的地方传播到数据缺乏的地方。我们的试验研究表明,利用等效风方法对中性风场进行修正可以显著的提高模式的预报能力。在EnKF同化时,当集合数不是很大时,在两个相隔很远的点有时会存在一些虚假的强相关,这个问题可以通过增加集合数来解决。
     本文工作表明,电离层的模式化(经验模式与理论模式)不仅是对现有的电离层实验观测和理论研究成果的总结,同时又能促进对电离层结构与变化特性的深入认识以及对相应物理过程的研究。而电离层数据同化把电离层观测与电离层模式结合起来,开辟了电离层研究与预报的新思路。总之,本文的研究工作可以加深我们对电离层的认识,所构建的模式可以用来模拟研究电离层中的一些物理过程和现象,运用数据同化方法把模式和数据进行结合,有望提高我们进行空间天气尤其是电离层天气的现报和预报能力。
The Earth’s ionosphere locates between the outer space and middle atmosphere and is an important part and key layer in the whole sun-earth environment system. The research on the ionosphere can enrich our knowledge of the sun-earth system and serve the human’s space activities. Therefore, it is significantly for us to continue the study on the ionosphere. In the recent years, with the increase of the human’s space activities and communication systems, there is a growing need to more accurately represent and forecast the ionospheric climate and disturbances. Several groups attempt to incorporate the observations into ionospheric models by using optimization schemes, which is known as data assimilation methods, to give specific representations of the ionosphere. This technique has manifested potential ability in ionospheric nowcast and forecast. In this paper, considering the geographic location of our country, we concentrate on the investigations of middle and low latitude ionospheric modeling and data assimilation. We constructed several empirical and theoretical ionospheric models and investigated several basic physical problems using these models. In addition, we also studied several important techniques of ionospheric data assimilation. The main contents are as follows:
     1, Constructing empirical models based on observations and analyzing ionospheric long term trend.
     Wuhan ionospheric observatory is one of the most long lasting ionosphere stations in the world. Based on its observations, several empirical ionospheric models have been developed, such as TEC, foF2 and hmF2 empirical models. In this paper, we first constructed an empirical foE model with high precision over Wuhan using fifty years’observations of foE. This model is an important complement to the local empirical ionospheric model over Wuhan. A comparison between our model and IRI and Titheridge’s model shows that our model has a better performance. By using Artifical Neural Network (ANN) method, we constructed empirical models of foF2 over Asia/Australia sector based on ionosonde observations. The model has been validated by comparison with Wuhan station’s observations and the results showed that the ANN model has high precision. Using this ANN model, we systematically analyzed the long term trends of foF2 over this area for the first time. Results illustrated that the foF2 in the Asia/Australia sector has an average decrease of 0.05% per year in the past fifty years. This trend can not be interpreted only by greenhouse effect. Many other factors which can influence the ionosphere, such as solar and geomagnetic activities and neutral background gas, might also contribute to the trend.
     2, Constructing theoretical ionospheric model and modeling several ionospheric phenomena.
     Our group has done many works on the ionospheric modes, including neutral wind, ionospheric electric field, middle latitude theoretical model and low latitude two dimensional theoretical model. On the basis of these works, we developed a middle and low latitude theoretical ionospheric model with high precision, high space and time resolution, speediness and flexibility, through solving plasma continuity, momentum and energy equations simultaneously. The model is named Theoretical Ionospheric Model of the Earth in Institute of Geology and Geophysics, Chinese Academy of Sciences (TIME-IGGCAS). TIME-IGGCAS was validated by comparisons with several other typical empirical ionospheric models and multi-observations. The results showed that the modeled electron density and plasma temperatures are quantitatively and qualitatively in good agreement with those of empirical models and observations. TIME-IGGCAS can reproduce most anomalistic features including equatorial anomaly, winter anomaly and semiannual anomaly. The model results have relatively large deviations near sunrise time and sunset time and at the low altitudes. There results give us a reference to improve the model and develop the data assimilation model in the future. We did several modeling studies based on the developed theoretical model.
     (1) Modeling the climate features of the equatorial ionization anomaly (EIA). Our analysis concentrated on the locations and the corresponding TEC values of northern crest, equatorial trough and southern crest, and also the width of the trough and the ratio of crest to trough. The modeling results showed that the EIA has typical local time, seasonal and solar variations. The equatorial trough usually lies on the two sides of the geomagnetic equator and varies with seasons. The two crests have obvious asymmetries in solstice. The EIA is fully developed around midday in winter, postnoon in equinoxes and late afternoon in summer. The width of the trough and the ratio of crest to trough have obvious seasonal variations. These seasonal dependences of EIA can generally be interpreted by the seasonal variations of the equator ward wind, the transequatorial neutral wind, and the subsolar point.
     (2) Modeling the response of EIA to the disturbed electric field. When the disturbance of the E×B vertical drift velocity is upward (downward), electron content has negative (positive) disturbance in the area with geomagnetic latitude less than 15 degree and positive (negative) in the area around geomagnetic latitude 20 degree. There is a transitional area with 3 degree’s width between positive and negative disturbance. In the area of geomagnetic latitude larger than 30 degree, there is no significant ionospheric disturbance. The effect of disturbed electric field would last for several hours after the disappearance of the disturbed electric field. The disturbance of EIA linearly increases with the increase of disturbed electric field during or after the disturbance of electric field.
     (3) Modeling the validation of the method of using hmF2 to derive electric field vertical drift velocity. Since the lack of direct observations of ionospheric electric field, many indirect methods have been put forward to obtain it. Several researchers use the time rate of change of hmF2 to represent the E×B vertical drift. In this paper, we used the TIME-IGGCAS model to confirm its validation from a view of theory and study the local time, seasonal and solar variations of its validation of this method. In addition, we also tested the validation of this method during disturbed conditions. Our modeling results indicated that this method is usable near sunrise, sunset and post sunset (0600-0730, 1700-2100 LT). The derived velocity by this method is smaller than observations in the rest local times. During disturbed conditions, the variations of hmF2 can be used to determine the occurrence of intense electric field disturbance.
     (4) Modeling the effects of the variations of geomagnetic field on the ionosphere. When analyzing the ionospheric long term trends from ionosonde observations, we found that just greenhouse effect is insufficient. We suggest that the long term variations of geomagnetic field may be another origin. To confirm this interpretation, we modeled the effects of long term variations of geomagnetic field on the ionospheric long term trend by TIME-IGGCAS for the first time. The modeling results indicate that the variations of geomagnetic field indeed can result in the long term variations of ionosphere because of the variations of the effects from the neutral wind on the ionosphere. Since the geomagnetic field variations differ from place to place, the ionospheric trends induced from geomagnetic field also have location dependence. The modeled ionospheric trends also have obvious seasonal and local time variations. Because the corresponding controlling factors have location dependence, these variations also show typical regional features. By comparison with existing results, we suggest that the changes of the global geomagnetic field may partly contribute to the inconsistent seasonal and local time variation patterns in ionospheric trends from different observations. We conclude that the effects of geomagnetic orientation on the ionospheric long term trend cannot be ruled out, especially in areas with large geomagnetic field variations. The above modeling studies not only investigate the corresponding physical problems, but also illustrate that our model is steady and credible. These results imply a good base for the using of the model and the development of the ionospheric data assimilation model in the future.
     3, Based on the developed model, we did several data assimilation experiments and studied several important techniques of data assimilation.
     (1) We carried out an observation system data assimilation experiment using TIME-IGGCAS model and non-linear least square fit method. The experiment showed that the theoretical model is steady and credible and the ionospheric external drivers can be estimated by non-linear least square fit method. Using the same method, we modeled the ionospheric and thermospheric response to the super storm during November 7-9, 2004 in Asia/Australia sector by assimilating the GPS observations from 42 stations. The electric field, neutral meridian wind, and the ratio of O to N2 (O/N2) are estimated through minimizing the differences between modelling results and observations by nonlinear least square fit method. The modeling results including electron density and the estimated drivers have been validated by empirical models and the corresponding observations. Combining observations and modeling results, this storm can generally be understood as follows. During night time of this storm the equator-ward wind and disturbed eastward electric field are the main factor that attribute to the observed ionospheric enhancement. During the daytime northern hemisphere shows mainly positive storm and southern hemisphere is predominated by negative storm. This is probably the combined effects of the asymmetry of O/N2 in two hemispheres, summer-to-winter wind, and disturbed electric field. Under the competitive influences of varied electric field, wind field and neutral compositions, the phase of storm shows complicated variations versus latitudes and local times.
