用户名: 密码: 验证码:
含咔唑单元的敏化染料及其光伏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着传统化石能源的耗尽,人类正急切地寻找可替代的新能源。太阳能作为一种取之不尽用之不竭的新能源,具有巨大的优势,成为人们的研究热点。而染料敏化太阳能电池(DSSCs)作为太阳能利用的一种形式,具有利用效率高、成本低廉、制作工艺简单等优点。在太阳能众多的部件当中,染料敏化剂是最为重要的部分,它对电池效率起到重要的决定作用。如何开发设计合成高效稳定实用的染料敏化剂己成为DSSCs非常重要的研究领域。本论文创新性地利用对咔唑单元的巧妙复杂的结构修饰,将其分别引入到染料敏化剂的给体、共轭桥链上,并研究了染料的光物理、光化学、量子化学性质和电池的光伏性能等
     第一章,简要介绍了染料敏化太阳能电池(DSSCs)产生的背景,以及电池的结构及其工作原理,评价性能指标,电池的各大组成部分的发展概述,并详细介绍了目前各类染料的研究历史和研究进展,并在此基础上提出了课题的设计思路和研究内容。
     第二章,首次系统性地合成了6个以二苯并五元杂环单元和五元杂环单元作为桥链的染料敏化剂TBS1-TBS6和一个参比染料TPS,考察了二苯并五元杂环和五元杂环引入对电池光电性能和光伏性能影响。二苯并五元杂环单元的引入,扭曲了染料分子的结构,降低了荧光造成的能量损失,抑制了染料的聚集和分子间的电荷复合,从而提高了电池的开路电压。含二苯并呋喃或二苯并噻吩单元的染料效率要比参比染料TPS的效率要低,究其原因是吸收光谱较窄,影响了光捕获性能。另一方面,含二苯并呋喃或二苯并噻吩桥链,由于缺少咔唑附带的烷基链,电荷复合速率相对较快,造成其对应电池的电压比含咔唑的电池的电压要低。在AM1.5太阳光下,染料TBS4获得了最高的效率5.91%,远高于参比染料TPS(4.24%)。在以乙腈作为染浴溶剂,更厚的Ti02膜的优化条件下,TBS4电池器件短路电流密度为13.89mA cm-2,开路电压为0.77V填充因子为0.66,效率则大幅度地提高至7.09%。
     第三章,为了考察是刚性化的电子给体好还是非刚性化的电子给体好,成功合成和表征了五个以刚性化的三芳胺为给体的染料DIA1-DIA5和以三苯胺为给体的参比染料TPS。研究表明,与三苯胺相比,新给体大大提高了染料的摩尔消光系数(DIA1-DIA5为5.0×104~8.1×107M-1cm-1, TPS仅为2.5×104M-1cm-1)。较高的摩尔消光系数使得染料DIA2,DIA3和DIA5敏化电池表现出更高的短路电流密度。电子给体通过巧妙的分子设计,具有良好的刚性和共轭性能良好的大π平面,有效地分散了染料激发态正电荷,提高了电子寿命;另外,给体上的两个乙基也可以在一定程度上抑制染料在TiO2膜上的聚集。以上两点降低了电池电荷复合速率,提高电池的开路电压。这可以通过DIA2和DIA3器件的较高的电池开路电压得到充分体现。在这几个染料当中DIA3表现出了最高的光电转换效率,达6.50%。对该电池的进一步优化发现在AM1.5标准光源下,短路电流密度为14.05mA cm-2,开路电压为0.75V,填充因子为0.77,效率则大幅度地提高至8.09%。
     第四章,成功合成表征了四个以二氢吲哚咔唑为新电子给体,以噻吩,并噻吩,苯并噻二唑为共轭桥链,氰基乙酸为受体的染料DDC1-DDC4和一个以咔唑为给体的参比染料CBZ,考察了电子给体给电子能力增强和π体系扩大对染料光电性质、光稳定性能和电池光伏性能造成的影响。结果表明新给体较大有效的共轭,使DDC1-DDC4具有较高的摩尔消光系数,这增强了染料对光的捕获。对比新旧给体染料DDC1和CBZ,发现无论是从短路电流上还是从开路电压上,都表明新给体相对于咔唑具有一定的优势。在这几个染料当中,染料DDC4由于具有较宽的吸收光谱和往Ti02导带高效的电子注入效率,其敏化电池短路电流密度为14.81mAcm-2,开路电压为0.688V和填充因子为0.69,光电转换效率达7.03%。为了研究染料的光热稳定性能,测试了三个染料随光照时间变化和温度变化的在膜上的吸收光谱。光稳定性测试表明,新给体的光稳定性能要明显好于咔唑,苯并噻二唑要好于并噻吩和噻吩,而并噻吩则要好于噻吩。染料DDC4由于含有苯并噻二唑和并噻吩单元而在这五个染料中具有最好的光稳定性。热稳定性测试表明,所有染料热稳定性都很好。
     第五章,在第四章化合物基础桥链上引入烷基链并延长π链单元,合成了三个染料DDC6-DDC8,考察了烷基链引入和π链单元延长对染料性能和电池性能造成的影响。研究表明三个染料具有较高的摩尔消光系数(4.2~5.3M-1cm-1),较宽的吸收光谱,这贡献了三个染料敏化电池的良好的IPCE表现,并最终使电池产生了较高的短路电流密度。其中染料DDC8具有最宽的吸光范围,其吸收光谱一直延展到近红外光区,其IPCE光谱边带值长达850nm。为了考察膜厚对电池性能造成的影响,测试了两种不同厚度的散射层的电池性能。结果表明,当电池制作采用更厚的散射层时,三染料器件的短路电流密度升高,开路电压降低。这是因为较厚的散射层增加了染料的吸附量,但是却增加了暗电流。在三个染料当中,DDC7表现出最高的效率,当散射层较薄时,其效率为6.53%。当散射层更厚时,电池的效率上升到7.49%。为了研究染料的光稳定性能,测试了三个染料随光照时间变化的在膜上的吸收光谱。结果显示三个染料光稳定性相当的好。染料光照前后,吸收峰位置几乎无任何变化,ICT吸收峰吸光度变化率均不超过3.1%。苯并噻二唑降低了电子给体的电荷密度,因此提高了染料光稳定性。这使得DDC8的光稳定性要好于染料DDC7和DDC6。
With the comsumption up of traditional fossil energy, the humankind are eager to find new energy for replacement. Compared with other energy, the solar energy has many merits, such as endless, inexausitible and very clean with no pollution exsited, and it has been focused by scientists day by day. Among various utilization methods, dye-sensitized solar cells (DSSCs) have many advantages such as high efficiency, low cost, simple preparation, and so on. For an entire DSSCs, it is composed of many necessary components and sensitizers play decisive role in determining the DSSCs performance. So the search for highly efficient, stable and entirely practicable dyes become very important and has puzzled many scientists for a very long time. In this dissertation, we innovatively tailored carbazole units to the needed complex structures and introduced the modified carbazole units into the donor units or π-conjugated chains of the dyes. The photophysical, photochemical, computational analysis and the photovoltaic performance were studied subsequently.
