用户名: 密码: 验证码:
时差型电网故障行波定位与广域行波保护方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力系统容量的不断扩大、电压等级的不断升高和电网的日益复杂,电力系统对故障定位的准确性和继电保护的速动性提出了更高的要求,基于单条线路行波信息的故障定位与保护方法已经无法满足电网运行的要求。基于整个电网初始行波信息的故障行波定位与保护方法具有较强的容错能力,可以采用包含故障线路在内的任意故障路径来进行故障定位,并可利用电网内所有初始行波的极性和到达时间来进行线路保护,能有效提高行波保护动作的可靠性和准确性,增强行波定位的可靠性、准确性和适应能力。
     本文围绕行波定位与行波保护目前存在的问题,对行波的提取、检测等关键技术进行了深入研究;并对电网故障行波传播与定位网络进行了深入分析;在此基础上对基于整个电网故障行波信息的电网故障行波定位与保护技术进行了深入研究;最终形成了一系列具有知识产权的行波提取、检测、定位与保护技术。论文的主要研究内容和创新如下:
     (1)从单相变压器的分布参数模型出发,深入研究了电压互感器的暂态行波传变特性,进而提出了从电压互感器二次侧直接提取、利用专用行波传感器从CVT接地线和变压器外壳接地线上提取、利用PCB行波传感器从互感器二次侧提取等故障电压行波信号的提取方法,为电压行波波头的获取提供了多种可行的选择方式,为电网故障行波定位技术与广域行波保护技术的研究打下了坚实的技术基础。
     (2)在分析时钟误差的基础上,根据GPS同步时钟的随机误差和高精度晶振的累计误差互补的特点,提出了一种根据数字锁相原理产生高精度同步秒时钟的新方法。该方法根据数字锁相原理,通过测量GPS秒脉冲与晶振秒时钟问的相位差来控制晶振秒时钟的分频系数,实时消除晶振秒时钟的累计误差,从而产生高精度同步秒时钟。试验测试结果表明该高精度同步秒时钟的稳定性和同步性好,时间准确度高。
     (3)系统地分析了故障行波在整个输电网中的传播特性、影响行波在电网中传播的主要因素,进而构建了行波定位网络,并用电网拓扑结构图予以表示;首次提出了基于初始行波传播路径的电网拓扑结构图的网络简化方法,结合Floyd算法与网络中各节点记录的故障初始行波到达时间,根据网络结构与故障点位置动态剔除行波传输的无效路径,将复杂环网简化成辐射型网络,该辐射型网络即为初始行波的传输路径网络;该网络简化方法使电网故障行波定位技术的实现成为了可能。
     (4)首次提出了一种通过利用整个电网中所有初始行波到达时间和线路长度来辨别有效初始行波时间,并根据所有有效初始行波时间来进行综合故障定位的电网故障行波定位方法;在此基础上,研究了行波检测装置的优化配置方法,提出了优化配置原则和基于模拟退火算法的优化方法;仿真分析、试验测试和实际运行结果表明电网故障行波定位方法可以在故障线路端定位装置故障、启动失灵或记录错误时间后仍能可靠定位,而适当的优化配置可以在不影响定位可靠性和准确性的前提下减少定位装置的布点,从而有效节省投资。
     (5)首次提出了广域行波保护的概念,分析了线路故障后初始行波在电网中传播时到达各变电站的时间与极性特性,进而提出了基于极性比较原理和基于时间特性原理的两种广域行波保护方法;深入研究了这两种保护方法的实现原理、保护判据和应用范围,得出了极端情况下需综合利用两种保护方法的思想。理论分析和仿真结果表明,广域行波保护方法的原理可行、实现简单、可靠性高,有助于进一步提高行波保护的实用性。
     本文所做的理论研究、仿真分析、试验测试和现场运行结果表明,基于整个电网故障行波信息的电网故障行波定位技术和广域行波保护技术具有极其光明的发展前景。
With the constant enlargement of power system capacitance, the structure of network is increasingly complicated. The power system puts forward higher demand for the accuracy of fault location and snap action of relay protection, therefore the fault location and protection method based on the traveling information of single line in transmission network is unable to meet the demand of power network operation. The fault location and protection system based on the whole network initial traveling wave information has strong fault-tolerant ability. The system can fully apply any of fault path including fault line to achieve accurate fault location, meanwhile the polarity of effective initial traveling wave and arrival time can realize line protection, which can improve the accuracy and reliability of protection operation, and enhance the accuracy, reliability and adaptability of traveling wave fault location.