     (2) We analyzed the spatial correlation of ionosphere to give better background error covariance in data assimilation. When doing the ionospheric data assimilation, the background error covariance has determined effect on the assimilated results. So an accurate correlation model of the ionosphere is very important. In this paper, we statistically investigated the spatial correlation of ionospheric day-to-day variability and the local time, seasonal, and latitudinal variations of correlation distances in three directions using JPL GIM during 2000 and 2005 and one month observations of Millstone Hill incoherent scatter radar observations during October, 2002. We also attempted to interpret these variabilities. At last we discussed the possible reasons of the relative larger correlations between geomagnetic conjugate points, the possible factors of the variations of ionospheric correlation distances, and the effects of ionospheric storm on the ionospheric correlation. Generally, the ionospheric correlation distance increases with the increase of altitude and is larger during daytime than at night, at middle latitude than low latitude, and during high solar activity than low solar activity. The correlations of northern middle latitudes have obvious seasonal variations. Our statistical results confirm that the factors which result in the ionospheric day-to-day variability have different spatial scales. In addition, our results are useful in the constructing of a background covariance matrix in ionospheric data assimilation.
     (3) Based on a middle latitude theoretical ionospheric model and Millstone Hill incoherent scatter radar observations, we explored the application of Ensemble Kalman filter (EnKF) known as an advanced data assimilation method in ionosphere data assimilation. It is found that the derived vertical correlation coefficients of electron density show obvious altitude dependence. These variations are consistent with those from ISR observations. Both the altitude and local time variations of the root mean square error (RMSE) of electron densities for the ensemble spread and ensemble mean from observation behaves similarly. It is shown that the spread of the ensemble members can represent the deviations of ensemble mean from observations. The EnKF technique has a better performance than the 3DVAR technique especially in the data-gap regions, which indicates that the EnKF technique can extend the influences of observations from data-rich regions to data-gap regions more effectively. To achieve a better prediction performance, the external driving forces should also be adjusted simultaneously to the real weather conditions. For example, the performance of prediction can be improved by adjusting neutral meridional wind using equivalent wind method. In the EnKF, there are often erroneous correlations over large distance because of the sampling error. This problem may be avoided by using a relative larger ensemble size.
     This paper indicates that ionospheric modeling not only is the summarization of ionospheric observations and theoretical research, but also can enhance our knowledge of ionosphere structure and variability and the corresponding physical problems. The ionospheric data assimilation can open us a new method to give better ionosphere research and forecast by combing the observations and models. In conclusion, the research results in this paper can advance our knowledge of the ionosphere. The constructed model can be used to model several physical processes and phenomena in the ionosphere. The data assimilation method has potential ability to give better nowcast and forecast of space weather especially ionospheric space through combining the model and observations.
引文
Abdu, M. A. (1997), Major phenomena of the equatorial ionosphere-thermosphere system under disturbed conditions, J. Atmos. Sol. Terr. Phys., 59 (13), 1505-1519.
    Anderson, D. N. (1973), A theoretical study of the ionospheric F region equatorial anomaly,Ⅰ.Theory, Planet. Space Sci., 21, 409-419.
    Anderson, D. N., M. Mendillo, and B. Herniter (1987), A Semi-Empirical Low-Latitude Ionospheric Model, Radio Sci., 22, 292.
    Anderson, D. N., J. M. Forbes, and M. Codrescu (1989), A Fully Analytical, Low- and Middle-Latitude Ionospheric Model, J. Geophys. Res., 94(A2), 1520-1524.
    Anderson, D., A. Anghel, K. Yumoto, M. Ishitsuka, and E. Kudeki (2002), Estimating daytime vertical E×B drift velocities in the equatorial F-region using ground-based magnetometer observations, Geophys. Res. Lett., 29(12), doi:10.1029/2001GL014562.
    Anderson, D., A. Anghel, E. Araujo, V. Eccles, C. Valladares, and C. Lin (2006), Theoretically modeling the low-latitude, ionospheric response to large geomagnetic storms, Radio Sci., 41, RS5S04, doi:10.1029/2005RS003376.
    Anderson, J. L., and S. L. Anderson (1998), A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Wea. Rev., 127, 2741-2758.
    Angling, M. J., and P. S. Cannon (2004), Assimilation of radio occultation measurements into background ionospheric models, Radio Sci., 39, RS1S08, doi:10.1029/2002RS002819.
    Araujo-Pradere, E. A., T. J. Fuller-Rowell, and M. V. Codrescu (2002a), STORM: An empirical storm-time ionospheric correction model, 1, Model description, Radio Sci., 37(5), 1070, doi:10.1029/2001RS002467.
    Araujo-Pradere, E. A., and T. J. Fuller-Rowell (2002b), STORM: An empirical storm-time ionospheric correction model, 2, Validation, Radio Sci., 37(5), 1071, doi:10.1029/2002RS002620.
    Bailey, G. J., N. Balan, Y.-Z. Su (1997), The Sheffield University plasmasphere ionosphere model-a review. J. Atmos. Sol. Terr. Phys., 59, 1541-1552.
    Banks, P. M., and G. Kockarts (1973), Aeronomy, Part A, Academic Press, New York and London.
    Basu, S., et al. (2001), Ionospheric effects of major magnetic storms during the International Space Weather Period of September and October 1999: GPS observations, VHF/UHF scintillations, and in situ density structures at middle and equatorial latitudes, J. Geophys. Res., 106(A12), 30389-30413.
    Basu, B., J. M. Retterer, O. Beaujardiere, C. E. Valladares, and E. Kudeki (2004), Theoretical relationship between maximum value of the post-sunset drift velocity and peak-to-valley ratio of anomaly TEC, Geophys. Res. Lett., 31, L03807, doi:10.1029/2003GL018725.
    Batista, I. S., M. A. Abdu, J. MacDougall, and J. R. Souza (2002), Long term trends in the frequency of occurrence of the F3 layer over Fortaleza, Brazil, J. Atmos. Sol. Terr. Phys., 64, 1409–1412.
    Batista, I. S., M. A. Abdu, J. R. Souza, F. Bertoni, M. T. Matsuoka, P. O. Camargo, and G. J. Bailey (2006), Unusual early morning development of the equatorial anomaly in the Brazilian sector during the Halloween magnetic storm, J. Geophys. Res., 111, A05307, doi:10.1029/2005JA011428.
    Belehaki, A., I. Tsagouri, G. Michalareas, et al. (2006), F region drift observations from Athens Digisonde, Radio Sci., 41, RS6S35, doi:10.1029/2005RS003322
    Bent, R. B., S. K. Llewellyn, and M. K. Walloch (1972), Description and Evaluation of the Bent Ionospheric Model, DBA Systems, Melbourne, Florida.
    Bertoni, F., I. S. Batista, M. A. Abdu, B. W. Reinish, and E. A. Kherani (2006), A comparison of ionospheric vertical drift velocities measured by Digisonde and Incoherent Scatter Radar at the magnetic equator, J. Atmos. Sol. Terr. Phys., 68, 669-678.
    Bevington P. R., and D. K. Robinson (1992), Data Reduction and Error Analysis for the Physical Sciences, 2nd ed., McGraw-Hill, New York.
    Bilitza, D. (2001), International reference ionosphere 2000, Radio Sci., 36(2), 261-275.
    Bilitza, D., L. H. Brace, and R. F. Theis (1985), Modeling of Ionospheric Temperature Profiles, Adv. Space Res., 5(7), 53-58.
    Bouttier, F., and P. Courtier (1999), Data assimilation concepts and methods, Meteorological Training Course Lecture Series, ECMWF.
    Brace, L. H., and R. F. Theis (1978), An Empirical Model of the Interrelationship of Electron Temperature and Density in the Daytime Thermosphere at Solar Minimum, Geophys. Res. Lett., 5(4), 275-278.
    Bremer, J. (1998), Trends in the ionospheric E and F region over Europe, Ann. Geophys., 16, 989-996.
