用户名: 密码: 验证码:
基于芴的含推—拉电子基团蓝色电致发光材料的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型有机及高分子光电材料的制备与器件设计是目前国际上一个十分活跃的领域。与液晶平面显示器相比,有机和高分子电致发光平面显示器(OLED和PLED)具有主动发光、无角度依赖性、对比度好、轻、薄、能耗低等显著特点,具有广阔的应用前景。红、绿、蓝三原色是实现有效全色显示的必备条件。与红光和绿光材料相比,蓝光材料的效率、稳定性和色纯度都与前两者相去甚远。开发好的蓝光材料不仅可以作为OLED或PLED中的发光层,还可作为主体来掺杂制备有效的绿光和白光光源。在蓝光材料中,基于芴的齐聚物和高分子拥有良好的热稳定性,高荧光量子效率和优异的电致发光特性,但其存在电荷注入与传输困难、易发生聚集、C-9位易被氧化等缺点,这些缺点正是导致器件效率低、色纯度低、光谱稳定性差等的原因。为了解决这些问题,本论文的主要研究内容是向基于芴的小分子和高分子结构中引入大体积的推电子和拉电子基团来增强材料的电荷注入与传输能力、抑制聚集效应和芴单元C-9位的氧化,从而改善器件性能。
     第一章综述了基于芴的蓝光小分子和高分子的研究进展,主要针对含有电子给体、受体的齐聚芴和聚芴的材料设计、合成及电致发光性能,发现:既含空穴传输又含电子传输片段的材料比相应的只含电子给体或受体的材料性能更佳。
     第二章利用Knoevenagel缩聚反应合成了一个主链含氰基、芴、三苯胺的共轭高分子(CNF-TPA)n。光动力学测试结果表明该高分子内存在从三苯胺到氰基芴的超快、高效的光诱导电荷转移,在苯腈中电荷分离态的寿命长达90μs。(CNF'-TPA'+)。的电荷复合过程比电荷分离慢得多。为进一步明确三苯胺单元的推电子特性,利用单体Yu0的Mcmurry缩聚反应制备了一个基于三苯胺的高分子Yul。在氩气饱和的甲苯中,Yul的荧光衰减曲线呈现出单指数的衰减,寿命为7.12 ns。
     第三章设计合成了一系列含不同比例氰基苯基-螺芴和咔唑-三苯胺的蓝光高分子PSF、PCC-1、PCC-2、PCC-3、PCF。向高分子骨架中引入氰基苯基-螺芴单元提高了材料的热稳定性和荧光量子效率,通过改变具有推-拉电子能力的聚合单体的比例,可有效调控高分子的HOMO、LUMO能级。当器件结构为ITO/PEDOT:PSS/高分子:PBD/CsF/Ca/Al时,基十PCC-2的器件性能最好,起亮电压为3.1 V,最高亮度为6369cd/m2,最大电流效率和功率效率分别为1.97 cd/A、1.40 lm/W。
     鉴于第三章中使用的氰基苯基-螺芴单体具有良好的电子传输、聚集抑制效应,保持这个单体不变,改变与三咔唑-三苯胺之间的投料比来和烷基芴发生聚合反应,在第四章制备了一系列蓝光高分子PTC-1、PTC-2、PTC-3、PTCF。高分子骨架中的电子给体三咔唑-三苯胺的存在可提高材料的HOMO、LUMO能级。当器件结构为ITO/PEDOT:PSS/高分子PBD/CsF/Ca/Al时,基于PTC-2的器件性能最好,起亮电压低至3.0 V,最高亮度为7257 cd/m2,最大电流效率为1.76 cd/A,电致发光峰值位于460 nm。
     第五章利用Suzuki偶联反应制得了一个带有氰基苯基芴和三苯胺双极性侧链的全芴主链高分子PTHCF。该高分子在薄膜中的紫外-可见吸收光谱比溶液中测得的光谱稍稍蓝移。结构为ITO/PEDOT:PSS/PTHCF770%+PBD3o%/CsF/Ca/Al的电致发光器件在电压驱动下发出来自全芴主链的深蓝色的光。将双极性侧链引入高分子结构中可以阻止分子间相互作用,增强电荷的注入与传导,增加电荷在主链中形成激子的几率,从而强化了高分子骨架的发光。
     第六章研究了一系列一端为氰基苯基、另一端为咔唑基的齐聚芴。双极性端基的存在可有效调变齐聚芴的能级。当器件结构为ITO/PEDOT:PSS/齐聚芴/TPBi/LiF/Al时,基于齐聚物F4的OLED器件表现出最好的性能:起亮电压为4.1 V,最高亮度为2180cd/m2,最大电流效率为1.17 cd/A。当采用蒸镀法得到优化器件结构ITO/MoO3/NPB/CBP:F4(1:4)/TPBi/LiF/Al时,最高亮度达5135 cd/m2,最高电流效率为1.76 cd/A,CIE色坐标为(0.16,0.09)。
     除了氰基外,喹啉基也具有良好的拉电子特性,因而我们在第七章选用二苯基喹啉基作为电子受体,将其与三苯胺基分别接在芴单元C-9位上的作为拉电子和推电子侧基制备两种聚合单体,按1:1的比例将两种单体与烷基芴的硼酸酯进行Suzuki偶联反应制备了蓝光高分子PTHD,与不含三苯胺侧基的高分子PHD相比,PTHD拥有更高的HOMO能级和更高的最大亮度。
     第八章采用拉电子的二苯基嗯二唑、推电子的三苯胺作为高分子主链中的部分片段,在三苯胺上接有1个或3个咔唑单元,制备了基于芴的高分子POFPA和POFCPA并比较二者性能。无论在稀甲苯溶液还是在薄膜中,咔唑含量较多的高分子POFCPA都比POFPA拥有更短波长的吸收或发射带,还有较高的荧光量子效率。当器件结构为ITO/PEDOT:PSS/高分子/TPBi/LiF/Al时,POFCPA器件内部各层的LUMO能级呈阶梯式,有利于高效的电子传输路径的形成,它的最大电流效率(1.79 cd/A)和功率效率(0.87lm/W)分别高于POFPA的器件效率(1.60 cd/A,0.83 lm/W)。发光层经掺杂优化后,POFCPA器件最高亮度达13613 cd/m2,最高电流效率达到3.38 cd/A,CIE色坐标为(0.15,0.24)。
     第九章系统总结了第二章至第八章的主要研究结果。
Since the earliest reports of organic/polymeric light-emitting diodes (OLEDs/PLEDs), fabricating ultrathin, full-color, free-angle and large-area displays have stimulated intensive research interest around the world. To realize full-color displays, high performance red, green, and blue light-emitting materials are required. In contrast to red and green emitters, only a few blue emitters showed application potential but much inferior performance in efficiency, stability and color purity. The highly efficient blue light-emitting materials can be used as not only emissive layer in OLEDs/PLEDs, but also host materials for efficient blue and white light source. Among the promising blue emitters, fluorene-based oligomers and polymers have displayed excellent thermal stabilities, fluorescent quantum yields, and electroluminescent behaviors. However, the fluorene-based electroluminescent blue materials usually exhibited inferior electroluminescence efficiency, poor color purity and spectral stability caused by weak charge injection and transport, aggregation/excimer formation, and/or the fluorenone of photooxidized fluorene. To address these problems, covalently incorporating bulky electron-donating and-withdrawing groups onto the polymer backbone is an effective way to enhance the charge injection/transport and suppress aggregation/excimer formation. In addition, if the bulky groups were attached on the C-9 position of fluorene unit, the photooxidization could be inhibited.