     In this paper, according to the existing problems of traveling wave fault location and protection, the extraction and detection of traveling wave is further studied. By deep analysis the fault location network and transmission characteristic of traveling wave, a simplified method of traveling wave measurement network is proposed in the thesis. On the basis, traveling wave fault location technology and wide-area traveling wave protection technology are conducted thorough research. A Series of technology, which possessing intellectual property are formed in this paper. The main research contents and innovation of the thesis are as follows:
     (1) From the single-phase transformer distributed parameter model, the transient traveling wave transfer characteristics of the voltage transformer is further studied, furthermore transient traveling wave extraction methods are proposed in the thesis, such as extracting directly through the voltage transformer secondary side, using the special traveling wave sensor to extract from the CVT grounding line and transformer outside shell grounding line, and using the PCB traveling wave sensor extracted by high voltage directly etc.. So many transient signal extraction methods to provide a wide range of options for obtain the traveling wave in the power failures. The above methods laid solid technical foundation for traveling wave fault location and the wide-area protection.
     (2) Based on the analysis of chock error, making full use of the complementary characteristic of the random error of GPS synchronous clock and the accumulative error of high-precision crystal oscillator, a high-precision clock synchronization based on the digital phase-locked principal is presented. By measuring the phase difference between GPS second-pulse and crystal oscillator second-clock to control the frequency multiplier coefficient of crystal oscillator second-clock, the new method can real-time eliminate the accumulative error of high-precision crystal oscillator, thus producing the high-precision clock synchronization. Testing results show that the high-precision clock synchronization has high stability, synchronization and precision.
     (3) The thesis, which makes a systematic analysis of traveling wave transmission characteristics in power girds and the main impact factors of traveling wave transmitting along the line, constructs traveling wave fault location network used topology graph to describe. A simplified method of topology graph based on initial traveling wave transmission network is proposed. Based on network structure and fault position, combined with Floyd algorithm and initial traveling wave arrival times recorded by all substations in network, invalid path can be dynamic eliminated. The multi-loop network can be easily simplified into radial network, which is the initial traveling wave transmission path network. The implementation of traveling wave fault location technology becomes possible.
     (4) A traveling wave fault location method based on the initial valid traveling wave arrival time is proposed in this paper, which the initial traveling wave arrival time and line length are applied to distinguish valid initial traveling wave arrival time. On this basis, a optimal configuration method of traveling wave fault locators are researched, and a optimal configuration principle and a optimization method based on simulated annealing algorithm is proposed. Simulating and practical application results show that the method can implement the accurate fault location, even in the case of locate devices failure, start up failure or time record error. Moreover, optimal configuration method of traveling wave fault locators can save investment effectively.
     (5) The conception of wide-area traveling-wave is proposed in the thesis. By analysis the initial traveling wave arrival time and polarity characteristics, two types of wide-area protection is proposed in this paper, one is based on polarity comparison principle, and the other is based on the time characteristic principle. To thorough study the implementation principle, protection criterion and application scope of two types of wide-area protection, a though of comprehensive utilization the two types of wide-area protection in extreme condition is obtained. Theory analysis and simulation results show that the wide-area protection is feasible, simple and has high reliability, which is help to improve the practicality of traveling wave protection.
     Theory study, simulation analysis, experimental testing and field operation show that the network-based traveling wave fault location technology and wide-area traveling-wave protection technology have an extremely bright future.
引文
[1]葛耀中.新型继电保护和故障测距原理与技术.西安:西安交通大学出版社,2007,187-189.
    [2]曾祥君.电力线路故障检测与定位新原理及其信息融合实现研究:[华中科技大学博士论文].武汉:华中科技大学,2000,56-59,66-72.
    [3]陈平,徐丙垠,李京.现代行波故障测距装置及其运行经验.电力系统自动化,2003,27(6):66-69.
    [4]徐丙垠,李京,陈平,等.现代行波测距技术及其应用.电力系统自动化.2001,25(23):62-65.