     In chapter1, the background, the structure and the princibles of the DSSCs, and all the components of the cells were simply and definitely introduced. Then, the history and progress in high-efficiency sensitizers for DSSCs were reviewed. Based on that, the designing ways and the research content were presented.
     In chapter2, six new dyes containing three kinds of dibenzo heterocycles and one reference dye TPS were synthsized and their photoelectric properties and the corresponding DSSCs performance were systematically invetigated. The results showed that the dibenzo heterocycle unit distorted the dye molecule, thus sufficiently decreased the energy loss caused by fluorescene emission. Besides, the distorted structure suppressed the dye aggregation and charge recombination, thus desirably increased the open-circuit voltage. The dyes contaning dibenzothiophene or dibenzofuran units displayed lower efficiency than TPS due to the narrow absorption spectra; On the other hand, the absence of the attached alkyl chain accelerated the charge recombination rate, resulting their voltage in lower than the carbazole-contaning dyes. Under AM1.5solar light, TBS4device gave the highest efficiency of5.91%, much higher than the reference dye TPS (4.24%). When employing CH3CN as dye baths and using thicker TiO2films. TBS4device gave a short-circuit current density of13.89 mAcm"2, an open-circuit voltage of0.77V, an fill factor of0.66, corresponding to an overall efficiency of7.09%.
     In chapter3, in order to skrutiny whether the good planarity of the rigid donor is good for the DSSCs performance or not, five sensitizers based on rigid triarylamine donor and one reference dye based on triphenylamine donor were successfully synthesized and characterized. The study results suggested that the rigid donor contributed to the high molar extinction coefficients for the new dyes (5.0×104~8.1×104M-1cm-1for DIA1-DIA5,2.5×104M-1cm-1for TPS), as a result, high short-circuit current density for DIA2, DIA3and DIA5devices were observed. The new donor presented good rigidity and well-conjugated π plane received from the sophiscated designs, this would sufficiently delocalized the geneated positive charge upon photoexcitation, thus increase the charge-separated state and electron lifetime. The two ethyl units could suppress the dark current to some extent, thus it would improve the open-circuit voltage. This could be evidenced by the high open-circuit voltage for DIA2and DIA3sensitized devices. Among the six dyes, DIA3device exhibited the best performance with light-to-electricity conversion efficiency of6.50%, further optimization gave a short-circuit current density of14.05mA cm-2, an open-circuit voltage of0.75V, an fill factor of0.77, corresponding to an overall efficiency of8.09%under AM1.5solar light condition.
     In chapter4. four new dyes (DDC1-DDC4) containing dihydroindolo[2.3-b]carbazole as donor, thiophene, thieno[3,2-b]thiophene or benzothiadiazole as π-spacer, cyano acetic acid as acceptor and one reference dye CBZ constructuring carbazole as donor were successfully synthesized and characterized. The effects on the photophysical, photochemical properties and the photovoltaic performance, caused by the reinforced electron-donating ability of the donor and the expansion of the π system, were thoroughly investigated. The results showed that the highly effective conjugation for the new donor resulted in high molar extinction coefficients for the dyes DDC1-DDC4, this hugely improved the light-harvesting ability of the new dyes. Compared with traditional carbazole donor, it could be found that the new donor have several advantages, no matter from the short-circuit current or from the open-circuit voltage. Among these dyes. DDC4possessed broad absorption spectra, high electron injection efficiency and its sensitized DSSCs yielded a short-circuit current density of14.81mAcm-2, an open-circuit voltage of0.69V. an fill factor of0.69, corresponding to an overall efficiency of7.03%under AM1.5solar light condition. In order to examine the photo-stability and the thermo-stability of these dyes, absorption spectra on TiO2films with the variance of time or temperature were measured. The results suggested that the photo-stabilty order for some units are as follows: the new donor> carbazole. benzothiadiazole>thiophenen or thieno[3.2-b]thiophene. thieno[3,2-b]thiophene>thiophene. DDC4containing all the photo-stable units presented the best photo-stability. The thermo-stability measurements displayed that all the dyes were fairly thermo-stable, and the order of thermo-stabilty was the same as that of the photo-stability.
     In chapter5, three new dyes with elongated π-spacer and attached alkyl chains based on the dyes in chapter4were successfully synthesized. The effects on the photo-electric properties and photovoltaic performance, caused by the elongation of the π system and the introduction of alkyl chains, were scrutinized. The experiments results showed that the three dyes had high molar extinction coefficients (4.2~5.3M-1cm-1) and broad absorption spectra, which contributed to the good IPCE performance and the large short-circuit current density. To be mentioned, the absorption spectra of DDC8on TiO2films extended to near-IR light region while the onset wavelength of the IPCE for DDC8device was as long as850nm, this was seldomly reported for the pure organic dyes while the IPCE values were ensured to be on a normal level. In order to examine the films thickness difference on the photovoltaic performance, DSSCs under two conditions with different thickness of the scattering layer were fabricated and their performance were measured. The results showed that thicker scattering layer increased the short-circuit current density due to the increase of the dye adsorbed amount while the open-circuit voltage decreased because the dark currents were larged. Among the three dyes, DDC7displayed the best performance. Under the condition of thinner scattering layer, its device yielded an efficiency of6.53%, however, the efficiency was boomed to7.49%under thicker scattering layer condition. As to the photo-stability, it was found that all these dyes are fairly photo-stable with the percentage of the maximum absorbance variations in CT bands no more than3.1%. The BTD-incorporated dye DDC8displayed the best photo-stability.
引文
[1]Kamat P V. Meeting the clean energy demand:nanostructure architectures for solar energy conversion[J]. J. Phys. Chem. C,2007,111(7):2834-2860.
    [2]李敬含.我国农业可持续发展面临的资源压力及对策初探[J].管理学家,2013,7:1674-1722.
    [3]张德义.世界能源消费形势刍议[J].中外能源,2012,3(17):1-12.