     This thesis was divided into nine parts, as follows:
     The progress of the fluorene-based blue light-emitting compounds and polymers was reviewed in Chapter 1. The key point of the review was paid to the design, synthesis, and electroluminescent performance of oligofluorenes and polyfluorenes with electron-donors and/or acceptors. From the literatures reviewed, it was concluded that the materials containing both electron-donating and electron-withdrawing segments could have better performance than those corresponding "hole-only" or "electron-only" materials.
     In Chapter 2, aπ-conjugated copolymer (CNF-TPA)n was synthesized by Knoevenagel polycondensation. Fast and efficient photoinduced electron transfer from triphenylamine (TPA) to cyanofluorene (CNF) produced the long-lived charge-separated state (90 s) in benzonitrile. The charge-recombination process of (CNF·-TPA·+)n was much slower than the charge-separation in polar benzonitrile. To further confirm the electron-donating property of TPA units, a new blue-emitting polymer poly[5-(diphenylamino)-1,3-phenylenevinylene] (Yul) was prepared via McMurry condensation reaction of YuO. In Ar-saturated toluene, the fluorescence decay profile of this blue-emitting polymer exhibited single exponential decay with lifetime of 7.12 ns.
     Chapter 3 described a series of blue-light-emitting copolymers PSF, PCC-1, PCC-2, PCC-3, and PCF composed of different ratios of cyanophenyl-spirobifluorenes and carbazole-triphenylamines. Incorporation of the rigid spirobifluorene units substituted with cyanophenyl groups into the polymer backbone improved not only the thermal stabilities but also the photoluminescence efficiencies. With the device configuration of ITO/PEDOT:PSS/polymers:PBD/CsF/Ca/Al, PCC-2 showed the best performance with the lowest turn-on voltage of 3.1 V, the highest luminance of 6369 cd/m2, the highest current efficiency of 1.97 cd/A, and the best power efficiency of 1.40 lm/W.
     Since cyanophenyl-spirobifluorene is an excellent monomer with electron-transporting capability, in Chapter 4, we use it to polymerize with the electron-donating tricarbazole-triphenylamine and 9,9-dihexylfluorene-2,7-bis(trimethyleneborate). By tuning the feed ratio, a series of blue-light-emitting copolymers PTC-1, PTC-2, PTC-3, and PTCF were prepared. It was found that increasing the content of the donors raised both the HOMO and LUMO energy levels. With the device configuration of ITO/PEDOT:PSS/polymers:PBD/CsF/Ca/Al, PTC-2 showed the best performance with the turn-on voltage of 3.0 V, maximum brightness of 7257 cd/m2, maximum current efficiency of 1.76 cd/A, and EL emission peak at 460 nm.
     In Chapter 5, a novel bipolar copolymer PTHCF with triphenyamine and cyanophenylfluorene side chains was synthesized for studying the polymer backbone emission. In contrast to the electronic absorption spectrum in dilute solution, the absorbance of PTHCF in thin film was slightly, blue-shifted. An electroluminescence (EL) device with configuration of ITO/PEDOT:PSS/PTHCF70%+PBD30%/CsF/Ca/Al exhibited a deep-blue emission as result of excitons formed by the charges migrating along the full-fluorene mainchain. The incorporation of the bipolar side chains into the polymer structure prevented the inter-molecular interaction of the fluorene moieties, improved charge injection/transport, increased the yield of exciton formation in main chain, and thereby enhanced the polymer backbone emission.
     Chapter 6 innovatively reported a series of oligofluorenes with ambipolar cyanophenyl and carbazole end groups. The existence of the bipolar end groups could effectively tune the energy levels of the oligofluorenes. By using the device configuration of ITO/PEDOT:PSS/oligofluorenes/TPBi/LiF/Al, F4 with four fluorene spacers displayed the best performance:the lowest turn-on voltage (4.1 V),the highest maximum luminance (2180 cd/m2) and maximal current efficiency (1.17 cd/A). The optimized device of ITO/MoO3/NPB/CBP:F4(1:4)/TPBi/LiF/Al by vapor deposition showed highest brightness of 5135 cd/m2, current efficiency of 1.76 cd/A, and CIE coordinates of (0.16,0.09).
     Quinoline was also one of the outstanding electron acceptors. In Chapter 7 we synthesized a blue light-emitting copolymer PTHD containing electron-rich triphenylamine and electron-poor diphenylquinoline side chains in the C-9 positions of fluorene units. In contrast to the reference polymer poly{[9,9-dihexylfluorene]-alt-[9,9-di(2,4-diphenylquinoline)fluorene]} (PHD), PTHD exhibited higher HOMO energy level and maximum brightness.
     Besides cyano group and quinoline, another excellent electron-transporting candidate was oxadiazole. Thus, Chapter 8 introduced two copolymers POFPA and POFCPA, in which diphenyloxadiazole and carbazole/tricarbazole-triphenylamine were chosen as charge transport segments. Either in dilute toluene solution or in the thin film, the polymer with higher content of carbazole possessed shorter absorption and photoluminescence, as well as much higher fluorescent quantum yield, in comparison with the other polymer. With the device configuration of ITO/PEDOT:PSS/polymer/TPBi/LiF/Al, efficient graded LUMO route for electron injection and transport was obtained in the POFCPA device, leading to higher maximum current efficiency (1.79 cd/A) and power efficiency (0.87 lm/W) than the POFPA device (1.60 cd/A,0.83 lm/W). The doped device based on POFCPA showed maximum luminance of 13613 cd/m2, highest current efficiency of 3.38 cd/A with the CIE coordinates of (0.15,0.24).