    [5]MEI-Hami, L. L. Lai, D. J. Daruvala, et al. A new Travelling wave Based scheme for Fault Detection on Overhead Power Distribution Feeders. IEEE Trans. on PWRD,1992,7 (4):1825-1833.
    [6]肖东辉,刘沛,程时杰.架空输电线路故障测距方法综述.电力系统自动化,1993,17(84):46-56.
    [7]Lee H, Mousa A M. GPS traveling wave fault locator systems:investi-gation into the anomalous measurements related to lightning strikes. IEEE Trans on Power Delivery,1996,11(3):1214-1223.
    [8]贺家李,葛耀中.超高压输电线路故障分析与继电保护.北京:科学出版社,1983,98-101.
    [9]Anne-Marie Borbely, Jan F. Kreider. Distributed Generation:The Power Paradigm for the New Millennium. LLC:CRC Press,2000,105-109.
    [10]Gomez J. C, Morcos M. M. Coordinating overcurrent protection and voltage sag in distributed generation systems.IEEE Power Enginee-ring Review,2002,22(2):16-19.
    [11]Z. Q. Bo, G. Weller, M. A. Redfern. Accurate fault location technique for distribution system using fault-generated high-frequency transient voltage signals.IEE Proc-Gener, Transm, Distrib,1999,146(1):25-29.
    [12]覃剑,陈祥训,郑健超.行波在输电线上传播的色散研究.中国电机工程学报,1999,19(9):27-30,35.
    [13]高厚磊,刘海波.基于GPS的双端量故阶测距算法研究电力系统及其自动化学报,1998,10(2):27-33.
    [14]于玉泽,覃剑等.电缆-架空线混合线路故障测距方法综述.电网技 术.2006,30(17):64-69.
    [15]H. Lee, A.M. Mousa. GPS Travelling wave Fault locator systems: Investigation into the Anomalous Measurement Related to Lightning strikes.IEEE Trans.on PWRD,1996,11 (3):1214-1223.
    [16]段建东,张保会,周艺.超高速暂态方向继电器的研究.中国电机工程学报,2005,25(4):7-12.
    [17]Johns A T, Aggarwal R K, Bo Z Q. Non-unit protection technique for EHV transmission systems based on fault-generated noise. part 1: signal measurement. IEE Proceedings on Generation Transmission and Distribution,1994,141(2):133-140.
    [18]林湘宁,刘沛,杨春明,等.基于小波分析的超高压输电线路无通信全线速动保护方案.中国电机工程学报,2001,21(6):9-14.
    [19]段建东,张保会.行波启动元件的算法研究.中国电机工程学报,2004,24(9):30-36.
    [20]张保会.加强继电保护与紧急控制系统的研究提高互连电网安全防御能力.中国电机工程学报,2004,24(8):1-6.
    [21]Gale P F.利用行波的故障测距.葛耀中译.第五届电力系统保护进展国际会议论文译文全集(上卷):89-96.
    [22]R. F. Stevens, T. W. Stringfield. A Transmission Line Fault Locator Using Fault-Ge nerated Surges.IEE Trans,1948,67:1168-1179.
    [23]钱汝立,凌锡琼,凌锡玮译.电气设备故障检修手册:[日本电气书院].北京:水利电力出版社,1984,32-35.
    [24]陈平,徐丙垠,李京,等.现代行波故障测距系统的研制.电力系统自动化,2003,27(12):81-85.
    [25]陈平,葛耀中,徐丙垠,等.现代行波故障测距原理及其在实测故障分析中的应用—A型原理.继电器,2004,32(2):13-18.
    [26]陈平,葛耀中,徐丙垠,等.现代行波故障测距原理及其在实测故障分析中的应用—D型原理.继电器,2004,32(3):14-19.
    [27]于盛楠,杨以涵,鲍海.C型行波法在配电网故障测距中应用之研究.现代电力,2007,24(3):20-23.
    [28]何正友,陈小勤.基于多尺度能量统计和小波能量熵测度的电力暂态信号识别方法.中国电机工程学报,2006,26(10):33-39.
    [29]董新洲,葛耀中,徐丙垠.利用暂态电流行波的输电线路故障测距研究.中国电机工程学报,1999,19(4):76-80.