    [4]赵东,罗勇,高歌,祝昌汉等.我国近50年来太阳直接辐射资源基本特征及其变化[J].太阳能学报,2009,7(30):946-952.
    [5]Becquerel E. Mcoire Surles effets electriques produits Sous I'influence des rayons Solaires[J]. Comptes Rendus de l'Academie des Sciences de Paris,1839,9:561-567.
    [6]Chapin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. J. Appl. Phys.,1954,25(5): 676-677.
    [7]Tang C W. Two layer organic photovoltaic cell[J]. Appl. Phys. Lett.,1986,48(2): 183-185.
    [8]B O'regan, Gratzel M. A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 thin film[J]. Nature,1991,353:737-740.
    [9]Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (Ⅱ) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes[J]. J. Am. Chem. Soc.,1993,115(14):6382-6390.
    [10]Yella A, Lee H W, Tsao H N, et al. Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency [J]. Science,2011, 334(6056):629-634.
    [11]Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin M K, Gratzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature,2013,499(7458):316-319.
    [12]Wang J, Mora-Sero I, Pan Z X, Zhao K, Zhang H, Feng Y Y, Yang G, Zhong X H, Bisquert J. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells[J]. J. Am. Chem. Soc.,2011, 135(42):15913-15922.
    [13]Ooyama Y, Harima Y. Molecular designs and syntheses of organic dyes for dye-sensitized solar cells[J]. E. J. Org. Chem.,2009:2903-2934.
    [14]Haque, S A, Palomares E, Cho B M, Green A N, Hirata N, Klug D R, Durrant J R. Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy [J]. J. Am. Chem. Soc.,1985,107(10): 2988-2990.
    [15]Bai Y, Zhang J, Zhou D, Wang Y, Zhang M, Wang P. Engineering organic sensitizers for iodine-free dye-sensitized solar cells:red-shifted current response concomitant with attenuated charge recombination[J]. J. Am. Chem. Soc.,2011,130(30): 11442-11445.
    [16]Green M A, Emery K, Hisikawa Y, Warta W. Prog. Solar cell efficiency tables (version 30)[J]. Photovoltaics,2007,15(5):425-430.
    [17]王成有.博士毕业论文.华东理工大学(2013年)
    [18]Yun S, Lee J, Chung J, et al. Improvement of ZnO nanorod-based dye-sensitized solar cell efficiency by Al-doping[J]. Journal of Physics and Chemistry of Solids,2010, 71(12):1724-1731.
    [19]Lin L Y, Tsai C H, Wong K T, et al. Organic dyes containing coplanar diphenyl-substituted dithienosilole core for efficient dye-sensitized solar cells[J]. J. Org. Chem.,2010,75(14):4778-4785.
    [20]Chen J H, Tsai C H, Wang S A, et al. Organic dyes containing a coplanar indaceno-dithiophene bridge for high-performance dye-sensitized solar cells[J]. J. Org. Chem., 2011,76(21):8977-8985.
    [21]Katoh R, Furube A, Mori S, Miyashita M, Sunahara K, Koumura N, Hara K. Highly stable sensitizer dyes for dye-sensitized solar cells:role of the oligothiophene moiety [J]. Energy Environ. Sci.,2009,2:542-546.
    [22]Gratzel M. Mesoporous oxide junctions and nanostructured solar cells[J]. Curr. Opin. Colloid In.,1999,4(4):314-321.
    [23]Nick V, Paul L, Jan A, et al. Very efficient visible light energy harvesting and conversion by spectral sensitization of light surface area polycrystalline titanium dioxide films[J]. J. Am. Chem. Soc.,1988,110(4):1216-1220.
    [24]Christophe J, Francine A, et al. Nanocrystallin titanium oxide electrodes for photovoltaic application[J]. J. Am. Ceram. Soc.,1997,80(12):3157-3171.
    [25]王贺权,沈辉,巴德纯.氧流量对直流反应磁控溅射制备Ti02薄膜光学性能的影响.中山大学学报,2005,44(6):36-40.
    [26]Lindstrom H, Mafnusson E, et al. A new method for manufacturing nano-structured electrodes on glass substrates [J]. Sol. Energy Mater. Sol. Cells,2002,73(1):91-101.
    [27]于军胜主编.《太阳能光伏器件技术》[B].四川:电子科技大学出版社,2011:146.
    [28]Haque S A, Tachibana Y, Willis R L, Moser J E, Gratzel M, Klug D R, Durrant J R. Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films[J]. J. Phys. Chem. B,2000,104(3):538-547.
    [29]Wang P, Zakeeruddin S M, Comte P, Exnar I, Gratzel M. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells[J]. J. Am. Chem. Soc.,2003,125(5):1166-1167.
    [30]Gratzel M. Mesoscopic solar cells for electricity and hydrogen production from sunlight[J]. Chem. Lett.,2005,34(1):8-13.
    [31]An H, Park H-Y, Kang E-M, Cho D W, Lee C W, Kim J-M. Quasi-solid state electrolytes based on nonionic surfactant-PEGDME composites for dye-sensitized solar cells[J]. Bull. Korean Chem. Soc.,2011,32:3555-3556.
    [32]Pelet S, Moser J E, Gratzel M. Cooperative Effect of adsorbed cations and iodide on the interception of back electron transfer in the dye sensitization of nanocrystalline TiO2[J]. J. Phys. Chem. B,2000,104(8):1791-1795.
    [33]Nakade S, Kambe S, Kitamura T, Wada Y, Yanagida S J. Effects of lithium ion density on electron transport in nanoporous TiO2 electrodes[J]. J. Phys. Chem. B,2001, 105(38):9150-9152.
    [34]Nazeeruddin M K, Pechy P, Renouard T, Zakeeruddin S M, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon G. B, Bignozzi C A. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells[J]. J. Am. Chem. Soc.,2001,123(8):1613-1624.
    [35]Teng C, Yang X, Yuan C, et al. Two novel carbazole dyes for dye-sensitized solar cells with open-circuit voltages up to 1 Ⅴ based on Br-/Br3- electrolytes [J]. Org. Lett,2009, 11(23):5542-5545.
    [36]Bergeron B V, Marton A, Oskam G, Meyer G J. Dye-sensitized SnO2 electrodes with iodine and pseudohalide redox mediators[J]. J. Phys. Chem. B,2005,109(2):937-943.
    [37]Zhang M, Liu J Y, Wang Y H, Zhou D F, Wang P. Redox couple related influences of p-conjugation extension in organic dye-sensitized mesoscopic solar cells[J]. Chem. Sci.,2011,2(7):1401-1406.