     In Chapter 9, the research results from Chapter 2 to Chapter 8 were summarized. Keywords:electroluminescence; blue light-emitting materials; fluorene; electron-withdrawing groups; electron donating groups
引文
[1]Tang C. W., VanSlyke S. A. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987,51:913-915.
    [2]Mullen K., Wegner G. Electronic Materials:The oligomer approach[B]. Wiley-VCH: Weinheim, New York,1998.
    [3]Li Y. Q., Fung M. K., Xie Z. Y., Lee S. T., Hung L. S., Shi J. M. An efficient pure blue organic light-emitting device with low driving voltages[J]. Adv. Mater.,2002,14 (18):1317-1321.
    [4]Brunner K., van Dijken A., Borner H., Bastiaansen J. J. A. M., Kiggen N. M. M., Langeveld B. M. W. Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes:Tuning the HOMO level without influencing the triplet energy in small molecules[J]. J. Am. Chem. Soc.,2004,126 (19):6035-6042.
    [5]Yeh S. J., Wu M. F., Chen C. T., Song Y. H., Chi Y., Ho M. H., Hsu S. F., Chen C. H. New dopant and host materials for blue-light-emitting phosphorescent organic electroluminescent devices[J]. Adv. Mater.,2005,17 (3):285-289.
    [6]Burroughes J. H., Bradley D. D. C, Brown A. R., Marks R. N., Mackay K., Friend R. H., Burns P. L., Holmes A. B. Light-emitting diodes based on conjugated polymers[J]. Nature,1990,347:539-541.
    [7]Lee Y. Z., Chen X. W., Chen S. A., Wei P. K., Fann W. S. Soluble electroluminescent poly(phenylene vinylene)s with balanced electron-and hole injections [J]. J. Am. Chem. Soc.,2001,123 (10):2296-2307.
    [8]Yang R. Q., Tian R. Y., Hou Q., Yang W., Cao Y. Synthesis and optical and electroluminescent properties of novel conjugated copolymers derived from fluorene and benzoselenadiazole[J]. Macromolecules,2003,36 (20):7453-7460.
    [9]Huang F., Hou L. T., Wu H. B., Wang X. H., Shen H. L., Cao W., Yang W., Cao Y. High-efficiency, environment-friendly electroluminescent polymers with stable high work function metal as a cathode:Green-and yellow-emitting conjugated polyfluorene polyelectrolytes and their neutral precursors [J]. J. Am. Chem. Soc.,2004, 126 (31):9845-9853.
    [10]Tang R. P., Tan Z. A., Li Y. F., Xi F. Synthesis of new conjugated polyfluorene derivatives bearing triphenylamine moiety through a vinylene bridge and their stable blue electroluminescence[J]. Chem. Mater.,2006,18 (4):1053-1061.
    [11]Tsuboyama A., Iwawaki, H., Furugori M., Mukaide T., Kamatani J., Igawa S., Moriyama T., Miura S., Takiguchi T., Okada S., Hoshino M., Ueno K. Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode[J]. J. Am. Chem. Soc.,2003,125 (42): 12971-12979.
    [12]Jiang J., Jiang C. Y., Zhang Y.,Yang R. Q., Yang W., Hou Q., Cao Y. High-efficiency saturated red emitting polymers derived from fluorene and naphthoselenadiazole[J]. Macromolecules,2004,37 (4):1211-1218.
    [13]Zhou G. J., Wong W. Y., Yao B., Xie Z. Y., Wang L. X. Triphenylamine-dendronized pure red iridium phosphors with superior OLED efficiency/color purity trade-offs[J]. Angew. Chem. Int. Ed.,2007,46 (7):1149-1151.
    [14]Baldo M. A., Lamansky S., Burrows P. E., Thompson M. E. Forrest S. R. Very high-efficiency green organic light-emitting devices based on electrophosphorescence[J]. Appl. Phys. Lett.,1999,75 (1):4-6.
    [15]Ding J. Q., Gao J., Cheng, Y. X., Xie Z. Y., Wang L. X., Ma D. G., Jing X. B., Wang F. S. Highly efficient green-emitting phosphorescent iridium dendrimers based on carbazole dendrons[J]. Adv. Funct. Mater.,2006,16:575-581.
    [16]Neef C. J., Ferraris J. P. MEH-PPV:improved synthetic procedure and molecular weight control[J]. Macromolecules,2000,33 (7):2311-2314.
    [17]Kraft A., Grimsdale A. C., Holmes A. B. Electroluminescent conjugated polymers-seeing polymers in a new light[J]. Angew. Chem. Int. Ed.,1998,37, 402-428.
    [18]Ahn S. H., Czae M. Z., Kim E. R., Lee H., Han S. H., Noh J., Hara M. Synthesis and characterization of soluble polythiophene derivatives containing electron-transporting moiety[J]. Macromolecules,2001,34(8):2522-2527.
    [19]Wu Y. G., Zhang J. Y., Fei Z. P., Bo Z. S. Spiro-bridged ladder-type poly(p-phenylene)s:Towards structurally perfect light-emitting materials[J]. J. Am. Chen. Soc.,130 (23):7192-7193.
    [20]Leclerc M. Polyfluorenes:Twenty years of progress [J]. J. Polym. Sci. Part A:Polym. Chem.,2001,39 (17):2867-2873.
    [21]Wu W. S., Inbasekaran M., Hudack M., Welsh D., Yu W. L., Cheng Y., Wang C., Kram S., Tacey M., Bernius M., Fletcher R., Kiszka K., Munger S., O'Beien J. Recent development of polyfluorene-based RGB materials for light emitting diodes[J]. Microelectronics Journal,2004,35 (4):343-348.
    [22]Kim Y. H., Shin D. C., Kim S. H., Ko C. H., Yu H. S., Chae Y. S., Kwon S. K. Novel blue emitting material with high color purity[J]. Adv. Mater.,2001,13 (22): 1690-1693.
    [23]Smith T., Guild J. The C.I.E. colorimetric standards and their use[J]. Transactions of the Optical Society.,1931-32,33 (3):73-134.