    [30]陈平,徐丙垠,葛耀中.一种利用暂态电流行波的输电线路故障测距方法.电 力系统自动化,1999,23(14):29-32.
    [31]林湘宁,刘沛,刘世明,等.基于故障电流暂态分量的测距研究.电力系统自动化,2002,26(2):45-51.
    [32]王绍部,舒乃秋,龚庆武,等.计及TA传变特性的输电线路行波故障定位研究.中国电机工程学报,2006,26(2):88-92.
    [33]KEZUNOVIC M, KOJOVIC L, SKENDZIC V, et al. Digital models of coupling capacitor voltage transformers for protective relay transient studies. IEEE Trans on Power Delivery,1992,7 (4):1927-1935.
    [34]甘磊,张哲,尹项根.基于电容式电压互感器二次信号的行波故障定位方法.电网技术,2006,30(5):101-105.
    [35]王志华,尹项根,张小波,等.利用CVT捕捉电压行波实现故障测距的分析与实践.电力系统自动化,2004,28(22):63-68.
    [36]甘磊,张哲,叶皖,等.基于CVT二次信号的实用化行波定位方法.电力系统自动化,2007,31(3):52-56.
    [37]何正友.电力系统暂态信号的小波分析方法及其在EHV输电线路暂态保护中的应用研究:[西南交通大学博士学位论文].成都:西南交通大学,2000,2-5.
    [38]季涛.基于暂态行波的配电线路测距研究:[山东大学博士学位论文].济南:山东大学,2006,1-8.
    [39]曾祥君,刘正谊,屈明志,等.互感器暂态行波传输特性仿真分析与实验测试.长沙理工大学学报.2004,1(1):71-75.
    [40]曾祥君,尹项根,林福昌.基于行波传感器的输电线路故障定位方法研究.中国电机工程学报,2002.22(6):42-47.
    [41]曾祥君,尹项根,陈德树,等.基于整个输电网GPS行波故障定位系统的研究.电力系统自动化,1999,23(10):8-10.
    [42]张哲,陈德树.高压输电线路故障测距的伪根问题及其改进方法.中国电机工程学报,1992,12(6):24-29.
    [43]曾祥君,尹项根,K.K.Li,等.GPS时钟监测与修正方法.中国电机工程学报,2002,22(12):41-46.
    [44]曾祥君,尹项根,林干.晶振信号同步GPS信号产生高精度时钟的方法及实现.电力系统自动化,2003,27(8):49-55.
    [45]李泽文,姚建刚,曾祥君,等.基于数字锁相原理的GPS高精度同步时钟产生新方法.电力系统自动化,2009,33(18):82-86.
    [46]李泽文,曾祥君,黄智伟,等.基于高精度晶振的GPS秒时钟误差在线修正方法.电力系统自动化,2006,30(13):55-58.
    [47]Li Zewen, Zeng Xiangjun. High Accurate Clock in Synchronism with GPS for Power System Simultaneous Measurement.In:IEEE Power Engineering Society Transmission and Distribution Conference. Dalian, IEEE/PES T&D 2005AP,2005,204-206.
    [48]刘正谊.电网故障行波定位系统的研究:[武汉大学硕士学位论文].武汉:武汉大学,2005,5-8.
    [49]束洪春,李义,宣映霞,等.对不受波速影响的输电线路单端行波法故障测距的探讨.2006,34(8):1-6.
    [50]覃剑,陈祥训,郑健超.行波在输电线上传播的色散研究.中国电机工程学报,1999,19(9):28-30.
    [51]胡鑫.行波测距中测距波速的实时测量方法研究:[四川大学硕士学位论文].成都:四川大学,2003,3-5.
    [52]李泽文,曾祥君,姚建刚,等.不受波速影响的输电线路双端行波故障测距算法.长沙理工大学学报,2006,3(4):68-71.
    [53]Lee H., Mousa A.M.GPS Travelling wave Fault locator systems: Investigation into the Anomalous Measurement Related to Lightning strikes. IEEE Transactions on Power Delivery,1996,11(3):1214-1223.
    [54]张武军,何奔腾.行波差动保护不平衡差流分析及实用方案.电力系统自动化,2007,31(20):49-55.