    [38]Sapp S A, Elliott C M, Contado C. Substituted polypyridine complexes of cobalt(Ⅱ/Ⅲ) as efficient electron-transfer mediators in dye-sensitized solar cells[J]. J. Am. Chem. Soc.,2002,124(37):11215-11222.
    [39]Kusama H, Arakawa H. Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell performance[J]. J. Photochem. Photobio. A:Chem.,2003, 160(3):171-179.
    [40]Kusama H, Arakawa H. Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell performance [J]. J. Photochem. Photobio. A:Chem.,2004, 162(2):441-448.
    [41]Wang P, Wenger B, Humphry-Baker R, Moser J E, Teuscher J, Kantlehner W, Mezger J, Stoyanov E V, Zakeeruddin S M, Gratzel M. Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids [J]. J. Am. Chem. Soc.,2005,127 (18):6850-6856.
    [42]Kubo W, Kitamura T, Hanabusa K, Wada Y, Yanagida S. Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator [J]. Chem. Commun.,2002,(4):374-375.
    [43]Bonhote P. Dias A-P, Papageorgiou N, Kalyanasundaram K. Gratzel M. Hydrophobic, highly conductive ambient-temperature molten salts [J]. Inorg. Chem.,1996.35(5): 1168-1178.
    [44]于哲勋.李冬梅.秦达等.染料敏化太阳能电池研究与发展现状.中国材料进显. 2009,28:8-13.
    [45]Xia J B, Li F Y, Huang C H. Novel quasi-solid-state dye-sensitized solar cell based on monolayer capped TiO2 nanoparticles framework materials[J]. Chin. J. Chem.,2004, 22 (7):687-690.
    [46]Kato T, Okazaki A, Hayase S. Latent gel electrolyte precursors for quasi-solid dye sensitized solar cells [J]. Chem. Commun.,2005, (3):363-365.
    [47]Usui H, Matsui H, Tanabe N, Yanagida S. Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes [J]. J. Photochem. Photobiol. A:Chemi.,2004,164: 97-101.
    [48]Konno A, Kitagawa T, Kida H, et al. The effect of particle size and conductivity of CuI layer on the performance of solid-state dye-sensitized photovoltaic cells[J]. Current Applied Physics,2005,5(2):149-151.
    [49]Kumara G R A, Konno A, Shiratsuchietal K. Dye-sensitized solid-state solar cells:use of crystal growth inhibitors for deposition of the hole collector [J]. Chem. Mater.,2002, 14(3):954-955.
    [50]O'Regan B C, Lenzmann F. Charge transport and recombination in a nanoscale inter-penetrating network of n-type and p-type semiconductors:transient photocurrent and photovoltage studies of TiO2/dye/CuSCN photovoltaic cells[J]. J. Phys. Chem. B, 2004,108(14):4342-4350.
    [51]Kumaraa G R R A, Konnoa A, Senadeerab G K R, Jayaweerab P V V, De Silvab D B R A, Tennakoneb K. Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide[J]. Sol. Energy Mater. Sol. Cells,2001, 69(2):195-199.
    [52]Tennakone K, Kumara G R R A, Kottegoda I R M, Wijayantha K G U, Perera V P S. A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex [J]. J. Phys. D:Appl. Phys,1998,31:1492-1497.
    [53]Sirimanne P M, Jeranko T, Bogdanoff P, et al. On the photo-degradation of dye-sensitized solid-state TiO2/dye/Cul cells[J]. Semicond. Sci. Technol.,2003,18: 708-712P.
    [54]Meng Q B, Takahashi K, Zhang X T, et al. Fabrication of an efficient solid-state dye-sensitized solar cell[J]. Langmuir,2003,19:3572-3574P.
    [55]Kumura G R A, Kaneko S, Okuyam, et al. Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a cui crystal growth inhibitor[J]. Langmuir, 2002,18(26):10493-10495.
    [56]Kruger J, Plass R, Gratzel M, et al. Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4-dicarboxy-2,2-bipyridine)-bis(isothiocyanate)[J]. Apply. Phys. Lett.,1997, 70:152-154.
    [57]龚永峰,傅相锴,张树鹏,等星型网状聚合物电解质的制备及其离子导电性的研究[J].功能材料,2006,11(37):1743-1745.
    [58]Kang M S, Kim J H, Won J, et al. Dye-sensitized solar cells based on cross linked poly(ethylene glycol)electrolytes[J]. J. Photochem. Photobio. A:Chem.,2006,183(1): 5-21.
    [59]Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. J. Appl. Phys.,1961,32(3):510-519.
    [60]Lopez-Duarte I, Wang M K, Humphry-Baker R, Ince M, Martinez-Diaz V, Nazeeruddin M K, Torres T, Gratzel M. Molecular engineering of zinc phthalocyanines with phosphinic acid anchoring groups[J]. Angew. Chem.,2012,124: 1931-1934.
    [61]Pechy P, Rotzinger F P, Nazeeruddin M K, Kohle O, Zakeeruddin S M, Humphry-Baker R, Gratzel M. Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces:application for the conversion of light to electricity with nanocrystalline TiO2 films[J]. J. Chem. Soc., Chem. Commun., 1995,1:65-66.
    [62]Kohle O, Ruile S, Gratzel M. Ruthenium(II) charge-transfer sensitizers containing 4,4'-dicarboxy-2,2'-bipyridine:synthesis, properties, and bonding mode of coordinated thio-and selenocyanates[J]. Inorg. Chem.,1996,35(16):4479-4487.
    [63]Kroon J M, Bakker N J, Smith J P. Nanocrystalline dye-sensitized solar celis having maximum performance[J]. Progress in Photovoltaics:Research and Applications,2007, (01):1-18.
    [64]Gratzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells[J]. J. Photochem. Photobiol. A:Chem.,2004:3-14.
    [65]Castellano F N, Meyer G J. Dynamic electron transfer in aquo- and alco-SiO2 gels[J]. J. Phys. Chem.,1995,99(40):14742-14748.
    [66]Anderson S, Constable E C, Dare-Edwards M P, Goodenough J B, Hamnett A, Seddon K R, Wright R D. Chemical modification of a titanium(Ⅳ) oxide electrode to give stable dye sensitization without a supersensitiser[J]. Nature,1979,280(5723): 571-573.
    [67]Nazeeruddin M K, Zakeeruddin S M, Humphry-Baker R, Jirousek M, Liska P, Vlachopoulos N, Shklover V, Fischer C-H, Gratzel M. Acid-base equilibria of (2,2,-bipyridyl-4,4,-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania[J]. Inorg. Chem., 1999,38(26):6298-6305.