    [24]Katsis D., Geng Y. H., Ou J. J., Culligan S. W., Trajkovska A., Chen S. H., Rothberg L. J. Spiro-linked ter-, penta-, and heptafluorenes as novel amorphous materials for blue light emission[J]. Chem. Mater.,2002,14 (3):1332-1339.
    [25]Wong K. T., Chien Y. Y., Chen R. T., Wang C. F., Lin Y. T., Chiang H. H., Hsieh P. Y., Wu C. C., Chou C. H., Su Y.O., Lee G. H., Peng S M. Ter(9,9-diarylfluorene)s: highly efficient blue emitter with promising electrochemical and thermal stability[J]. J. Am. Chem. Soc.,2002,124:11576-11577.
    [26]Kanibolotsky A. L., Berridge R., Skabara P. J., Perepichka I. F., Bradley D. D. C., Koeberg M. Synthesis and properties of monodisperse oligofluorene-functionalized truxenes:highly fluorescent star-shaped architectures[J]. J. Am. Chem. Soc.,2004,126 (42):13695-13702.
    [27]Stille J. K. The palladium-catalyzed cross-coupling reactions of organotin reagents with organic electrophiles[J]. Angew. Che. Int. Ed. Eng.,1986,25:508-524.
    [28]Heck R. F., Nolley J. P. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides[J]. J. Org. Chem.,1972,37 (14):2320-2322.
    [29]Wittig G., Schollkopf U. Uber Triphenyl-phosphin-methylene als olefinbildende Reagenzien (Ⅰ. Mitteil.)[J]. Chemische Berichte.,1954,87 (9):1318-1330.
    [30]Wittig G., Haag W. Uber Triphenyl-phosphinmethylene als olefinbildende Reagenzien (Ⅱ. Mitteil.)[J]. Chemische Berichte.,1955,88 (11):1654-1666.
    [31]Yamamoto Y., Yamamoto A., Ikeda S. Organo (dipyridyl) nickel complexes.Ⅱ. Stabilities of olefin-nickel bonds in olefin-cooridinated dipyridylnickel and dialkyl (dipyridyl) nickel complexes[J]. J. Am. Chem. Soc.,1971,93 (14):3360-3364.
    [32]Miyaura N., Yamada K., Suzuki A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides[J]. Tetrahedron Lett.,1979,36 (20):3437-3440.
    [33]Fukuda K., Sawaki K., Yoshino J. Synthesis of fusible and soluble conducting polyfluorene derivatives and their characteristics [J]. J. Polym. Sci. Part A:Polym. Chem.,1993,31:2465-2471.
    [34]Ranger M., Rondeau D., Leclerc M. New well-defined poly(2,7-fluorene) derivatives photoluminescence and base doping[J]. Macromolecules,1997,30 (25):7686-7691.
    [35]Gong X., Iyer P. K., Moses D., Bazan G. C., Heeger A. J., Xiao S. S. Stabilized blue emission from polyfluorene-based light-emitting diodes:elimination of fluorenone defects[J]. Adv. Funct. Mater.,2003,13 (4):325-330.
    [36]Romaner L., Pogantsch A., de Freitas P. S., Scherf U., Gaal M., Zojer E. List E. J. W. The origin of green emission in polyfluorene-based conjugated polymers:on-chain defect fluoscence[J]. Adv. Func. Mater.,2003,13 (8):597-601.
    [37]Sims M., Bradley D. D. C., Ariu M., Koeberg M., Asimakis A., Grell M., Lidzey D. G. Understanding the origin of the 535 nm emission band in oxidized poly(9,9-dioctylfluorene):the essential role of inter-chain/inter-segment interactions[J]. Adv. Func. Mater.,2004,14 (8):765-781.
    [38]Lemmer U., Heun S., Mahrt R. F., Scherf U., Hopmeier M., Siegner U., Gobel E. O., Mullen K., Bassler H. Aggregate fluorescence in conjugated polymers[J]. Chem. Phys. Lett.,1995,240:373-378.
    [39]Scherf U., List E. J. W. Semiconducting polyfluorenes-towards reliable structure-property relationships[J]. Adv. Mater.,2002,14 (7):477-487.
    [40]Wang L.Y, Huang W., Heeger A. J. Spiro-functionalized polyfluorene derivatives as blue light-emitting materials[J]. Adv. Mater.,2000,12(11):828-831.
    [41]Setayesh S., Grimsdale A. C., Weil T., Enkelmann V., Mullen K., Meghdadi F., List E. J. W., Leising G. Polyfluorenes with polyphenylene dendron side chains:toward non-aggregating, light-emitting polymers[J]. J. Am. Chem. Soc.,2001,123:946-953.
    [42]Vak D., Chun C., Lee C. L., Kim J. J., Kim D. Y. A novel spiro-functionalized polyfluorene derivative with solubilizing side chains[J]. J. Mater. Chem.,2004, 14:1342-1346.
    [43]Fang Q., Xu B., Jiang B., Fu H. T., Zhu W. Q., Jiang X. Y., Zhang Z. L. A novel fluorene derivative containing four triphenylamine groups:higher thermostable blue emitter with hole-transporting ability for organic light-emitting diode (OLED)[J]. Synth. Met,2005,155:206-210.
    [44]Kreger K, Bate M., Neuber C., Schmidt H. W., Strohriegl P. Combinatiorial development of blue OLEDs based on star shaped molecules[J]. Adv. Funct. Mater., 2007,17:3456-3461.
    [45]Kong Q. G., Zhu D., Quan Y. W., Chen Q. M., Ding J. F., Lu J. P., Tao Y. Multi-H shaped macrocyclic oligomers consisting of triphenylamine and oligofluorene: synthesis and optoelectronic properties[J]. Chem. Mater.,2007,19 (13):3309-3318.
    [46]Miteva T., Meisel A, Knoll W, Nothofer H. G., Scherf U., Miiller D. C., Meerholz K., Yasuda A., Neher D. Improving the performance of polyfluorene-based organic light-emitting diodes via end-capping[J]. Adv. Mater.,2001,13 (8):565-570.
    [47]Ego C., Grimsdale A. C., Uckert F., Yu G., Srdanov G., Mullen K. Triphenylamine-substituted polyfluorene-a stable blue-emitter with improved charge injection for light-emitting diodes[J]. Adv. Mater.,2002,14 (11):809-811
    [48]Vak D., Shin S. J., Yum J. H., Kim S. S., Kim S. Y. Blue electroluminescence from spiro-configured polyfluorene derivatives with hetero-atoms[J]. J. Lumin.,2005, 115:109-116.