    Bremer, J. (2001), Trends in the thermosphere derived from global ionosonde observations, Adv. Space Res., 28, 997-1006.
    Bremer, J., L. Alfonsi, P. Bencze, J. Lastovicka, A. Mikhailov, and N. Rogers (2004), Long-term trends of the ionosphere and upper atmosphere parameters, Ann. Geophys., 47 (Suppl. 2/3), 1009-1029.
    Buonsanto, M. J. (1999), Ionospheric storms-a review, Space Sci. Rev., 88, 563-601.
    Bust, G. S., C. Coker, D. Coco, T. L. Gaussiran Ⅱ, and T. Lauderdate (2001), IRI data ingestion and ionospheric tomography, Adv. Space Res., 27(1), 157-165.
    Bust, G. S., T. W. Garner, and T. L. Gaussiran Ⅱ (2004), Ionospheric Data Assimilation Three-Dimensional (IDA3D): A global, multisensor, electron density specification algorithm, J. Geophys. Res., 109, A11312, doi:10.1029/2003JA010234.
    Bust, G. S. and C. N. Mitchell (2008),History, current state, and future directions of ionospheric imaging,Rev. Geophys., 46, RG1003, doi:10.1029/2006RG000212.
    Chang, T., D. G. Torr, P. G. Richards, and S. C. Solomon (1993), Reevaluation of the O+ (2P) reaction rate coefficients from Atmosphere Explorer C observations, J. Geophys. Res., 98, 15589-15597.
    Chao, C. K., S.-Y. Su, and H. C. Yeh (2003), Presunrise ion temperature enhancement observed at 600 km low- and mid-latitude ionosphere, Geophys. Res. Lett., 30, doi:10.1029/2002GL016268.
    Chiu, Y. T. (1975), An Improved Phenomenological Model of Ionospheric Density, J. Atmos. Terr. Phys., 37, 1563-1570.
    Christensen, A. B., L. J. Paxton, S. Avery, J. Craven, G. Crowley, D. C. Humm, H. Kil, R. R. Meier, C.-I. Meng, D. Morrison, B. S. Ogorzalek, P. Straus, D. J. Strickland, R. M. Swenson, R. L. Walterscheid, B. Wolven, Y. Zhang (2003), Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission, J. Geophys. Res., 108 (A12), 1451, doi:10.1029/2003JA009918.
    Clilverd, M. A., T. D. G. Clark, E. Clarke, H. Rishbeth, and T. Ulich (2002), The causes of long-term change in the aa index, J. Geophys. Res., 107(A12), 1441, doi:10.1029/2001JA000501.
    Codrescu, M. V., T. J. Fuller-Rowell, and C. F. Minter (2004), An ensemble-type Kalman filter for neutral thermospheric composition during geomagnetic storms, Space Weather, 2, S11002, doi:10.1029/2004SW000088.
    Daley, R. (1991), Atmospheric Data Analysis, Cambridge Univ. Press, New York.
    Daniell, R. E., L. D. Brown, D. N. Anderson, M.W. Fox, P. H. Doherty, D. T. Decker, J. J. Sojka, and R. W. Schunk (1995), Parameterized ionospheric model: a global ionospheric parameterization based on first principles models, Radio Sci., 30, 1499-1510.
    Danilov, A. D. (2001), F2-Region response to geomagnetic disturbances, J. Atmos. Sol. Terr. Phys., 63, 441-449.
    Danilov, A. D. (2003), Long-term trends of foF2 independent of geomagnetic activity, Ann. Geophys., 21, 1167-1176.
    Danilov, A. D. (2005), Long-term trends in F2-layer parameters and their relation to other trends, Adv. Space Res., 35, 1405-1410. Danilov, A. D., and A. V. Mikhailov (1999), Spatial and seasonal variations of the foF2 long-term
    trends, Ann. Geophys., 17, 1239-1243.
    Danilov, A. D., and A. V. Mikhailov (2001), F2-layer parameters long-term trends at the Argentine Islands and Port Stanely stations, Ann. Geophys., 19, 341-349.
    Decker, D. T., C. E. Valladares, R. Sheehan, Su. Basu, D. N. Anderson, and R. A. Heelis (1994), Modeling daytime F layer patches over Sondrestrom, Radio Sci., 29, 249-268.
    Diloy, P.-Y., A. Robineau, J. Lilensten, P.-L. Blelly, and J. Fontanari (1996), A numerical model of the ionosphere, including the E-region above EISCAT, Ann. Geophys., 14, 191-200.
    Elias, A. G., and N. O. de Adler (2006), Earth magnetic field and geomagnetic activity effects on long-term trends in the F2 layer at mid-high latitudes, J. Atmos. Sol. Terr. Phys., 68, 1871–1878.
    Emmert, J. T., B. G. Fejer, G. G. Shepherd, and B. H. Solheim (2002), Altitude dependence of middle and low-latitude daytime thermospheric disturbances winds measured by WINDII, J. Geophys. Res., 107 (A12), 1483, doi:10.1029/2002JA009646.
    Emmert, J. T., B. G. Fejer, G. G. Shepherd, and B. H. Solheim (2004), Average nighttime F region disturbance neutral winds measured by UARS WINDП: Initial results, Geophys. Res. Lett., 31 (L22807), doi:10.1029/2004GL021611.
    Evensen, G. (1994), Sequential data assimilation with a nonlinear quasi-geostrophic model using Montre Carlo methods to forecast error statistics, J. Geophys. Res., 99, 10143-10162.
    Evensen, G. (2003), The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynamics, 53, 343-367.
    Evensen, G., and P. J. van Leeuwen (1996), Assimilation of Geosat Altimeter Data for the Agulhas Current using the Ensemble Kalman Filter with a Quasi-Geostrophic Model, Mon. Wea. Rev., 124, 85-96.
    Fehsenfeld, F. C. (1977), The reaction of O2+ with atomic nitrogen and NO+·H2O and NO2+ with atomic oxygen, Planet. Space Sci., 25, 195-196.
    Fejer, B. G. (1997), The electrodynamics of the low latitude ionosphere: Recent results and future challenges, J. Atmos. Sol. Terr. Phys., 59, 1465-1482.
    Fejer, B. G., and L. Scherliess (1997), Empirical models of storm time equatorial zonal electric fields, J. Geophys. Res., 102(A11), 24047-24056.
    Fejer, B. G., J. T. Emmert, G. G. Shepherd, and B. H. Solheim (2000), Average daytime F region disturbance neutral winds measured by UARS: Initial results, Geophys. Res. Lett., 27, 1859-1862.
    Foppiano, A. J., L. Cid, and V. Jara (1999), Ionospheric long-term trends for South American mid-latitudes, J. Atmos. Sol. Terr. Phys., 61, 717–723.
    Forbes, J. M., S. E. Palo, and X. L. Zhang (2000), Variability of the ionosphere, J. Atmo. Sol. Terr. Phys., 62, 685-693.
    Foster, J.C., and W. Rideout (2005), Midlatitude TEC enhancements during the October 2003 superstorm, Geophys. Res. Lett., 32 (L12), doi:10.1029/2004GL021719.
    Fox, J. L., and A. Dalgarno (1985), The vibrational distribution of N2+ in the terrestrial ionosphere, J. Geophys. Res., 90, 7557-7567.
    Fox, M. W., and L. F. McNamara (1988), Improved World-Wide Maps of Monthly Median foF2, J. Atmos. Terr. Phys., 50, 1077-1086.
    Fuller-Rowell, T. J., M. V. Codrescu, H. Rishbeth, R. J. Moffett, and S. Quegan (1996), On the seasonal response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 101, 2343-2353.
    Fuller-Rowell, T. J., G. H. Millward, A. D. Richmond, and M. V. Codrescu (2002), Storm-time changes in the upper atmosphere at low latitudes, J. Atmos. Sol. Terr. Phys., 64, 1383-1391.
    Fuller-Rowell, T. J., C. F. Minter, and M. V. Codrescu (2004), Data assimilation for neutral thermospheric species during geomagnetic storms, Radio Sci., 39, RS1S03, doi:10.1029/2002RS002835.