    [55]张武军,何奔腾,张波.行波差动保护线路参数不确定性影响.电力系统自动化,2008,32(3):42-47,81.
    [56]束洪春,孙向飞,司大军.一种考虑不同期合闸的行波合闸保护新方法.电力系统自动化,2007,31(2):41-45.
    [57]袁荣湘,陈德树,张哲.高压线路方向保护新原理的研究.中国电机工程学报,2000,20(3):20-25.
    [58]董杏丽,董新洲,张言苍,等.基于小波变换的行波极性比较式方向保护原理研究.电力系统自动化,2000,24(7):11-15.
    [59]董杏丽,葛耀中,董新洲,等.基于小波变换的行波测距式距离保护原理的研究.电网技术,2001,25(7):9-13.
    [60]司大军,束洪春,陈学允.一种新的相间行波距离保护方法.电力系统自动化,2003,27(11):41-44.
    [61]李幼仪,董新洲,孙元章.基于电流行波的输电线横差保护.中国电机工程学报,2002,22(11):6-10.
    [62]T. Takagi, J. Baba, K. Uemura, et al. Fault protection based on trave-ling wave theory, Part 1:Theory.In:IEEE-PES Summer Meeting. Mexico: IEEE POWER ENGINEERING SOCIETY,1977,750-753.
    [63]T. takagi, J. Baba, K.Uemura,T.Sakagushi. Fault Protection Based on Traveling Wave Theory Part Ⅱ:Sensitivity Analysis and Laboratory Test.In:IEEE-PES Summer Meeting.Mexico:IEEE POWER ENGINEERING SOCIETY,1977,1-7.
    [64]M. Chamia, S.Liberman. Ultra High Speed Relay for EHV/UHV Transmi-ssion Lines-Development, D esign and Application.IEEE,Trans. on PAS, 1978,197(6):2104-2116.
    [65]A.T Johns, R. K. Aggarwal, Bo Z Q. Non-unit protection technique for the protection of EHV transmission systems based on fault generated noise. Part I:Signal measurement. IEE Proc.C 1994,141(2):133-140.
    [66]A.T Johns, R. K. Aggarwal, Bo Z Q. Non-unit protection technique for the protection of EHV transmission systems based on fault generated noise. Part 2:Signal Processing. IEE Proc. C 1994,141(2):141-147.
    [67]A.T Johns, R. K. Aggarwal, Bo Z Q. Non-unit protection technique for the protection of EHV transmission systems based on fault generated noise. Part 3 Engineering and HV laboratory Test. IEE Proc. C 1996, 143(3):276-282.
    [68]J. A. S. B Jayasinghe, R. K. Aggarwal, A.T.Johns et al. A Novel Non-unit Protection for Series Compensated EHV Transmission Lines Based on Fault Generated High Frequency Voltage Signals. IEEE Transactions on Power Delivery,1998,13(3):405-413.
    [69]沈国荣.工频变化量方向继电器原理的研究.电力系统自动化,1983,7(1):28-33.
    [70]Shen Guorong. Study on Ultra-High Speed Distance Relay for EHV Power System. In:IEEE/CSEE Joint Conference on High-Voltage Transmission Systems.Beijing:CHINA HIGH-VOLTAGE TRANSMISSION SYSTEMS,1987,5-9.
    [71]沈国荣,郑玉平.高压电网超高速继电保护技术的最新进展.中国电力,1996,29(11):85-90.
    [72]Liang Jie, Elangovan S. Adaptive Travelling Wave Protection Algorithm Using Two Correlation Functions. IEEE Trans on Power Delivery,1999, 14(1):126-13.
    [73]Ancell T G B, Pahalawaththa N C. Maximum Likelihood Estimation of Fault Location on Transmission Lines Using Traveling Waves. IEEE Trans on Power Delivery,1994,9 (2):680-68.
    [74]Roger Wolthuis, Andrew Hopkirk, Neal Keiser, et al.Finding T-Waves by Computer:The R-T Interval.In:16th Annu and Int ISA Biomed Sci Instrum Symp.USA:Biomedical Sciences Instrumenta-tion Proc of the Rocky Mt Bioeng Symp,1979,73-75.