    [49]Vak D., Jo J., Ghim J., Chun C., Lim B, Heeger A. J., Kim D. Y. Synthesis and Characterization of spiro-triphenylamine configured polyfluorene derivatives with improved hole injection[J]. Macromolecules,2006,39:6422-6439.
    [50]Tang R. P., Tan Z. A., Li Y. F., Xi F. Synthesis of new conjugted polyfluorene derivatives bearing triphenylamine moiety through a vinylene bridge and their stable blue electroluminescence[J]. Chem. Mater.,2006,18 (4):1053-1061.
    [51]Liu B., Huang W. Novel deep blue fluorescent fluorene-based copolymer containing hole-transporting arylamine segments[J]. Thin Solid Films,2002,417:206-210.
    [52]Jiang Z. Q., Zhang W. J., Yao H. Q., Yang C. L., Cao Y., Qin J. G., Yu G., Liu Y. Q. Copolyfluorenes containing bridged triphenylamine or triphenylamine:synthesis, characterization, and optoelectronic properties [J]. J. Polym. Sci. Part A:Polym. Chem., 2009,47:3651-3661.
    [53]Zhang Q., Chen J. S., Cheng Y. X., Geng Y. H., Wang L. X., Ma D. G., Jing X. B., Wang F. S. Blue light-emitting materials based on terfluorenes with carbazole terminal units[J]. Synth. Met.,2005,152:229-232.
    [54]Liu Q. D., Lu J. P., Ding J. F., Day M., Tao Y., Barrios P., Stupak J., Chan K., Li J. J., Chi Y. Monodisperse starburst oligofluorene-functionalized 4,4',4"-tris(carbazol-9-yl)-triphenylamines:their synthesis and deep-blue fluorescence properties for organic light-emitting diode applications[J]. Adv. Funct. Mater.,2007,17:1028-1036.
    [55]Tang S., Liu M. R., Lu P., Xia H., Li M., Xie Z. Q., Shen F. Z., Gu C., Wang H. P., Yang B., Ma Y. G. A molecular glass for deep-blue organic light-emitting diodes comprising a 9,9'-spirobifluorene core and peripheral carbazole groups[J]. Adv. Funct. Mater.,2007,17:2869-2877.
    [56]Stephan O., Vial J. C. Blue light electroluminescent devices based on a copolymer derived from fluorene and carbazole[J]. Synth. Met.,1999,106:115-119.
    [57]Li Y. N., Ding J. F., Day M., Tao Y., Lu J. P., D'iorio M. Synthesis and properties of random and alternating fluorene/carbazole copolymers for use in blue light-emitting devices[J]. Chem. Mater.,2004,16:2165-2173.
    [58]Wong W. Y., Liu L., Cui D. M., Leung L. M., Kwong C. F., Lee T. H., Ng H. F. Synthesis and characterization of blue-light-emitting alternating copolymers of 9,9-dihexylfiuorene and 9-arylcarbazole[J]. Macromolecules,2005,38 (12): 4970-4976.
    [59]Wu C. W., Lin H. C. Synthesis and characterization of kinked and hyperbranched carbazole/fluorene-based copolymers[J]. Macromolecules,2006,39 (21):7232-7240.
    [60]Grisorio R., Piliego C., Fini P., Cosma P., Mastrorilli P., Gigli G, Suranna G. P., Nobile C. F. Random terpolymers for electroluminescent devices:Synthesis and characterization of new cyano-containing poly(fluorenylene-vinylene)s[J]. J. Polym. Sci. Part A:Polym. Chem.,2008,46 (18):6051-6063.
    [61]Hughes G, Bryce M. R. Electron-transporting materials for organic electroluminescent and electrophosphorescent devices[J]. J. Mater. Chem.,2005,15 (1):94-107.
    [62]Wu C. W., Sung H. H., Lin H. C. Synthesis and characterization of poly(fluorene-co-alt-phenylene) containing 1,3,4-oxadiazole dendritic pendants[J]. J. Poly. Sci. Part A:Polym. Chem.,2006,44:6765-6774.
    [63]Tsai L. R., Chen Y. Novel hyperbranched polyfluorenes containing electron-transporting aromatic triazole as branch unit[J]. Macromolecules,2007,40 (9), 2984-2992.
    [64]Zhan X. W., Liu Y. Q., Wu X., Wang S., Zhu D. B. New series of blue-emitting and electron-transporting copolymers based on fluorene[J]. Macromolecules,2002,35, 2529-2537.
    [65]Pinto M. R., Hu B., Karasz F. E., Akcelrud L. Emitting polymers containing cyano groups. Synthesis and photophysical properties of a fully conjugated polymer obtained by Wittig reaction[J]. Polymer,2000,41(22):8095-8102.
    [66]Pinto M. R., Hu B., Karasz F. E., Akcelrud L. Light-emitting copolymers of cyano-containing PPV-based chromophores and a flexible spacer[J]. Polymer,2000, 41(7):2603-2611.
    [67]Hanack M., Behnisch B., Hackl H., Martinez-Ruiz P., Schweikart K. H. Influence of the cyano-group on the optical properties of oligomeric PPV-derivatives[J]. Thin solid films,2002,417:26-31.
    [68]Luo F. T., Tao Y. T., Ko S. L., Chuen C. H., Chen H. Efficient electroluminescent material for light-emitting diodes from 1,4-distyrylbenzene derivatives[J]. J. Mater. Chem.,2002,12,47-52.
    [69]Liu M. S., Jiang X. Z., Liu S., Herguth P., Jen A. K. Y. Effect of cyano substituents on electron affinity and electron-transporting properties of conjugated polymers[J]. Macromolecules,2002,35 (9):3532-3538.
    [70]Teranekar P., Abdulbaki M., Krishnamoorti R., Phanichphant S., Waenkaew P., Patton D., Fulghum T., Advincula R. Structure and band-gap design of a new series of light-emitting poly(cyanofluorene-alt-o/m/p-phenylenevinylene)-based copolymers for light-emitting diodes[J]. Macromolecules,2006,39 (11):3848-3854.
    [71]Wang S., Liu Y. Q., Zhan X. W., Yu G, Zhu D. B. Narrow blue light-emitting diodes based on a copolymer consisting of fluorene and quinoline units[J]. Synth. Met.,2003, 137:1153-1154.