    [68]Nazeeruddin M K, Pechy P, Gratzel M. Efficient panchromatic sensitization of nano-crystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex[J]. Chem. Commun,1997(18):1705-1706.
    [69]Zhang Z, Chen P, Murakami, et al. The 2,2,6,6-tetramethyl-l-piperidinyloxy radical: an efficient, iodine-free redox mediator for dye-sensitized solar cells[J]. Adv. Funct. Mater.,2008,18(2):341-346.
    [70]Hagfeldt A, Gratzel M. Molecular photovoltaics[J]. Acc. Chem. Res.,2000,33(5): 269-277.
    [71]Argazzi R, Bignozzi C A, Heimer T A, Castellano F N, Meyer G J. Long-lived photoinduced charged separation across nanocrystalline TiO2 interfaces[J]. J. Am. Chem. Soc.,1995,117(47):11815-11816.
    [72]Cao Y, Bai Y, Yu Q, et al. Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio) thiophene conjugated bipyridine[J]. J. Phys. Chem. C,2009,113(15):6290-6297.
    [73]Nazeeruddin M K, Wang Q, Cevey L, et al. DFT-INDO/S modeling of new high molar extinction coefficient charge-transfer sensitizers for solar cell applications[J]. Inorg. Chem.,2006,45(2):787-797
    [74]Kuang D, Klein C, Ito S, Moser J-E., Humphry-Baker R, Evans N, Duriant F, Gratzel C, Zakeeruddin S M, Gratzel M. High-efficiency and stable mesoscopic dye-sensitized solar cells based on high extinction coefficient ruthenium sensitizer and nonvolatile electrolyte[J].Adv. Mater.,2007,19(8):1133-1137.
    [75]Kuang D B, Klein C, Snaith H J, Moser J-E, Humphry-Baker R, Comte P, Zakeeruddin S M, Gratzel M. Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells:influence of lithium ions on the photovoltaic performance of liquid and solid-state cells[J]. Nano Lett.,2006,6(4):769-773.
    [76]Gao F, Wang Y, Shi D, Zhang J, Wang M, et al. Enhance the optical absorptivity of nanocrystalline TiO2 film with high extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells[J]. J. Am. Chem. Soc.,2008,130(32): 10720-10728.
    [77]Nazeeruddin M K, Humphry-Baker R, Officer D L, et al. Application of metall-oporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity [J]. Langmuir:the ACS Journal of Surfaces and Colloids,2004,20(15): 6514-6517.
    [78]Wang Q, Campbell W M, Bonfantani E E, et al. Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films[J]. J. Phys. Chem. B,2005, 109(32):15397-15409.
    [79]Campbell W M, Jolley K W, Wagner P, et al. Highly efficient porphyrin sensitizers for dye-sensitized solar cells[J]. J. Phys. Chem. C,2007,111(32):11760-11762.
    [80]Hsieh C P, Lu H P, Chiu C L. et al. Synthesis and characterization of porphyrin sensitizers with various electron-donating substituents for highly efficient dye-sensitized solar cells[J]. J. Mater. Chem.,2010.20(6):1127-1134.
    [81]Wang C L, Chang Y C, Lan C M, et al. Enhanced light harvesting with π-conjugated cyclic aromatic hydrocarbons for porphyrin-sensitized solar cells[J]. Energy Environ. Sci., 2011,4(5):1788-1795.
    [82]Islam A, Sugihara H. Hara K. et al. Dye sensitization of nanocrystalline titanium dioxide with square planar platinum (Ⅱ) diimine dithiolate complexes[J]. Inorg. Chem., 2001,40(21):5371-5380.
    [83]Wu W. Xu X, Yang H, et al. D-π-M-π-A structured platinum acetylide sensitizer for dye-sensitized solar cells[J]. J. Mater. Chem.,2011,21(29):10666-10671.
    [84]Wu W, Zhang J, Yang H B, Jin B, Hu Y, Hua J L, Jing C, Long Y T, Tian H. Narrowing band gap of platinum acetylide dye-sensitized solar cell sensitizers with thiophene π-bridges[J]. J. Mater. Chem.,2012,22:5382-5389.
    [85]Kimura M, Nomoto H, Masaki N, Mori S. Dye molecules for simple co-sensitization process:fabrication of mixed-dye-sensitized solar cells[J]. Angew. Chem.2012,124: 4447-4450.
    [86]Ragoussi M-E, Cid J-J, Yum J-H, Nazeeruddin M K, Torres T. Carboxyethynyl anchoring ligands:a means to improving the efficiency of phthalocyanine-sensitized solar cells[J]. Angew. Chem.,2012,124:4451-4454.
    [87]Bignozzia C A, Argazzib R, et al. The role of transition metal complexes in dye sensitized solar devices[J]. Coord. Chem. Rev.,2013,257:1472-1492.
    [88]Ragoussi M-E, Ince M, Torres T. Recent advances in phthalocyanine-based sensitizers for dye-sensitized solar cells[J]. Eur. J. Org. Chem.,2013:6475-6489.
    [89]Kimura M, Nomoto H, Masaki N, Mori S. Dye molecules for simple co-sensitization process:fabrication of mixed-dye-sensitized solar cells[J]. Angew. Chem. Int. Ed. 2012,51:1-5.
    [90]Hara K, Kurashige M, Dan-oh Y, Kasada C, Shinpo A, Suga S, Sayamaa K, Arakawa H. Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells[J]. New J. Chem.,2003,27(5):783-785.
    [91]Hara K, Wang Z S, Sato T, Furube A, Katoh R, Sugihara H, Dan-oh Y, Kasada C, Shinpo A, Suga S. Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells[J]. J. Phys. Chem. B,2005,109(32):15476-15482.
    [92]Furube A, Katoh R, Hara K, Sato T, Murata S, Arakawa H, Tachiya M. Lithium ion effect on electron injection from a photoexcited coumarin derivative into a TiO2 nanocrystalline film investigated by Visible-to-IR ultrafast spectroscopy[J]. J. Phys. Chem. B,2005,109(34):16406-16414.
    [93]Hara K, Miyamoto K, Abe Y, Yanagida M. Electron transport in coumarin-dye-sensitized nanocrystalline TiO2 electrodes[J]. J. Phys. Chem. B,2005, 109(50):23776-23778.
    [94]Wang Z S, Cui Y, Dan-oh Y, Kasada C, Shinpo A, Hara K. Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells:electron lifetime improved by coadsorption of deoxycholic acid J. Phys. Chem. C.2007,111(19):7224-7230.