    Gail, W. B., A. B. Prag, D. S. Coco, and C. Coker (1993), A statistical characterization of local mid-latitude total electron content, J. Geophys. Res., 98(A9), 15717-15728.
    Hamill, T. M. (2004), Ensemble-based atmospheric data assimilation, University of Colorado and NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado, USA.
    Hajj, G. A., B. D. Wilson, C. Wang, X. Pi, and I. G. Rosen (2004), Data assimilation of ground GPS total electron content into a physics-based ionospheric model by use of the Kalman filter, Radio Sci., 39, RS1S05, doi:10.1029/2002RS002859.
    Hedin, A. E. (1987), MSIS–86 thermospheric model, J. Geophys. Res., 92, 4649-4662.
    Hedin, A. E., E. L. Fleming, A. H. Manson, et al. (1996), Empirical wind model for the upper, middle and lower atmosphere, J. Atoms. Terr. Phys., 58, 1421-1447.
    Heelis, R. A. (2004), Electrodynamics in the low and middle latitude ionosphere:a tutorial, J. Atmos. Sol. Terr. Phys., 66, 825-838.
    Henry, R. J. W., P. G. Burke, and A. L. Sinfailam (1969), Scattering of electrons by C, N, O, N+, O +, and O ++, Phys. Rev., 178, 218-225.
    Hierl, P. M., I. Dotan, J. V. Seeley, J. M. Van Doren, R. A. Morris, and A. A. Viggiano (1997), Rate constants for the reactions of O+ with N2 and O2 as a function of temperature (300-1800 K), J. Chem. Phys., 106, 3540-3544.
    Hoegy, W. R. (1976), New fine structure cooling rate, Geophys. Res. Lett., 3, 541-544.
    Houtekamer, P. L., and H. L. Mitchell (1998), Data assimilation using an ensemble Kalman filter technique, Mon. Wea. Rev., 126, 796-811.
    Howe, B. M., K. Runciman, and J. A. Secan (1998), Tomography of the ionosphere: Four-dimensional simulations, Radio Sci., 33(1), 109-128.
    Huang, T, X, (1983), Horizontal gradients and correlation coefficients in total electron content of the ionosphere, Chinese J. Geophys. (in Chinese), 26, 301-308.
    Huang, C.-S., J. C. Foster, and M. C. Kelley (2005), Long-duration penetration of the interplanetary electric field to the low-latitude ionosphere during the main phase of magnetic storms, J. Geophys. Res., 110(A11309), doi:10.1029/2005JA011202.
    Huba, J. D., G. Joyce, and J. A. Fedder (2000), Sami2 is another model of the ionosphere (SAMI2): A new low latitude ionospheric model, J. Geophys. Res., 2000, 105(A10), 23035-23053.
    Huba, J. D., G. Joyce, S. Sazykin, R. Wolf, and R. Spiro (2005), Simulation study of penetration electric field effects on the low- to mid-latitude ionosphere, Geophys. Res. Lett., 32, L23101, doi:10.1029/2005GL024162.
    Iijima, B. A., I. L. Harris, C. M. Ho, U. J. Lindqwister, A. J. Mannucci, X. Pi, M. J. Reyes, L. C. Sparks, and B. D. Wilson (1999), Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter ionospheric calibration based on Global Positioning System data, J. Atmo. Sol. Terr. Phys., 61, 1205-1218.
    Jarvis, M. J., B. Jenkins, and G. A. Rogers (1998), Southern hemisphere observations of a long-term decrease in F region altitude and thermospheric wind providing possible evidence for global thermospheric cooling, J. Geophys. Res., 103(A9), 20775-20787.
    Jones, W. B., and R. M. Gallet (1965), The Representation of Diurnal and Geographic Variations of Ionospheric Data by Numerical Methods, Telecomm. J., 32, 18-28.
    Kalman, R. E. (1960), A new approach to linear filtering and predictions problems, Transacctions of the ASME-Journal of Basic Engineering, 82(Series D), 35-45.
    Kaufman, V., and J. Sugar (1986), Forbidden lines in ns2npk ground configuration and nsnp excited configurations of Beryllium through Molybdenum atoms and ions, J. Phys. Chem. Ref. Data, 15, 321-426.
    Khattatov, B., M. Gnedin, M. Murphy, B. Cruickshank, J. Adams, V. Yudin, T. Fuller-Rowell, J. W. Wright, N. A. Zabotin, and M. J. Angling (2005), An AFRL sponsored ionospheric specification system, in Proceedings of the 11th Ionospheric Effects Symposium, edited by J. M. Goodman, pp. 501–511, Off. of Nav. Res., Arlington, Va.
    Kil, H., S.-J. Oh, M. C. Kelley, L. J. Paxton, S. L. England, E. Talaat, K.-W. Min, and S.-Y. Su (2007), Longitudinal structure of the vertical E×B drift and ion density seen from ROCSAT-1, Geophys. Res.Lett., 34, L14110, doi:10.1029/2007GL030018.
    Klobuchar, J. A., P. M. Doherty, and M. B. ElArini (1995), Potential ionospheric limitations to GPS Wide-Area Augmentation System (WAAS), Navigation, 42(2), 353-370.
    Kouris, S. S., and L. M. Muggleton (1973a), Diurnal variation in the E-layer ionization, J. Atmos. Terr. Phys., 35, 133-139.
    Kouris, S. S., and L. M. Muggleton (1973b), World morphology of the Appleton E-layer seasonal anomaly, J. Atmos. Terr. Phys., 35, 141-451.
    La?tovi?ka, J. (2005), On the role of solar and geomagnetic activity in long-term trends in the atmosphere–ionosphere system, J. Atmos. Sol. Terr. Phys., 67, 83-92.
    La?tovi?ka, J., R. A. Akmaev, G. Beig, J. Bremer, and J. T. Emmert (2006), Global change in the upper atmosphere, Science, 314 (5803), 1253-1254.
    Leitinger, R., S. Radicella, and B. Nava (2002), Electron density models for assessment studies – new developments, Acta Geodet. Geophys. Hung, 37, 183-193.
    Li, X., Y.-L. Huang, G. D. Flesch, and C. Y. Ng (1997), A state-selected study of the ion-molecule reactions O+ (4S, 2D, 2P) +N2, J. Chem. Phys., 106, 1373-1381.
    Lin, C. H., A. D. Richmond, R. A. Heelis, G. J. Bailey, G. Lu, J. Y. Liu, H. C. Yeh, and S.-Y. Su (2005), Theoretical study of the low- and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: Relative importance of the neutral wind and the electric field. J. Geophys. Res., 110, A12312. doi:10.1029/2005JA011304.
    Lin, C. H., J. Y. Liu, H. F. Tsai, and C. Z. Cheng (2007), Variations in the equatorial ionization anomaly peaks in the West Pacific region during the geomagnetic storms of April 6 and July 15, 2000, Earth Planets Space, 59, 401-405.
    Lindinger, W., F. C. Fehsenfeld, A. L. Schmeltekopf, and E. E. Ferguson (1974), Temperature dependence of some ionospheric ion-neutral reactions from 300-900 K, J. Geophys. Res., 79, 4753-4756.
    Liu, C., M.-L. Zhang, W. Wan, L. Liu, and B. Ning (2008), Modeling M(3000)F2 based on empirical orthogonal function analysis method, Radio Sci., 43, RS1003, doi:10.1029/2007RS003694.
    Liu, H., and H. Lühr (2005), Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations, J. Geophys. Res., 110(A09S29), doi:10.1029/2004JA010908.
    Liu, L., W. Wan, J. Tu, and Z. Bao (2000), Modeling of the ionospheric response to the solar eclipse of 24 October 1995, Terr. Atmos. Ocean Sci., 11(2), 543-554.
    Liu, L., and W. Wan (2001), The evolution of equatorial trough of ionospheric F-region ionization, Terr. Atmos. Oceanic Sci.,12(3), 559-565.
    Liu, L., X. Luan, W. Wan, B. Ning, and J. Lei (2003), A new approach to the derivation of dynamic information from ionosonde measurements, Ann. Geophys., 21, 2185-2191.
    Liu, L., W. Wan, and B. Ning (2004a), Statistical modeling of ionospheric foF2 over Wuhan, Radio Sci., 39, RS2013, doi:10.1029/2003RS003005.