    [72]Su H. J., Wu F. I., Shu C. F., Tung Y. L., Chi Y., Lee G H. Polyfluorene containing diphenylquinoline pendants and their applications in organic light emitting diodes [J]. J. Polym. Sci. Part A:Polym. Chem.,2005,43:859-869.
    [73]Chen C. H., Shu C. F. Polyquinolines containing both spirobifluorene and cardofluorene units:synthesis and characterization[J]. J. Polym. Sci. Part A:Polym. Chem.,2004,42:3314-3322.
    [74]Siemssen B., Kim K. W., Kim M. S., Kim B. S., Cho S. J., Park D. K., Woo H. S., Kwon T. W. Synthesis and photophysics of new donor-acceptor copolymers based on fluorene and phenylquinolines[J]. Mol. Cryst. Liq. Cryst.,2007,462:159-167.
    [75]Ding J. F., Day M., Robertson G., Roovers J. Synthesis and characterization of alternating copolymers of fluorene and oxadiazole[J]. Macromolecules,2002,35 (9): 3474-3483.
    [76]Wu F. I., Reddy D. S., Shu C. F., Liu M. S., Jen A. K. Y. Novel oxadiazole-containing polyfluorene with efficient blue electroluminescence[J]. Chem. Mater.,2003,15 (1): 269-274.
    [77]Sung H. H., Lin H. C. Novel alternating fluorene-based conjugated polymers containing oxadiazole pendants with various terminal groups[J]. Macromolecules,2004, 37 (21):7945-7954.
    [78]Xin Y, Wen G A., Zeng W. J., Zhao L., Zhu X. R., Fan Q. L., Feng J. C., Wang L. H., Wei W., Peng B., Cao Y, Huang W. Hyperbranched oxadiazole-containing polyfluorenes:toward stable blue light PLEDs[J]. Macromolecules,2005,38 (16): 6755-6758.
    [79]Sung H. H., Lin H. C. Synthesis and characterization of poly(fluorene)-based copolymers containing various 1,3,4-oxadiazole pendants[J]. J. Polym. Sci. Part A: Polym. Chem.,2005,43:2700-2711.
    [80]Shu C. F., Dodda R., Wu F. I., Liu M. S., Jen A. K. Y. Highly efficient blue-light-emitting diodes from polyfluorene containing bipolar pendant groups[J]. Macromolecules,2003,36 (18):6698-6703.
    [81]Wu F. I., Shih P. I., Shu C. F., Tung Y. L., Chi Y. Highly efficient light-emitting diodes based on fluorene copolymer consisting of triarylamine units in the main chain and oxadiazole pendent groups[J]. Macromolecules,2005,38:9028-9036.
    [82]Su H. J., Wu F. I., Tseng Y. H., Shu C. F. Color tuning of a light-emitting polymer: polyfluorene-containing pendant amino-substituted distyrylarylene units[J]. Adv. Funct. Mater.,2005,15:1209-1216.
    [83]Jin Y, Kim J. Y, Park S. H., Kim J., Lee S., Lee K., Suh H. Syntheses and properties of electroluminescent polyfluorene-based conjugated polymers, containing oxadiazole and carbazole units as pendants, for LEDs[J]. Polymer,2005,46:12158-12165.
    [84]Yuan M. C, Shih P. I., Chien C. H., Shu C. F. Synthesis and characterization of a polyfluorene containing carbazole and oxadiazole dipolar pendent groups and its application to electroluminescent devices[J]. J. Polym. Sci. Part A:Polym. Chem.,2007, 45:2925-2937.
    [85]Zhen C. G, Chen Z. K., Liu Q. D., Dai Y. F., Shin R. Y. C., Chang S. Y, Kieffer J. Fluorene-based oligomers for highly efficient and stable organic blue-light-emitting diodes[J]. Adv. Mater.,2009,21(23):2425-2429.
    [86]Liu M. S., Jiang X,. Herguth P., Jen A. K. Y. Efficient Cyano-containing electron-transporting polymers for light-emitting diodes[J]. Chem. Mater.,2001,13 (11):3820-3822.
    [87]Pucci A., Biver T., Ruggeri G, Meza I. L., Pang Y. Luminescence dichroism of cyano-containing poly[(m-phenylene ethynylene)-alt-(p-phenylene ethynylene)] aggregates dispersed in oriented polyethylene [J]. Polymer,2005,46(11):11198-11205.
    [88]Liang F., Pu Y. J., Kurata T., Kido J., Nishide H. Synthesis and electroluminescent property of poly(p-phenylenevinylene)s bearing triarylamine pendants[J]. Polymer, 2005,46(11):3767-3775.
    [89]Tu G. L., Li H. B., Forster M., Heiderhoff R., Balk L. J., Scherf U. Conjugated triblock copolymers containing both electron-donor and electron-acceptor blocks[J]. Macromolecules,2006,39(13):4327-4331.
    [90]Lin H. Y, Liou G. S., Lee W. Y, Chen W. C. Poly(triarylamine):synthesis, properties, and its blend with polyfluorene for white-light-electroluminescence[J]. J. Polym. Sci. Part A:Polym. Chem.,2007,45:1727-1736.
    [91]Fang Q., Tamamoto T. New alternative copolymer constituted of fluorene and triphenylamine units with a tunable-CHO group in the side chain. Quantitative transformation of the-CHO group to-CH=CHAr groups and optical and electrochemical properties of the polymers [J]. Macromolecules,2004,37(16): 5894-5899.
    [92]Park J. H., Cho N. S., Young K. J., Cho H. J., Shim H. K., Kim H., Lee Y. S. Polymeric light emitting properties and structural relationships of fluorene-based conjugated copolymers containing various hole transporting derivatives [J]. Org. Electron.,2007,8: 272-285.
    [93]Jin Y., Ju J., Kim J., Lee S., Kim J. Y, Park S. H., Son S. M., Jin S. H., Lee K., Suh H. Design, synthesis, and electroluminescent property of CN-poly(dihexylfluorenevinylene) for LEDs[J]. Macromolecules,2003,36(19): 6970-6975.
    [94]Liao L., Pang Y., Ding L., Karasz F. E. A highly efficient light-emitting Poly{[5-(diphenylamino)-1,3-phenylenevinylene]-alt-(2,5-dihexyloxy-1,4-phenylen evinylene)}:synthesis and optical properties[J]. Macromolecules,2004,37(11): 3970-3972.