    [95]Matsui M, Fujita T. Kubota Y Funabiki K. Jin J. Yoshida T, Miura H. Substituent effects in a double rhodanine indoline dye on performance of zinc oxide dye-sensitized solar cell[J]. Dyes and Pigments,2010,86 (2):143-148.
    [96]Manceau M, Chambon S. et al. Effects of long-term UV-Visible light irradiation in the absence of oxygenon P3HT and P3HT:PCBM blend[J]. Sol. Energy Mater. Sol. Cells, 2010.94(10):1572-1577.
    [97]Cui Y, Wu Y Z, Lu X F. Zhang X. Zhou G, Miapeh F B. Zhu W H. Wang Z S. Incorporating benzotriazole moiety to construct D-A-π-A organic sensitizers for solar cells:significant enhancement of open-circuit photovollage with long alkyl group[J]. Chem. Mater.,2011,23(19):4394-4401.
    [98]Barea E M, Zafer C, Gultekin B, Aydin B, Koyuncu S, Icli S, Santiago F F, Bisquert J. Quantification of the effects of recombination and injection in the performance of dye-sensitized solar cells based on N-substituted carbazole dyes[J]. J. Phys.Chem. C, 2010,114(46):19840-19848.
    [99]Kim D, Lee J K, Kang S O, Ko J. Molecular engineering of organic dyes containing N-aryl carbazole moiety for solar cell[J]. Tetrahedron,2007,63(9):1913-1922.
    [100]Chang Y J, Chou T, Lin S-Y, Watanabe M, Liu Z-Q, Lin J-L, Chen K-Y, Sun S-S, Liu C-Y, Chow T J. High-performance organic materials for dye-sensitized solar cells: triarylene-linked dyads with a 4-tert-butylphenylamine donor [J]. Chem. Asian J., 2012,7(3):572-581.
    [101]Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N-L, Yi C Y, Nazeeruddin M K, Gratzel M. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells[J].J. Am. Chem. Soc.,2011,133(45):18042-18045.
    [102]Cao Y M, Cai N, Wang Y L, Li R Z, Yuan Y, Wang P. Modulating the assembly of organic dye molecules on titania nanocrystals via alkyl chain elongation for efficient mesoscopic cobalt solar cells[J]. Phys. Chem. Chem. Phys.,2012,14(23):8282-8286.
    [103]Tsao H N, Yi C Y Moehl T, Yum J-H, Zakeeruddin S M, Nazeeruddin M K, Gratzel M. Cyclopentadithiophene bridged donor-acceptor dyes achieve high power conversion efficiencies in dye-sensitized solar cells based on the tris-cobalt bipyridine redox couple[J]. ChemSusChem,2011,4(5):591-594.
    [104]Qu S, Wu W, Hua J, et al. New diketopyrrolopyrrole (DPP) dyes for efficient dye-sensitized solar cells[J]. J. Phys. Chem. C,2009,114(2):1343-1349.
    [105]Hara K, Sato T, Katoh R, et al. Novel conjugated organic dyes for efficient dye-sensitized solar cells [J]. Adv. Funct. Mater.,2005,15(2):246-252.
    [106]Tian H N, Yang X C, Chen R K, Pan Y Li L, Hagfeldt A, Sun L C. Phenothiazine derivatives for efficient organic dye-sensitized solar cells[J]. Chem. Comun.,2007: 3741-3743.
    [107]Tsao M H, Wu T Y, et al. An efficient metal-free sensitizer for dye-sensitized solar cells[J]. Mater Lett.,2011,65:583-586.
    [108]Zhou D F. Cai N, et al. An energetic and kinetic view on cyclopentadithiophene dye-sensitized solar cells:the influence of fluorine vs ethyl substituent[J]. J. Phys. Chem. C.2011.115:3163-3171.
    [109]Wang Z-S, Li F-Y, Huang C-H. Wang L, Wei M, Jin L-P, Li N-Q. Photoelectric conversion properties of nanocrystalline TiO2 electrodes sensitized with hemicyanine derivatives[J]. J. Phys. Chem. B,2000,104(41):9676-9682.
    [110]Chen Y-S. Li C, Zeng Z-H. Wang W-B, Wang X-S, Zhang B-W. Efficient electron injection due to a special adsorbing group's combination of carboxyl and hydroxyl: dye-sensitized solar cells based on new hemicyanine dyes[J]. J. Mater. Chem.,2005. 15(16):1654-1661.
    [111]Yao Q-H, Meng F-S, Li F-Y, Tian H, Huang C-H. Photoelectric conversion properties of four novel carboxylated hemicyanine dyes on TiO2 electrode[J]. J. Mater. Chem., 2003,13(5):1048-1053.
    [112]Takechi K, Sudeep P K, Kamat P V. Harvesting infrared photons with tricarbocyanine dye clusters[J]. J. Phys. Chem. B,2006,110(33):16169-16173.
    [113]Choi H, Kim J J, Song K, et al. Molecular engineering of panchromatic unsymmetrical squaraines for dye-sensitized solar cell applications [J]. J. Mater. Chem.,2010,20(16): 3280-3286.
    [114]Tang J, Wu W J, Hua J L, Li J, Li X, Tian H. Starburst triphenylamine-based cyanine dye for efficient quasi-solid-state dye-sensitized solar cells[J]. Energy Environ. Sci., 2009,2:982-990.
    [115]Jin Y, Hua J, Wu W, et al. Synthesis, characterization and photovoltaic properties of two novel near-infrared absorbing perylene dyes containing benzo[e]indole for dye-sensitized solar cells[J]. Synthetic Metals,2008,158(1):64-71.
    [116]Wu W, Hua J, Jin Y, et al. Photovoltaic properties of three new cyanine dyes for dye-sensitized solar cells[J]. Photochem. Photobio. Sci.,2008,7(1):63-68.
    [117]Zhu W H, Wu Y Z, Wang S T, Li W Q, Li X, Chen J, Wang Z S, Tian H. Organic D-A-π-A solar cell sensitizers with improved stability and spectra response[J]. Adv. Funct. Mater.,2011,21:756-763.
    [118]Edvinsson T, Li C, Pschirer N, Schoneboom J, Eickemeyer F, Sens R, Boschloo G, Herrmann A. Mullen K, Hagfeldt A. Intramolecular charge-transfer tuning of perylenes:spectroscopic features and performance in dye-sensitized solar cells[J]. J. Phys. Chem. C,2007,111 (42):15137-15140.