    Liu, L., X. Luan, W. Wan, J. Lei, and B. Ning (2004b), Solar activity variations of equivalent winds derived from global ionosonde data, J. Geophys. Res., 109, A12305, doi:10.1029/2004JA010574.
    Liu, L., W. Wan, C. C. Lee, B. Ning, and J. Y. Liu (2004c), The low latitude ionospheric effects of the April 2000 magnetic storm near the longitude 120oE, Earth Planets Space, 56, 607-612.
    Lei, J., L. Liu, X. Luan, and W.Wan (2003), Model study on neutral winds in ionospheric F-region and comparison with the equivalent winds derived from the Wuhan ionosonde data, Terr. Atmos. Oceanic Sci., 14(1), 1-12.
    Lei, J., L. Liu, W. Wan, and S.-R. Zhang (2004a), Model results for the ionospheric lower transition height over mid-latitude, Ann. Geophys., 22, 2037-2045.
    Lei, J., L. Liu, W. Wan, and S.-R. Zhang (2004b), Modeling the behavior of ionosphere above Millstone Hill during the September 21-27, 1998 storm, J. Atmos. Sol. Terr. Phys., 66, 1093-1102.
    Lei, J., L. Liu, W. Wan, and S.-R. Zhang (2004c), Modeling investigation of ionospheric storm effects over Millstone Hill during August 4-5, 1992, Earth Planet Space, 56(9), 903-908.
    Lei, J., W. Wang, A. G. Burns, S. C. Solomon, A. D. Richmond, M. Wiltberger, L. P. Goncharenko, A. Coster, and B. W. Reinisch (2008), Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: Initial phase, J. Geophys. Res., doi:10.1029/2007JA012807, 113, A01314, doi:10.1029/2007JA012807.
    Luhmann, J. G., S. C. Solomon, J. A. Linker, J. G. Lyon, Z. Mikic, D. Odstrcil, W. Wang, and M. Wiltberger (2004), Coupled model simulation of a Sun-to-Earth space weather event, J. Atmos. Sol. Terr. Phys., 66, 1243-1256.
    Mandrake, L., B. Wilson, C. Wang, G. Hajj, A. Mannucci, and X. Pi (2005), A performance evaluation of the operational Jet Propulsion Laboratory/University of Southern California Global Assimilation Ionospheric Model (JPL/USC GAIM), J. Geophys. Res., 110, A12306, doi:10.1029/2005JA011170.
    Mannucci, A. J., B. D. Wilson, D. N. Yuan, C. H. Ho, U. J. Lindqwister, and T. F. Runge (1998), A global mapping technique for GPS-derived ionospheric total electron content measurements, Radio Sci., 33(3), 565-582.
    Maurice, J.-P., and D. G. Torr (1978), Nonthermal rate coefficients in the ionosphere: The reactions of O+ with N2, O2 and NO, J. Geophys. Res., 83, 969-977.
    McFarland, M., D. L. Albritton, F. C. Fehsenfeld, E. E. Ferguson, and A. L. Schmeltekopf (1974), Energy dependence and branching ration of the N2+ + O reaction, J. Geophys. Res., 79, 2925-2926.
    McLaughlin, B. M. and K. L. Bell (1998), Electron impact excitation of the fine-structure levels (1s22s22p3 4 S03/2, 2 D 05/2,3/2, 2 P 03/2,1/2) of singly ionized atomic oxygen, J. Phys. B: At. Mol. Opt. Phys., 31, 4317-4329.
    Mendillo, M., H. Rishbetha, R. G. Roble, and J. Wroten (2002), Modelling F2-layer seasonal trends and day-to-day variability driven by coupling with the lower atmosphere, J. Atmo. Sol. Terr. Phys., 64, 1911-1931.
    Mendillo, M. (2006), Storms in the ionosphere: patterns and processes for total electron content, Rev. Geophys., 44, RG4001, doi:10.1029/2005RG000193.
    Mentzoni, M. H., and R. V. Rao (1963), Rotational excitation of electron relaxation in nitrogen, Phys. Rev., 130, 2312-2316.
    Millward, G. H., R. J. Moffett, W. Quegan, and T. J. Fuller-Rowell (1996), A coupled thermospheric-ionospheric-plasmasphere Model (CTIP), in STEP: Handbook of Ionospheric Models, edited by R. W. Schunk, p.173, Utath State Univ., Logan, Utath.
    Mikhailov, A. V., and J. C. Foster (1997a), Daytime thermosphere above Millstone Hill during severe geomagnetic storms, J. Geophys. Res. 102, 17275–17282.
    Mikhailov, A., and K. Schlegel (1997b), Self-consistent modelling of the daytime electron density profile in the ionospheric F region, Ann. Geophys., 15, 314-326.
    Mikhailov, A. V., and D. Marin (2001), An interpretation of the foF2 and hmF2 long-term trends in the framework of the geomagnetic control concept, Ann. Geophys., 19, 733-748.
    Mikhailov, A. V., D. Marin, T. Yu. Leschinskaya, and M. Herraiz (2002), A revised approach to the foF2 long-term trends analysis, Ann. Geophys., 20, 1663-1675.
    Muggleton, L. M. (1971), Solar cycle control of Nm(E), J. Atmos. Terr. Phys., 33, 1307-1310.
    Muggleton, L. M. (1972a), A describing function of the diurnal variation of Nm(E) for solar zenith angles from 0 to 90o, J. Atmos. Terr. Phys., 34, 1379-1384.
    Muggleton, L. M. (1972b), Regression-line studies of E-region seasonal anomaly, J. Atmos. Terr. Phys., 34, 1985-1391.
    Nisbet, J. S., O. F. Tyrnov, G. N. Zintchenko, and W. J. Ross (1981), Limits on the Accuracy of Correction of Trans-ionospheric Propagation Errors by Using Ionospheric Models Based on Solar and Magnetic Indices and Local Measurements, Radio Sci., 16, 127-133.
    Olsen, N., and M. Mandea (2007), Will the Magnetic North Pole Move to Siberia?, Eos Trans. AGU, 88(29), 293.
    Ostrow, S. M., and M. PoKempner (1952), The differences in the relationship between ionospheric critical frequencies and sunspot number for different sunspot cycles, J. Geophys. Res., 57, 473-480.
    Otsuka, Y., K. Shiokawa, T. Ogawa, and P. Wilkinson (2002), Geomagnetic conjugate observations of equatorial airglow depletions, Geophys. Res. Lett., 29, doi:10.1029/2002GL015347.
    Otsuka, Y., K. Shiokawa, T. Ogawa, and P. Wilkinson (2004), Geomagnetic conjugate observations of medium-scale traveling ionospheric disturbances at midlatitude using all-sky airglow imagers, Geophys. Res. Lett., 31, doi:10.1029/2004GL020262.
    Oyekola, O. S. (2006), Comparison between nighttime ionosonde, incoherent scatter radar, AE-E satellite, and HF Doppler observations of F regional vertical electrodynamic plasma drifts in the vicinity of the magnetic equator, J. Geophys. Res., 111, A11318, doi:10.1029/2006JA011844.
    Oyekola, O. S., A. Ojo, J. Akinrimisi, and E. R. dePaula (2007), Seasonal and solar cycle variability in F-region vertical plasma drifts over Ouagadougou, J. Geophys. Res., 112, A12306, doi:10.1029/2007JA012560.
    Oyekola, O. S., A. Ojo, and J. Akinrimisi (2008), A comparison of ground and satellite observations of F-region vertical velocity near the dip equator, Radio Sci., 43, RS1005, doi:10.1029/2007RS003699.
    Oyeyemi, E. O., A. W. V. Poole, and L. A. McKinnell (2005), On the global short-term forecasting of the ionospheric critical frequency foF2 up to 5 hours in advance using neural networks, Radio Sci., 40, RS6012, doi:10.1029/2004RS003239.
    Pavlov, A. V., M. J. Buonsanto, A. C. Schlesier, and P. G. Richards (1999), Comparison of models and data at Millstone Hill during the 5-11 June 1991 storm, J. Atmos. Sol. Terr. Phys., 61, 263-279.
    Pavlov, A. V. (2003), New method in computer simulations of electron and ion densities and temperatures in the plasmasphere and low-latitude ionosphere, Ann. Geophys., 21, 1601-1628.