    [75]Lanz 0 E, Engler F, Haenggli M, et al. LR91-An Ultra High-Speed Directional Comparison Relay for Protection of High-Voltage Transmission Lines. BBC Brown Bovril Reviews,1985,72(1):32-36.
    [76]Johns A T, Barker A, Martin M A. Design and Engineering of a New Digital Direction Comparison Line Protection. In:IEE Conference Publication Third International Conference on Developments in Power System Protection.London:Institution of Electrical Engineers 1985,108-112.
    [77]Grossann A, Morlet J. Decomposition of Hardy Function into Square Integral Wavelets of Constant Sharp. SIAM J Math Aual,1984, 15:723-736.
    [78]Bo Z Q. A New Non-Communication Protection Technique for Transmiss-ion Lines. IEEE Transactions on Power Delivery,1998,13(4) 1073-1078.
    [79]董新洲.小波理论应用于输电线路行波保护研究:[天津大学博士后研究工作报告].天津:天津大学,1998,3-5.
    [80]Dong Xinzhou, Ge Yaozhong, Xu Bingyin. Fault Position Relay Based on Current Travelling Wave and Wavelets. In:Proceedings of IEEE PES Winter Meeting. Singapore:Power System Dynamic Performance Committee. 2000,116-121.
    [81]Jiang F, Chin P S M, Bo Z Q, et al. A New Directional Comparison Scheme for Power Line Protection Using Wavelet Transformation. In:Interna-tional Power Engineering Conference. Singapore:Power System Dynamic Performance Committee,1999,116-121.
    [82]哈恒旭.超高压输电线路边界保护的研究:[西安交通大学博士学位论文].西安:西安交通大学,2002,5-8.
    [83]董新洲,葛耀中,贺家李,等.输电线路行波保护的现状与展望.电力系统自动化,2000,24(10):56-61.
    [84]胡文丽,焦彦军.基于小波变换的新型暂态行波电流方向保护.电网技术,2005,29(3):68-71,80.
    [85]白嘉,徐玉琴.基于组合模量的行波电流极性比较式方向保护原理.电网技术,2005,29(13):69-72.
    [86]全玉生,李学鹏.基于小波变换的HVDC线路行波电流极性比较式方向保护. 现代电力,2005,22(6):22-26.
    [87]张举,张晓东,林涛.基于小波变换的行波电流极性比较式方向保护.电网技术,2004,28(4):51-54.
    [88]董杏丽,葛耀中,董新洲,等.基于小波变换的行波幅值比较式方向保护.电力系统自动化,2000,24(17):11-15.
    [89]段建东,张保会.电流行波差动式母线保护的研究.电力系统自动化,2004,28(9):43-48.
    [90]苏斌,董新洲. 基于小波变换行波差动保护.电力系统自动化,2004,28(18):25-29.
    [91]白嘉,徐玉琴. 基于形态综合算法的行波差动保护方案.电网技术,2006,30(9):98-102.
    [92]苏斌,董新洲.串联电容补偿线路行波差动保护研究.清华大学学报(自然科学版),2005,45(1):137-140.
    [93]葛耀中,董新洲,董杏丽.测距式行波距离保护的研究(一)——理论与实现技术.电力系统自动化,2002,26(6):34-40.
    [94]符玲,何正友,钱清泉.超高压输电线路的故障暂态特征提取及故障类型判断.中国电机工程学报,2010,30(22):100-106.
    [95]Lenz J E. A Review of Magnetic Sensors. PIEEE,1990,78(6):973-989.
    [96]陈楠.基于整个输电网的故障行波定位系统研究:[长沙理工大学硕士学位论文].长沙:长沙理工大学,2008.
    [97]李泽文,姚建刚,曾祥君.基于整个电网行波时差的故障定位方法.中国电机工程学报,2009,29(4):60-64.
    [98]李泽文,姚建刚,曾祥君,等.输电网行波网络保护方法.电力系统自动化,2009,33(6):53-57.
    [99]邓丰.基于图论的故障行波定位网络算法研究:[长沙理工大学硕士学位论文].长沙:长沙理工大学,2009.
    [100]李泽文,姚建刚,曾祥君,等.基于整个输电网的电压行波故障定位算法.电力系统自动化,2008,32(1):66—69.
    [101]曾祥君,陈楠,李泽文,等.基于网络的行波故障定位算法研究.中国电机工程学报,2008,28(31):48-53.