    [119]Ferrere S, Gregg B A. Large increases in photocurrents and solar conversion efficiencies by UV illumination of dye sensitized solar cells[J]. J. Phys. Chem. B, 2001,105(32):7602-7605.
    [120]Ferrere S, Gregg B A. New perylenes for dye sensitization of TiO2[J]. New J. Chem., 2002,26(9):1155-1160.
    [121]Hattori S, Hasobe T, et al. Enhanced energy and quantum efficiencies of a nanocrystalline photoelectrochemical cell sensitized with a donor-acceptor dyad derived from fluorescein[J]. J. Phys. Chem. B,2004,108(39):15200-15205.
    [122]Mann J R, Gannon M K, Fitzgibbons T C, Detty M R, Watson D F. Optimizing the photocurrent efficiency of dye-sensitized solar cells through the controlled aggregation of chalcogenoxanthylium dyes on nanocrystalline titania films[J]. J. Phys. Chem. C. 2008.112(34):13057-13061.
    [123]Reddy P Y. Giribabu L. Lyness C. et al. Efficient sensitization of nanocrystalline TiO2 films by a near-IR-absorbing unsymmetrical zinc phthalocyanine[J]. Angew. Chem.. Int. Ed..2007.46(3):373-376.
    [124]Wang Z S. Cui Y. Hara K. et al. A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells[J]. Adv. Mater..2007.19(8):1138-1141.
    [125]Wang Z S. Hara K. Dan-oh Y. Kasada C. Shinpo A. Suga S. Arakawa H. Sugihara H. Photophysical and (Photo)electrochemical properties of a coumarin dye[J]. J. Phys. Chem. B,2005,109(9):3907-3914.
    [126]Hara K, Tachibana Y, Ohga Y, et al. Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes[J]. Sol. Energy Mater. Sol. cells,2003,77(1):89-103.
    [127]Hara K, Dan-oh Y, Arakawa H, et al. Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells[J]. Langmuir, 2004,20(10):4205-4210.
    [128]Horiuchi T, Miura H, Uchida S. Highly-efficient metal-free organic dyes for dye-sensitized solar cells[J]. Chem. Commun.,2003, (24):3036-3037.
    [129]Horiuchi T, Miura H, Sumioka K, Uchida S. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes[J]. J. Am. Chem. Soc.,2004,126(39): 12218-12219.
    [130]Ito S, Zakeeruddin S M, Humphry-Baker R, Liska P, Charvet R, Comte P, Nazeeruddin M K, Pechy P, Takata M, Miura H. High-efficiency organic-dye-sensitized solar cellscontrolled by nanocrystalline-TiO2 electrode thickness[J]. Adv. Mater.,2006,18(9):1202-1205.
    [131]Ito S, Miura H, Uchida S, Takata M, Sumioka K, Liska P, Comte P, Pechy P, Gratzel M. High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye[J]. Chem. Commun.,2008, (41):5194-5196.
    [132]Wu Y Z, Marszalek M. Zakeeruddin S M, Zhang Q, Tian H, Gratzel M, Zhu W H. High-conversion-efficiency organic dye-sensitized solar cells:molecular engineering on D-A-π-A featured organic indoline dyes[J]. Energy. Environ. Sci.,2012,5(8): 8261-8272.
    [133]Kuang D, Uchida S, Humphry-Baker R, Zakeeruddin S M, Gratzel M. Organic dye-sensitized ionic liquid based solar cells:remarkable enhancement in performance through molecular design of indoline sensitizers[J]. Angew. Chem. Int. Ed.,2008, 47(10):1923-1927.
    [134]Qin H, Wenger S, Xu M F, Gao F F, Jing X Y, Wang P, Zakeeruddin S M, Gratzel M. An organic sensitizer with a fused dithienothiophene unit for efficient and stable dye-sensitized solar cells[J]. J. Am. Chem. Soc.,2008,130(29):9202-9203.
    [135]Mishra A, Fischer M K R, Bauerle P. Metal-free organic dyes for dye-sensitized solar cells:from structure:property relationships to design rules [J]. Angew. Chem. Int. Ed., 2009.48(14):2474-2499.
    [136]Ning Z J, Zhang Q, Pei H C, Luan J F, Lu C G, Cui Y P, Tian H. Photovoltage improvement for dye-sensitized solar cells via cone-shaped structural design[J]. J. Phys. Chem. C.2009,113(23):10307-10313.
    [137]Pei K, Wu Y Z, Wu W J, Zhang Q. Chen B Q. Tian H, Zhu W H. Constructing organic D-A-π-A-featured sensitizers with a quinoxaline unit for high-efficiency solar cells: the effect of an auxiliary acceptor on the absorption and the energy level alignment[J]. Chem. Eur. J.,2012.18(26):8190-8200.
    [138]Wu Y Z, Zhu W H. Organic sensitizers from D-π-A to D-A-π-A:effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances[J]. Chem. Soc. Rev.,2013,42:2039-2058.
    [139]Kitamura T, Ikeda M, Shigaki K, et al. Phenyl-conjugated oligoene sensitizers for TiO2 solar cells[J]. Chem. Mater.,2004,16(9):1806-1812.
    [140]Zhang G, Bala H, Cheng Y, Shi D, Lv X, Yu Q, Wang P. High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer[J]. Chem. Commun.,2009, (16):2198-2200.
    [141]Zhou D F, Yu Q J, Cai N, Bai Y, Wang Y H, Wang P. Efficient organic dye-sensitized thin-film solar cells based on the tris(1,10-phenanthroline)cobalt(II/III) redox shuttle[J]. Energy Environ. Sci.,2011,4(6):2030-2034.
    [142]Li R Z, Liu J Y, Cai N, Zhang M, Wang P. Synchronously reduced surface states, charge recombination, and light absorption length for high-performance organic dye-sensitized solar cells[J]. J. Phys.Chem. B,2010,114(13):4461-4464.
    [143]Zeng W D, Cao Y M, Bai Y, Wang Y H, Shi Y S, Zhang M, Wang F F, Pan C Y, Wang P. Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks[J]. Chem. Mater.,2010, 22(5):1915-1925.
    [144]Choi H, Raabe I, Kim D, Teocoli F, Kim C, Song K, Yum J H, Ko J, Nazeeruddin M K, Gratzel M. High molar extinction coefficient organic sensitizers for efficient dye-sensitized solar cells[J]. Chem. Eur.J.,2010,16(4):1193-1201.