    [95]McMurry, J. E.; Fleming, M. P. New method for the reductive coupling of carbonyls to olefins. Synthesis of.beta.-carotene[J]. J. Am. Chem. Soc.,1974,96(14):4708-4709.
    [96]Ephritikhine, M. A new look at the McMurry reaction[J]. Chem. Commun.,1998,23: 2549-2554.
    [97]Yoon K. R., Lee H. Novel copolymers containing triphenylamine and alkylfluorene moiety in the main chain[J]. J. Mater. Sci.,2005,40:5315-5317.
    [98]Mikroyannidis J. A., Gibbons K. M., Kulkarni A. P., Jenekhe S. A. Poly(fluorenevinylene) copolymers containing bis(phenyl)oxadiazole and triphenylamine moieties:synthesis, photophysics, and redox and electroluminescent properties[J]. Macromolcules,2008,41(3):663-674.
    [99]Smirnov S. G., Konoplev G. G., Rodionov A. N., Godik V. A. Spectral-luminescent properties and the nature of electron states of molecules with heteroatoms[J]. J. Appl. Spectrosc.,1983,38(6):658-664.
    [100]Lin Y., Chen Y, Feng M., Yan A. X., Zhuang X. D. One-pot synthesis of soluble nanoscale CIGS photoactive functional materials[J]. Nano. Res. Lett.,2008,3:21-24.
    [101]Mann C. K., Barnes K. K. Electrochemical reactions in nonaqueous systems[B]. Marcel Dekker, New York,1970.
    [102]Nielsen K. A., Sarova G. H., Martin-Gomis L., Fernandez-Lazaro F., Stein P. C., Sanguinet L., Levillain E., Sessler J. L., Guldi D. M., Sastre-Santos A., Jeppesen J. O. Chloride anion controlled molecular "switching". Binding of 2,5,7-trinitro-9-dicyanomethylenefluorene-C60 by tetrathiafulvalene calix[4]pyrrole and photophysical generation of two different charge-separated states[J]. J. Am. Chem. Soc,2008,130(2):460-462.
    [103]Luo C., Fujitsuka M., Watanabe A., Ito O., Gan L. B., Huang Y. Y., Huang C. H. Substituent and solvent effects on photoexcited states of functionalized fullerene[60][J]. J. Chem. Soc. Faraday Trans.,1998,94:527-532.
    [104]Ohkubo K., Kotani H., Shao J. G, Ou Z. P., Kadish K. M., Li G. L., Pandey R. K., Fujitsuka M., Ito O., Imahori H., Fukuzumi S. Production of an ultra-long-lived charge-separated state in a zinc chlorine-C60 dyad by one-step photoinduced electron transfer[J]. Angew. Chem.,2004,116:871-874; Angew. Chem. Int. Ed.,2004,43: 853-856.
    [105]EI-Khouly M. E. Comparative study of the bimolecular electron transfer of fullerenes (C60/C70) and 9,9-disubstituted fluorenes by laser flash photolysis[J]. Photochem. Photobio. Sci.,2007,6:539-544.
    [106]EI-Khouly M. E. Photoinduced intermolecular electron transfer process of fullerene (C60) and amine-substituted fluorenes studied by laser flash photolysis[J]. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc.,2007,67:636-642.
    [107]Johansson N., Salbeck J., Bauer J., Weissortel F., Broms P., Andersson A., Salaneck W. R. Solid-state amplified spontaneous emission in some spiro-type molecules:a new concept for the design of solid-state lasing molecules[J]. Adv. Mater.,1998,10(14): 1136-1141.
    [108]Tang S., Liu M. R., Gu C., Zhao Y., Lu P., Lu D., Liu L. L., Shen F. Z., Yang B., Ma Y. G. Synthesis and electrochemical properties of peripheral carbazole functional ter(9,9-spirobifluorene)s[J]. J. Org. Chem.,2008,73(11):42124218.
    [109]Huang B., Li J., Shao P., Qin J. G., Jiang Z. Q., Yu G., Liu Y. Q. Synthesis and properties of new luminescent poly(arylenevinylene) copolymers containing spirobifluorene[J]. Synth. Met.,2005,153:261-264.
    [110]Natera J., Otero L., Sereno L., Fungo F., Wang N. S., Tsai Y. M., Hwu T. Y., Wong K. A novel electrochromic polymer synthesized through electropolymerization of a new donor-acceptor bipolar system[J]. Macromolecules,2007,40:4456-463.
    [111]Sanchez J. C., Trogler W. C. Efficient blue-emitting silafluorene-fluorene-conjugated copolymers:selective turn-off/turn-on detection of explosives[J]. J. Mater. Chem., 2008,18:3143-3156.
    [112]Fu Y. Q., Sun M. H., Wu Y. G., Bo Z. S., Ma D. G. Conjugated polymers containing electron-transporting, hole-transporting, and light-emitting units in the polymer main chain[J]. J. Polym. Sci. Part A:Polym. Chem.,2008,46(4):1349-1356.
    [113]Jin S. H., Kim M. Y., Koo D. S., Kim Y. I. Synthesis and properties of poly(fluorene-alt-cyanophenylenevinylene)-based alternating copolymers for light-emitting diodes[J]. Chem. Mater.,2004,16(17):3299-3307.
    [114]Wang Y. M, Teng F., Ma C. Q., Xu Z., Hou Y. B., Yang S. Y., Wang Y. S., Xu X. R. Green to white to blue OLEDs by using PBD as a chromaticity-tuning layer[J]. Displays,2004,25(5):237-239.
    [115]Kim B, S., Kim C. G., Oh J. J., Kim M. S., Kim G. W., Park D. K., Woo H. S. Synthesis and effect on t-butyl PBD of the blue light emitting poly(phenyl-9,9-dioctyl-9',9'-dihexanenitrile)fluorene[J]. Macromol. Res.,2006, 14(3):343-347.
    [116]Cao Y., Parker I. D., Yu G., Zhang C., Heeger A. J. Improved quantum efficiency for electroluminescence in semiconducting polymers[J]. Nature,1999,397:414-417.
    [117]Gurel E. E., Pang Y., Karasz F. E. Luminescence properties of modified poly(m-phenylenevinylene)-alt-(p-phenylenevinylene):effects of side-chain length, blending and device configuration[J]. Thin Solid Films,2002,417(1-2):147-150.