    [102]陈维千.电力线路载波通道.北京:水利电力出版社,1986,65-69.
    [103]雷莉.基于小波能量谱的输电线路故障行波定位与保护方法:[长沙理工大学硕士学位论文].长沙:长沙理工大学,2007,35—39.
    [104]张嘉祥.变压器线圈波过程.北京:水利电力出版社,1982,59-66.
    [105]M S Naidu, V Kamaraju. High voltage Engineering. New York:McGraw-Hill, 1995,54-58.
    [106]王赞基.超高压大型变压器线圈的暂态电压分布及其仿真.[清华大学博士学位论文].北京:清华大学电机工程系,1990,53-56.
    [107]唐炬,宋胜利,李剑,等.局部放电信号在变压器绕组中传播特性研究.中国电机工程学报,2002,22(10):91-96.
    [108]朱明林,朱子述,黄华.变压器绕组等效模型参数的频域辩识.高压电器,2000,8(1):26-30.
    [109]崔益彬.用Bergeron法计算变压器线圈暂态电压分布.[清华大学博士学位论文].北京:清华大学,1996,43-45.
    [110]揭秉信.大电流测量.北京:机械工业出版社,1987,32-35.
    [111]郁惟镛,吴小建.电容式电压互感器暂态响应的数字仿真研究.继电器1998,26(1):27-32.
    [112]J. R. Lucas, P. G. Mclaren, et al. Improved Simulation Models for Current and Voltage Transformers in Relay Studies. IEEE Trans.on PWRD,1992,7(1):152-159.
    [113]Douglass D A. Current transformer accuracy with asymmetric and high frequency fault current. IEEE Trans on PAS,1981,100(3):112-116.
    [114]M. Kezunovic, et al. Experimental Evaluation of EMTP based Current Transformer Models for Protective Relay Transient Study. IEEE Trans on PWRD,1994,9(1):1234-1242.
    [115]谢彬,尹项根,张哲,等.基于Rogowski线圈的电子式电流互感器的积分器技术.继电器,2007,35(3):45-50.
    [116]罗苏南,田朝勃,赵希才.空心线圈电流互感器性能分析.中国电机工程学报,2004,3(24):108-113.
    [117]Chen Qing,Li Hong-bin, Huang Ben-xiong,et al.ogowski Sensor for Plasma Current Measurement in J-TEXT. IEEE SENSORS JOURNAL,2009,9(3) 293-296.
    [118]Ray W F, Davis R M. Wide Bandwidth Rogowski Current Transducers, Part II:the Integrator. EpE 1993,3 (2):116-122.
    [119]徐丙垠,李桂义,李京,等.接收GPS卫星信号的电力系统同步时钟.电力系统自动化,1995,19(3):1-5.
    [120]高厚磊,贺家李.基于GPS的同步采样及在保护与控制中的应用.电网技术,1995,19(7):21-24.
    [121]常青,张东和,肖佐,等.GPS系统硬件延迟修正方法.科学通报,2000,45(8):1676-1680.
    [122]王宇飞,黄显林,胡恒章GPS/INS/TRN组合导航系统信息融合技术研究.中国惯性技术学报,1999,20(3):65-68.
    [123]Pekka Eskelinen. Problems in estimating some timing uncertainties of commercial frequency and time standards. IEEE transactions on Instrumentation and measurement,1999,48(1):62-65.
    [124]Banerjee P.,Becker Doris, Thiel Karl-Heinz,et al. Timing experiment with geodetic GPS receiver. IEEE Transactions on Instrumentation and Measurement 1994,43(5):700-705.
    [125]王正明,董绍武,任燕,等CSAO多通道GPS/GLONASS接收机试运行结果.陕西天文台台刊,2001,24(2):106-114.
    [126]臧其源,林时昌.振荡器的频率稳定度及其对电子系统的影响.北京:宇航出版社,1990:20-46.
    [127]方开泰,全辉,陈庆云.实用回归分析.北京:科学出版社,1988:185-200.
    [128]王元虎,周东明.卫星时钟在电网中应用的若干技术问题.中国电力,1998,31(2):36-41.