    [145]Paek S, Choi H, Choi H, Lee C-W, Kang M-S, Song K, Nazeeruddin M K, Ko J. Molecular engineering of efficient organic sensitizers incorporating a binary π-conjugated linker unit for dye-sensitized solar cells[J]. J. Phys. Chem. C.2010, 114(34):14641-14643.
    [146]Xu M F. Zhou D F. Cai N, Liu J Y, Li R Z, Wang P. Electrical and photophysical analyses on the impacts of arylamine electron donors in cyclopentadithiophene dye-sensitized solar cells[J]. Energy Environ. Sci.,2011,4(11):4735-4742.
    [147]Liu J Y, Zhang J, Xu M F, Zhou D F, Jing X Y, Wang P. Mesoscopic titania solar cells with the tris(1,10-phenanthroline)cobalt redox shuttle:uniped versus biped organic dyes[J]. Energy Environ. Sci.,2011,4(8):3021-3029.
    [148]Xu M F, Zhang M, Pastore M, Li R Z, Angelis F D, Wang P. Joint electrical, photophysical and computational studies on D-π-A dye sensitized solar cells:the impacts of dithiophene rigidification[J]. Chem. Sci.,2012,3(4):976-983.
    [149]Qin C J. Peng W Q. Zhang K, Islam A, Han L Y. A novel organic sensitizer combined with a cobalt complex redox shuttle for dye-sensitized solar cells[J]. Org. Lett..2012, 14(10):2532-2535.
    [150]He J, Wu W. Hua J. Jiang Y, Qu S, Li J, Long Y, Tian H. Bithiazole-bridged dyes for dye-sensitized solar cells with high open circuit voltage performance[J]. J. Mater. Chem.,2011,21(16):6054-6062.
    [151]He J X. Guo F L. Li X, Wu W J. Wang J. Hua J L. New bithiazole-based sensitizers for efficient and stable dye-sensitized solar cells[J]. Chem. Eur. J.2012.18(25): 7903-7915.
    [152]Mao J Y, Guo F L, Ying W, Wu W J, Li J, Hua J L. Benzotriazole-bridged sensitizers containing a furan moiety for dye-sensitized solar cells with high open-circuit voltage performance[J]. Chem. Asian J.,2012,7(5):982-991.
    [153]Wang Z S, Koumura N, Cui Y, Takahashi M, Sekiguchi H, Mori A, Kubo T, Furube A, Hara K. Hexylthiophene-functionalized carbazole dyes for efficient molecular photovoltaics:tuning of solar-cell performance by structural modification [J]. Chem. Mater.,2008,20(12):3993-4003.
    [154]Koumura N, Wang Z S, Mori S, Miyashita M, Suzuki E, Hara K. Alkyl-functionalized organic dyes for efficient molecular photovoltaics[J]. J. Am. Chem. Soc.,2006, 128(44):14256-14257.
    [155]Hara K, Wang Z S, Cui Y, Furube A, Koumura N. Long-term stability of organic-dye-sensitized solar cells based on an alkyl-functionalized carbazole dye[J]. Energy Environ. Sci.,2009,2(10):1109-1114.
    [156]Koumura N, Wang Z S, Miyashita M, Uemura Y, Sekiguchi H, Cui Y, Mori A, Mori S, Hara K. Substituted carbazole dyes for efficient molecular photovoltaics:long electron lifetime and high open circuit voltage performance [J]. J. Mater. Chem.,2009,19(27): 4829-4836.
    [157]Zhang X H, Cui Y, Katoh R, Koumura N, Hara K. Organic dyes containing thieno[3,2-b]indole donor for efficient dye-sensitized solar cells[J]. J. Phys. Chem. C, 2010,114(42):18283-18290.
    [158]Zhang X H, Wang Z S, Cui Y, Koumura N, Furube A, Hara K. Organic sensitizers based on hexylthiophene-functionalized indolo[3,2-b]carbazole for efficient dye-sensitized solar cells[J]. J. Phys. Chem. C,2009,113(30):13409-13415.
    [159]Li W Q, Wu Y Z, Li X, Xie Y S, Zhu W H. Absorption and photovoltaic properties of organic solar cell sensitizers containing fluorene unit as conjunction bridge[J]. Energy Environ. Sci.,2011,4(5):1830-1837.
    [160]Wang L, Wang H-Y, Fang H-H, Wang H, Yang Z-Y, Gao B-R, Chen Q-D, Han W, Sun H-B. Universal electron injection dynamics at nanointerfaces in dye-sensitized solar[J]. Adv. Funct. Mater.,2012,22(13):2783-2791.
    [161]Kylberg W, Zhang Y, et al. Oligothiophene dendron-decorated squaraine dyes: synthesis, thin film formation, and performance in organic solar cells[J]. Org. Electro., 2012,13(7):1204-1212.
    [162]Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys.,1993,98(7):5648-5652.
    [163]Chaurasia S, Chen Y-C, Chou H-H, Wen Y-S, Lin J T. Coplanar indenofluorene-based organic dyes for dye-sensitized solar cells[J]. Tetrahedron,2012.68(38):7755-7762.
    [164]Wang C Y. Li J. Ning Z J. Zhao D M. Zhang Q. Performance improvement of dye-sensitizing solar cell by semi-rigid triarylamine-based donors[J]. Dyes and Pigments.2012.94(1):40-48.
    [165]Do K. Kim D. Cho N, Paek S. Song K. Ko J. New type of organic sensitizers with a planar amine unit for efficient dye-sensitized solar cells[J]. Org. Letter.,2012,14(1): 222-225.
    [166]Chou H-H, Hsu C-Y, Hsu Y-C, Lin Y-S, Lin J, Tsai C. Dipolar organic pyridyl dyes for dye-sensitized solar cell applications [J]. Tetrahedron,2012,68(2):767-773.
    [167]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J R, Vreven T, Kudin K N, Burant J C, et al. Gaussian 03, Revision d.01, Gaussian, inc, Wallingford ct,2004.
    [168]Stephens P J, Devlin F J, Chabalowski C F, Frisch M J. Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. J. Phys. Chem.,1994,98(45):11623-11627.
    [169]Schaefer A, Horn H, Ahlrichs R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr[J]. J. Chem. Phys.,1992,97(4):2571-2577.
    [170]ORCA, An ab initio, DFT and semiempirical SCF-MO package, version 2.9, http://www.thch.uni-bonn.de/tc/orca/
    [171]Yanai T, Tew D, Handy N. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP)[J]. Chem. Phys. Lett.,2004,393(1-3): 51-57.
    [172]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Fox D J, et al. Gaussian 09, Revision A.2, Gaussian, Inc.:Wallingford CT,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700