    Pavlov, A. V., and S. Fukao (2007), The ionospheric F2-region at low geomagnetic latitudes during the geomagnetic storms of 22–26 April 1990: Comparison of observed and modeled response, J. Atmos. Sol. Terr. Phys., 69, 835-859.
    Peterson J. R., et al. (1998), Dissociative recombination and excitation of N2+: cross sections and product branching ration, J. Chem. Phys., 108, 1978-1988.
    Pi, X., C. Wang, G. A. Hajj, G. Rosen, B. D. Wilson, and G. J. Bailey (2003), Estimation of E × B drift using a global assimilative ionospheric model: An observation system simulation experiment, J. Geophys. Res., 108(A2), 1075, doi:10.1029/2001JA009235.
    Pi, X., C. Wang, G. A. Hajj, G. Rosen, B. D. Wilson, and A. J. Mannucci (2004), Assimilative modeling of low-latitude ionosphere, Proc. IEEE PLANS, 543– 550.
    Pr?lss, G. W. (1995), Ionospheric F-region storms, In Handbook of Atmospheric Electrodynamics, Edited by Volland H., CRC Press, Chapter 8.
    Raitt, W. J., R. W. Schunk, and P. M. Banks (1975), A comparison of the temperature and density structure in high and low speed thermal flows, Planet. Space Sci., 23, 1103-1117.
    Rawer, K., and D. Bilitza (1990), International reference ionosphere-plasma densities: status 1988, Adv. Space Res., 10(8), 5-14.
    Rees, M. H. (1989), Physics and Chemistry of the Upper Atmosphere, Cambridge Univ. Press, Cambridge, 125-126.
    Reinisch, B. W., X. Huang, I. A. Galkin, V. Paznukhov, and A. Kozlov (2005), Recent advances in real-time analysis of ionograms and ionospheric drift measurements with digisondes, J. Atmos. Sol. Terr. Phys., 67, 1054-1062.
    Richards, P. G., and D. G. Torr (1983), A simple theoretical model for calculating and parameterizing the ionospheric photoelectron flux, J. Geophys. Res., 88(A3), 2155-2162.
    Richards, P. G., J. A. Fennelly, and D. G. Torr (1994), EUVAC: A solar EUV flux model for aeronomic calculations, J. Geophys. Res., 99(A5), 8981-8092.
    Richmond, A. D., and Y. Kamide (1988), Mapping electrodynamic features of the high-latitude ionosphere from localized observations: Technique, J. Geophys. Res., 93, 5741-5759.
    Richmond, A. D., E. C. Ridley, and R. G. Roble (1992), A thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophys. Res. Lett., 19, 601-604.
    Richmond, A. D. (1995), Ionospheric electrodynamics using magnetic apex coordinates, J. Geomagn. Geoelectr., 47(2), 191-212.
    Richards, P. G., and P. J. Wilkinson (1998), The ionosphere and thermosphere at southern midlatitudes during the November 1993 ionospheric storm: a comparison of measurement and modeling, J. Geophys. Res., 103, 9373-9389.
    Richmond, A. D., and G. Lu (2000), Upper-atmospheric effects of magnetic storms: a brief tutorial, J. Atmos. Sol. Terr. Phys., 62, 1115-1127.
    Ridley, A. J., Y. Deng, and G. Tóth (2006),The global ionosphere–thermosphere model,J. Atmos. Sol. Terr. Phys., 68, 839-864.
    Rishbeth, H. (1997), Long-term changes in the ionosphere, Adv. Space Res., 20, 2149-2155.
    Rishbeth, H. (1998), How the thermospheric composition affects the ionospheric F2-layer, J. Atmo. Sol. Terr. Phys., 60, 1385–1402.
    Rishbeth, H., and O. K. Garriott (1969), Introduction to ionospheric physics, Academic Press, New York and London.
    Rishbeth, H., and M. Mendillo (2001), Patterns of F2-layer variability, J. Atmos. Sol. Terr. Phys., 63, 1661-1680.
    Roble, R. G., E. C. Ridley, A. D. Richmond, and R. E. Dickinson (1988), A coupled thermosphere/ionosphere general circulation model, Geophys. Res. Lett., 15, 1325-1328.
    Roble, R. G., and R. E. Dickinson (1989), How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?, Geophys. Res. Lett., 16, 1441– 1444.
    Roble, R. G., and E. C. Ridley (1994), Thermosphere-ionosphere-mesosphere-electrodynamics general circulation model: Equinox solar min simulations (30–500 km), Geophys. Res. Lett., 21, 417-420.
    Rush, C. M. (1976), An ionospheric observation network for use in short-term propagation predictions, Telecomm. J., 43(8), 544-549.
    Rush, C. M., M. Fox, D. Bilitza, K. Davies, L. McNamara, F. Stewart, and M. PoKempner (1989), Ionospheric Mapping-An Update of foF2 Coefficients, Telecomm. J., 56, 179-182.
    Saito, A., T. Iycmori, M. Sugiura, N. C. Maynard, T. L. Aggson, L. H. Brace, M. Takeda, and H. Soicher (1978), Spatial Correlation of Transionospheric Signal Time Delays, IEEE Transactions on Antennas and Propagation, 26(2), 311-314.
    Scherliess, L., and B. G. Fejer (1997), Storm time dependence of equatorial disturbance dynamo zonal electric fields, J. Geophys. Res., 102(A11), 24037-24046.
    Scherliess, L., and B. G. Fejer (1999), Radar and satellite global equatorial F region vertical drift model, J. Geophys. Res., 104(A4), 6829-6842.
    Scherliess, L., R. W. Schunk, J. J. Sojka, and D. C. Thompson (2004), Development of a physics-based reduced state Kalman filter for the ionosphere, Radio Sci., 39, RS1S04, doi:10.1029/2002RS002797.
    Scherliess, L., R. W. Schunk, J. J. Sojka, D. C. Thompson, and L. Zhu (2006), Utah State University Global Assimilation of Ionospheric Measurements Gauss-Markov Kalman filter model of the ionosphere: Model description and validation, J. Geophys. Res., 111, A11315, doi:10.1029/2006JA011712.
    Schlesier A. C., and M. J. Buonsanto (1999), The Millstone Hill ionospheric model and its application to the May 26-27, 1990, ionospheric storm, J. Geophys. Res., 104, 22,453-22,468.
    Schunk, R. W., and A. F. Nagy (1978), Electron temperature in the F region of the ionosphere: theory and observations, Rev. Geophys. Space Phys., 16(3), 355-399.
    Schunk,R. W., and A. F. Nagy (1980),Ionospheres of the Terrestrial Planets, Rev. Geophys. Space Sci., 18(4), 813-852.
    Schunk, R. W., and J. J. Sojka (1996), Ionospheric models, in Modern Ionospheric Science, edited by H. Kohl, R. Rüster, and K. Schlegel, European Geophysical Society, Germany.
    Schunk, R. W., L. Scherliess, J. J. Sojka, et al. (2004), Global Assimilation of Ionospheric Measurements (GAIM), Radio Sci., 39, RS1S02, doi:10.1029/2002RS002794.
    Schunk, R. W., L. Scherliess, J. Sojka, D. Thompson, and L. Zhu (2005), Ionospheric Weather Forecasting on the Horizon, Space Weather, 3, S08007, doi:10.1029/2004SW000138.
    Smith F. L., and C. Smith (1972), Numerical evaluation of Chapman’s grazing incidence integral Ch(X, χ), J. Geophys. Res., 77(19), 3592-3597.
    Sojka, J. J., and R. W. Schunk (1985), A theoretical study of the global F region for June solstice, solar maximum, and low magnetic activity, J. Geophys. Res., 90, 5285-5298.
    Stamper, R., M. Lockwood, M. N. Wild, and T. D. G. Clark (1999), Solar causes of the long-term increase in geomagnetic activity, J. Geophys. Res., 104(A12), 28325–28342.
    Strickland, D. J., J. S. Evans, and L. J. Paxton (1995), Satellite remote sensing of thermospheric O/N2 and solar EUV: 1. Theory, J. Geophys. Res., 100, 12217-12226.