    [129]龚庆武,刘美观,左克锋,等.GPS同步采样装置中防止干扰GPS秒脉冲信号的措施.电力系统自动化,2000,24(1):45-47.
    [130]Lewandowski W., Petit G., Thomas C. Precision and accuracy of GPS time transfer. IEEE Transactions on Instrumentation and Measurement,1993, 42(2):474-479.
    [131]GPS技术介绍网站:http://www.gpstech.net.
    [132]Luis Arceo-Miquel, Yuriy S. Shmaliy, Oscar Ibarra-Manzano. Optimal Synchronization of Local Clocks by GPS IPPS Signals Using Predictive FIR Filters. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2009,58(6):1833-1840.
    [133]T.Iwata,M.Imae, T. Suzuyama, et al. Simulation and ground experiments of remote synchronization system for onboard crystal oscillator of Quazi-Zenith satellite system. J. Inst. Navig.,2006,53 (4):231-235.
    [134]Y.S.Shmaliy. An unbiased FIR filter for TIE model of a local clock in applications to GPS-based timekeeping. IEEE Trans. Ultrason. Ferroelectr., Freq. Control,2006,53(5):862-870.
    [135]冯义楷,刘焱雄,单瑞,等.GPS精密卫星钟差的计算模型研究.大地测量与地球动力学,2010,30(2):109-112.
    [136]IEEE Working Group Report. Synchronized Sampling and Phasor Measurements for Relaying and Control. IEEE Transon PWRD,1994, 9(1):442-449.
    [137]Phadke A G. Synchronized Phasor Measurements in PowerSystems. IEEE Computer Applications in Power Systems,1993,6(2):10-15.
    [138]Phadke A G, Pickett B. Synchronized Sampling and Phasor Measurements for Relaying and Control. IEEE Transactions on Power Delivery,1994, 9(1):1003-1008.
    [139]Phadke, A. G.; Synchronized phasor measurements-a historical overview. Asia Pacific. IEEE/PES Transmission and Distribution Conference and Exhibition 2002,16(10):476-479.
    [140]IEEE Std 1344-1995 (R2001). IEEE standard for synchrophasors for power systems.2001.
    [141]Wilson,R.E.. PMUs phasor measurement unit. IEEE Potentials,1994, 13(2):26-28.
    [142]Hauer, J.F. Validation of phasor calculations in the macrodyne PMU for California-Oregon Transmission Project tests of March 1993. IEEE Transactions on Power Delivery,1996,11 (3):1224-1231.
    [143]Kamwa, I., Grondin, R. PMU configuration for system dynamic performance measurement in large, multiarea power systems. IEEE Transactions on Power Systems,2002,17(2):385-394.
    [144]顾洁,陈章潮,包海龙.混合遗传-模拟退火算法在电网规划中的应用.上海交通大学学报,1999,33(4):485-487.
    [145]宋文,吴晟,杜亚军.算法设计与分析.重庆:重庆大学出版社,2001,66-69.
    [146]阎平凡,张长水.人工神经网络与模拟进化计算.北京:清华大学出版社,2000,53-55.
    [147]Myoupo, J. F, Fabret, A. C. A modular systolic linearization of the Warshall-Floyd algorithm. IEEE Transactions on Parallel and Distributed Systems,1996,7 (5):449-455.
    [148]Sun-Yuan Kung, Sheng-Chun Lo, Lewis, P. S. Optimal Systolic Design for the Transitive Closure and the Shortest Path Problems. IEEE Transactions on Computers,1987, C-36(5):603-614.
    [149]Wu Q H, Zhang J F, Zhang D J. Ultra high-speed directional protection of transmission lines using mathematical morphology.IEEE Transac-tions on Power Delivery,2003,18(4):1127-1133.
    [150]徐天奇,尹项根,游大海,等.3层式广域保护系统通信网络.电力系统自动化,2008,32(16):28-33.
    [151]王阳光,尹项根,游大海,等.遵循IEC61850标准的广域电流差动保护IED.电力系统自动化,2008,32(2):53-57.
    [152]吴科成,林湘宁,鲁文军,等.分层式电网区域保护系统的原理和实现.电力系统自动化,2007,31(3):72-78.
    [153]苏盛,LI K K. 广域电流差动保护区划分专家系统. 电网技术,2005,29(3):55-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700