    Strobel D. F., T. R. Young, R. R. Meier, T. P. Coffey, and A. W. Ali (1974), The nighttime ionosphere: E region and lower F region, J. Geophys. Res., 79, 3171-3178.
    Thompson, D. C., L. Scherliess, J. J. Sojka, and R. W. Schunk (2006), The Utah State University Gauss-Markov Kalman filter of the ionosphere: The effect of slant TEC and electron density profile data on model fidelity, J. Atmos. Sol. Terr. Phys., 68, 947-958.
    Titheridge, J. E. (1995), Winds in The Ionosphere-A Review, J. Atmos. Terr. Phys., 57(14), 1681-1714.
    Titheridge, J. E. (1996), Direct allowance for the effect of photoelectrons in ionospheric modeling, J. Geophys. Res., 101, 357-369.
    Titheridge, J. E. (1997), Model results for the ionospheric E region: solar and seasonal changes, Ann. Geophys., 15, 63-78.
    Titheridge, J. E. (1998), Temperatures in the upper ionosphere and plasmasphere, J. Geophys. Res., 103(A2), 2261-2277.
    Titheridge J. E.(2000), Modelling the peak of the ionospheric E-layer, J. Atmos. Sol. Terr. Phys., 62, 93-114.
    Tobiska, W. K. (2000), Status of the SOLAR2000 solar irradiance model, Phys. Chem. Earth, 25(5-6), 383-386.
    Torr, M. R., and D. G. Torr (1973), The seasonal behaviour of the F2-layer of the ionosphere, J. Atmos. Terr. Phys.,35, 2237-2251.
    Torr, D. G., M. R. Torr, J. C. G. Walker, A. O. Nier, L. H. Brace, and H. C. Briton (1976), Recombination of the O2+ in the ionosphere, J. Geophys. Res., 81, 5578-5580.
    Torr, M. R., D. G. Torr, and P. G. Richards (1990), Mid and low latitude model of thermospheric emissions: 1. O+(2P) 7320 ? and N2(2P) 3371 ? , J. Geophys. Res., 95, 21147-21168.
    Tòth, G., et al. (2005), Space Weather Modeling Framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi:10.1029/2005JA011126.
    Trichtchenko, L., A. Zhukov, R. Linden, S. M. Stankov, N. Jakowski, I. StanisJawska, G. Juchnikowski, P. Wilkinson, G. Patterson, and A. W. P. Thomson (2007), November 2004 space weather events: Real-time observations and forecasts, Space Weather, 5(S06001), doi:10.1029/2006SW000281.
    Truhlik, V., L. Triskova, and J. Smilauer (2001), Imporved electron temperature model and comparison with satellite data, Adv. Space Res., 27(1), 101-109.
    Tsai, H. F., J. Y. Liu, W. H. Tsai, C. H. Liu, C. L. Tseng, and C. C. Wu (2001), Seasonal variations of the ionospheric total electron content in Asia equatorial anomaly regions, J. Geophys. Res., 106(A12), 30363-30369.
    Tsurutani, B., et al. (2004), Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res., 109, A0832, doi:10.1029/2003JA010342. Ulich, T., and E. Turunen (1997), Evidence for long-term cooling of the upper atmosphere in ionosonde data, Geophys. Res. Lett., 24, 1103-1106.
    Walls, F. L., and G. H. Dunn (1974), Measurement of total cross sections for electron recombination with NO+ and O2+ using ion storage techniques, J. Geophys. Res., 79, 1911-1915.
    Wang, C., G. Hajj, X. Pi, I. G. Rosen, and B. Wilson (2004), Development of the Global Assimilative Ionospheric Model, Radio Sci., 39, RS1S06, doi:10.1029/2002RS002854.
    Wang, W., T. L. Killeen, A. G. Burns, and R. G. Roble (1999), A high-resolution, three-dimensional, time dependent, nested grid model of the coupled thermosphere-ionosphere, J. Atmos. Sol. Terr. Phys., 61, 385-397.
    Wang, W., M. Wiltberger, A. G. Burns, S. C. Solomon, T. L. Killeen, N. Maruyama, and J. G. Lyon (2004), Initial results from the coupled magnetosphere-ionosphere-thermosphere model: thermosphere-ionosphere responses, J. Atmos. Sol. Terr. Phys., 66, 1425-1441.
    Wei, Y., M. Hong, W. Wan, A. Du, J. Lei, B. Zhao, W. Wang, Z. Ren, and X. Yue (2008), Unusually long lasting multiple penetration of interplanetary electric field to equatorial ionosphere under oscillating IMF Bz, Geophys. Res. Lett., 35, L02102, doi:10.1029/2007GL032305.
    Welch, G., and G. Bishop (2004), An introduction to the Kalman filter, UNC-Chapel Hill, TR 95-041.
    Woodman, R. F., J. L. Chau, and R. R. Ilma (2006), Comparison of ionosonde and incoherent scatter drift measurements at the magnetic equator, Geophys. Res. Lett., 33, L01103, doi:10.1029/2005GL023692.
    Xu, W., and Y. Kamide (2004), Decomposition of daily geomagnetic variations by using method of natural orthogonal component, J. Geophys. Res., 109, A05218, doi:10.1029/2003JA010216.
    Xu, Z.-W., J. Wu, K. Igarashi, H. Kato, and Z.-S. Wu (2004), Long-term ionospheric trends based on ground-based ionosonde observations at Kokubunji, Japan, J. Geophys. Res., 109, A09307, doi:10.1029/2004JA010572.
    Yamamoto, M. (1995), Conjugate occurrence of the electric field fluctuations in the nighttime midlatitude ionosphere, J. Geophys. Res., 100(A11), 21439-21451.
    Yizengaw, E., M. B. Moldwin, P. L. Dyson, and T. J. Immel (2005), Southern Hemisphere ionosphere and plasmasphere response to the interplanetary shock event of 29-31 October 2003, J. Geophys. Res., 110 (A09S30), doi:10.1029/2004JA010920.
    Yu, T., W. Wan, and L. Liu (2003), A theoretical model for ionospheric electric fields at mid- and low- latitudes, Science in China(G), 46, 23-32.
    Yue, X., W. Wan, L. Liu, and B. Ning(2006a), An empirical model of ionospheric foE over Wuhan, Earth Planets Space, 58, 323–330.
    Yue, X., W. Wan, L. Liu, B. Ning, and B. Zhao (2006b), Applying artificial neural network to derive long-term foF2 trends in the Asia/Pacific sector from ionosonde observations, J. Geophys. Res., 111, A10303, doi:10.1029/2005JA011577.
    Yue, X., W. Wan, L. Liu, and T. Mao (2007a), Statistical analysis on spatial correlation of ionospheric day-to-day variability by using GPS and Incoherent Scatter Radar observations, Ann. Geophys., 25, 1815–1825.
    Yue, X., W. Wan, L. Liu, F. Zheng, J. Lei, B. Zhao, G. Xu, S. Zhang, and J. Zhu (2007b), Data assimilation of incoherent scatter radar observation into a one-dimensional midlatitude ionospheric model by applying ensemble Kalman filter, Radio Sci., 42, RS6006, doi:10.1029/2007RS003631.
    Yue, X., W. Wan, L. Liu, H. Le, Y. Chen, and T. Yu (2008a), Development of a middle and low latitude theoretical ionospheric model and an observation system data assimilation experiment, Chin. Sci. Bull., 53(1), 94-101.
    Yue, X., W. Wan, L. Liu, B. Ning, B. Zhao, and M.-L. Zhang (2008b), TIME-IGGCAS model validation: Comparisons with empirical models and observations, Sci. China Ser. E-Tec. Sci., 51(3), 308-322.
    Yue, X., W. Wan, J. Lei, and L. Liu (2008c), Modeling the relationship between E×B vertical drift and the time rate of change of hmF2(?hmF2/?t) over magnetic equator, Geophys. Res. Lett., 35, L05014, doi:10.1029/2007GL033051.
    Zhang, S.-R., S. Fukao, and W. L. Oliver (1999), Data modeling and assimilation studies with the MU radar, J. Atmos. Sol. Terr. Phys., 61, 563-583.
    Zhang, S.-R., W. L. Oliver, S. Fukao, and S. Kawamura (2001), Extraction of solar and thermospheric information from the ionospheric electron density profiles, J. Geophys. Res., 12821-12836.
    Zhang, S.-R., W. L. Oliver, J. M. Holt, and S. Fukao (2002), Solar EUV flux, exospheric temperature and thermospheric wind inferred from incoherent scatter measurements of the electron density profile at Millstone and Shigaraki, Geophys. Res. Lett., 29, doi: 10.1029/2002GL014678.
    Zhang, S.-R., W. L. Oliver, J. M. Holt, and S. Fukao (2003), Ionospheric data assimilation: Comparison of extracted parameters using full density profiles and key parameters, J. Geophys. Res., 108(A3), 1131-1139, doi:10.1029/2002JA009521.
    Zhang, S.-R., J. M. Holt, T. van Eyken, M. McCready, C. Amory-Mazaudier, S. Fukao, and M. Sulzer (2005), Ionospheric model and climatology from long-term databases of worldwide incoherent scatter radars, Geophys. Res. Lett., 32, L20102, doi:10.1029/2005GL023603.
    Zhao, B., W. Wan, and L. Liu (2005a), Responses of equatorial anomaly to the October-November 2003 superstorms, Ann. Geophys., 23, 693-706.
    Zhao, B., W. Wan, L. Liu, X. Yue, and S. Venkatraman (2005b), Statistical characteristics of the total ion density in the topside ionosphere during the period 1996–2004 using empirical orthogonal function (EOF) analysis, Ann. Geophys., 23, 3615-3631.
    Zhao, B., W. Wan, L. Liu, and T. Mao (2007), Morphology in the total electron content under geomagnetic disturbed conditions: results from global ionosphere maps, Ann. Geophys., 25, 1555-1568.
    Zuzic, M., L. Scherliess, and G. W. Pr?lss (1997), Latitudinal structure of thermospheric composition perturbations, J. Atmos. Sol. Terr. Phys., 59, 711-724.
    陈培仁 (1990),赤道异常峰区电离层的某些特点,空间科学学报,10(3),221-229。
    陈艳红 , 薛炳森 , 李利斌 (2005),利用神经网络预报电离层 f0F2,空间科学学报 25(2),99-103。
    冯学尚 (2000), 空间天气学——21 世纪的新兴学科,世界科技研究与发展,02,54-57。
    傅竹风, 胡友秋 (1995),空间等离子体数值模拟,安徽:安徽科学技术出版社。
    高铭, 肖佐 (1992),一种电离层物理模型及其在 F1 谷区形成讨论中的应用,空间科学学报,12(4),287-297。
    郭兼善 尚社平 张满莲 罗熙贵 郑红 史建奎 张清毅 (2000),空间天气探测数据的同化处理,中国科学 A,30,115-118。
    焦维新 (2002),空间探测,北京:北京大学出版社。
    焦维新 (2003),空间天气学,北京:气象出版社。
    雷久侯 (2005),中纬电离层的统计分析与模式化研究,博士学位论文,北京:中国科学院地质与地球物理研究所。
    梁百先,李钧,马淑英 (1994),我国的电离层研究,地球物理学报,37(增刊 1),51-73。
    刘成思 (2005),集合卡尔曼滤波资料同化方案的设计和研究,硕士学位论文,北京:中国气象科学研究院。
    刘立波 (1997),中国南方电离层参量形态特征的机制研究,博士学位论文,武汉:武汉大学。
    刘瑞源, 权坤海, 戴开良 (1994), 国际参考电离层用于中国地区时的修正计算方法, 地球物理学报, 37(4),422-431。
    刘瑞源,刘顺林,徐中华,吴 健,王先义,张北辰,胡红桥 (2005),自相关分析法在中国电离层短期预报中的应用,科学通报,50(24),2781-2785。
    刘振兴 (2005),太空物理学,哈尔滨:哈尔滨工业大学出版社。
    毛田, 万卫星, 刘立波 (2005),用经验正交函数构造武汉地区电子浓度总含量的经验模式,地球物理学报,48(4),751-758。
    毛田 (2007),基于 GPS 台网观测的电离层 TEC 的现报与建模研究,博士学位论文,北京:中国科学院地质与地球物理研究所。
    浦朝霞等译 (2005), (美)Eugenia Kalnay 著,大气模式、资料同化和可预报性,北京:气象出版社。
    尚社平 (2000),磁暴期间全球电离层扰动形态分析和理论研究,博士学位论文,北京:中国科学院空间科学与应用研究中心。
    沈长寿,肖佐 (1993),IRI—90 及其与中国电离层资料 foF2 的比较,空间科学学报,13(4),316-321。
    涂传诒等 (1988),日地空间物理学,北京:科学出版社。
    涂剑南,刘立波,保宗悌 (1997),一个低纬电离层理论模式,空间科学学报, 17,212-219。
    万卫星, 宁百齐, 刘立波, 丁 锋, 毛 田, 李国主, 熊 波 (2007),中国电离层 TEC 现报系统, 地球物理学进展,22(4),1040-1045。
    王劲松, 肖佐 (1999),子午面内时变电离层模型及其边界条件,地球物理学报,42(1),18-29。
    王霄 (2004),低纬(海南)地区电离层变化和扰动特性研究,博士学位论文,北京:中国科学院空间科学与应用研究中心。
    王跃山 (1999),数据同化-它的缘起,含义和主要方法,海洋预报,16(1),11-20。
    魏奉思 (1999), 空间天气学,地球物理学进展,S1,4-10。
    吴健, 龙其利, 权坤海 (1998),新乡观测的电离层 TEC 和板厚的统计与建模研究,电波科学学报, 13(03),291-296。
    熊年禄,唐存琛,李行健 (1999),电离层物理概论,武汉:武汉大学出版社。
    徐继生,邹玉华,马淑英 (2005),GPS 地面台网和掩星观测结合的时变三维电离层层析,地球物理学报,48(4),759-767。
    徐文耀,魏自刚 (1999),地球磁场的西向漂移,地球物理学进展, 14(2),44-57。
    徐文耀 (2003),地磁学,北京:地震出版社。
    余涛 (2003),中低纬电离层电场的模拟研究及电场对电离层年度变化的影响,博士学位论文,武汉:中科院武汉物理与数学研究所。
    於晓,万卫星,刘立波,乐新安,徐桂荣 (2007), 欧洲地区电离层峰值电子密度逐日变化的相关距离研究,地球物理学报,50(5),1283-1288.
    袁运斌 (2002),基于 GPS 的电离层监测及延迟改正理论与方法的研究,博士学位论文,武汉:中国科学院测量与地球物理研究所。
    乐新安,万卫星,刘立波,乐会军,陈一定,余涛 (2007),中低纬电离层理论模式的构建和一个观测系统数据同化试验,科学通报,52(18),2180-2186。
    曾文,张训械,胡雄,沈福祥,王瑶琨,丁海兰,闫鲁生 (1999),利用人工神经网络建立我国南海地区电离层模式,地球物理学报,42(5),581-589。
    曾桢 (2003),地球大气无线电掩星观测技术研究,博士学位论文,武汉:中科院武汉物理与数学研究所。
    张北辰,刘瑞源,刘顺林 (2001),极区电子沉降对电离层影响的模拟研究,地球物理学报,44,311-319。
    张东和,肖佐 (2000), 利用 GPS 计算 TEC 的方法及其对电离层扰动的观测,地球物理学报, 43(4),451-458。
    张满莲,史建魁,尚社平 (2004),激发态氮分子 N2*在电离层中的作用的模拟研究,地球物理学报,47,571-577。
    张奇伟,郭兼善,章公亮 (1994),磁暴期间中纬度电离层剖面结构变化的数值模拟,空间科学学报,14,39-47。
    张顺荣 (1995),中纬电离层结构的时变理论模式及其在电离层形态与机制研究上的运用,博士学位论文,武汉:中科院武汉物理与数学研究所。
    赵必强 (2006), 中低纬电离层年度异常与暴时特性研究,博士学位论文,北京:中国科学院地质与地球物理研究所。
    郑飞 (2007),ENSO 集合预报研究,博士学位论文,北京:中国科学院大气物理研究所。
    朱明华, Taieb C.,曹冲等 (1998), 中纬电离层理论模式研究,空间科学学报,18,23-30。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700