    [118]Chen Y. C., Huang G. S., Hsiao C. C., Chen S. A. High triplet energy polymer as host for electrophosphorescence with high efficiency[J]. J. Am. Chem. Soc.,2006,128: 8549-8558.
    [119]Chen C. H., Wu F. I., Shu C. F., Chien C. H., Tao Y. T. Spirobifluorene-based pyrazoloquinolines:efficient blue electroluminescent materials[J]. J. Mater. Chem., 2004,14:1585-1589.
    [120]Wang B. C., Liao H. R., Yeh H. C., Wu W. C., Chen C. T. Theoretical investigation of stokes shift of 3,4-diaryl-substituted maleimide fluorophores[J]. J. Lumin.,2005, 113(3-4):321-328.
    [121]Feng J. C., Li Y., Yang M. J. A novel hyperbranched copolymer constituted of triphenylamine and divinyl bipyridyl units[J]. Eur. Polym. J.,2008,44(10):3314-3319.
    [122]Chen Z. K., Lee N. H. S., Huang W., Xu Y. S., Cao Y. New phenyl-substituted PPV derivatives for polymer light-emitting diodes-synthesis, characterization and structure-property relationship study[J]. Macromolecules,2003,36(4):1009-1020.
    [123]Lu S., Liu T. X., Ke L., Ma D. G., Chua S. J., Huang W. Polyfluorene-based light-emitting rod-coil block copolymers[J]. Macromolecules,2005,38(20): 8494-8502.
    [124]Huang F., Zhang Y., Liu M. S., Cheng Y. J., Jen A. K. Y. High-efficiency and color stable blue-light-emitting polymers and devices[J]. Adv. Funct. Mater.,2007,17(18): 3808-3815.
    [125]Zhang K., Tao Y. T., Yang C. L., You H., Zou Y., Qin J. G. Ma D. G. Synthesis and properties of carbazole main chain copolymers with oxadiazole pendant toward bipolar polymer host:tuning the HOMO/LUMO level and triplet energy[J]. Chem. Mater., 2008,20(23):7324-7331.
    [126]Lin H. Y., Liou G. S. Poly(triphenylamine)s derived from oxidative coupling reaction: Substituent effects on the polymerization, electrochemical, and electro-optical properties[J]. J. Polym. Sci. Part A:Polym. Chem.,2009,47(1):285-294.
    [127]Mal'tsev E. I., Brusentseva M. A., Berendyaev V. I., Kolesnikov V. A., Lunina E. V., Kotov B. V, Vannikov A. V. Electroluminescence of anthracene-containing polyimides[J]. Mendeleev. Comm.,1998,8(1):31-32.
    [128]Hsieh B. Y., Chen Y. Polyfluorenes minimally doped with 1,4-bis(2-thienyl-2-cyanovinyl)benzene chromophore:their synthesis, characterization, and application to white-light-emitting materials[J]. J. Polym. Sci. Part A:Polym. Chem.,2008,46(11):3703-3713.
    [129]Wu F. I., Dodda R., Reddy D. S., Shu, C. F. Synthesis and characterization of spiro-linked poly(terfluorene):a blue-emitting polymer with controlled conjugated length[J]. J. Mater. Chem.,2002,12:2893-2897.
    [130]Kulasi A., Yi H. N., Iraqi A. Triarylamine N-functionalized 3,6-linked carbazole main chain polymers and copolymers:Preparation and physical properties [J]. J. Polym. Sci. Part A:Polym. Chem.,2007,45(24):5957-5967.
    [131]Li B. L., Liu Z. T., He Y. M., Pan J., Fan Q. H. Functionalization of conjugated copolymers with phosphorescent iridium complexes and carbazole/1,3,4-oxadiazole dendrons via click chemistry[J]. Polymer,2008,49(6):1527-1537.
    [132]Dreuw A. Influence of geometry relaxation on the energies of the S1 and S2 states of violaxanthin, zeaxanthin, and lutein[J]. J. Phys. Chem. A,2006,110(13):4592-4599.
    [133]Liu J., Zou, J. H. Yang W., Wu H. B., Li C., Zhang B., Peng J. B., Cao Y. Highly efficient and spectrally stable blue-light-emitting polyfluorenes containing a dibenzothiophene-S,S-dioxide unit[J]. Chem. Mater.,2008,20(13):4499-4506.
    [134]Wu C. W., Tsai C. M., Lin H. C. Synthesis and characterization of poly(fluorene)-based copolymers containing various 1,3,4-oxadiazole dendritic pendants[J]. Macromolecules,2006,39(13):4298-4305.
    [135]Wang R., Wang W. Z., Yang G. Z., Liu T. X., Yu J. S., Jiang Y. D. Synthesis and characterization of highly stable blue-light-emitting hyperbranched conjugated polymers[J]. J. Polym. Sci. Part A:Polym. Chem.,2008,46(3):790-802.
    [136]List E. J. W., Guentner R., Freitas P. S., Scherf U. The effect of keto defect sites on the emission properties of polyfluorene-type materials[J]. Adv. Mater.,2002,14(5): 374-378.
    [137]Giovanella U., Pasini M., Destri S., Porzio W., Botta C. Stabilized blue emission from polyfluorene-based light-emitting diodes:The role of triphenylamine[J]. Synth. Met., 2008,158(3-4):113-119.
    [138]Lee S. H., Jang B. B., Tsutsui T. Sterically hindered fluorenyl-substituted poly(p-phenylenevinylenes) for light-emitting diodes[J]. Macromolecules,2002,35(4): 1356-1364.
    [139]Yammaguchi H., Komoriya M., Kamata N. Improved EL characteristics of polyfluorene/PBD-mixed layer by wet process[J]. Phys. Stat. Sol. C,2008,5(9): 3191-3193.
    [140]Baran D., Balan A., Celebi S. Esteban B. M., Neugebauer H., Sariciftci N. S., Toppare L. Processable multipurpose conjugated polymer for electrochromic and photovoltaic applications[J]. Chem. Mater.,2010,22(9):2978-2987.
    [141]Bliznyuk V. N., Carter S. A., Scott J. C., Klarner G., Miller R. D., Miller D. C. Electrical and photoinduced degradation of polyfluorene based films and light-emitting devices[J]. Macromolecules,1999,32(2):361-369.
    [142]Pei J., Ni J., Zhou X. H., Cao X. Y., Lai Y. H. Regioregular head-to-tail oligothiophene-functionalized 9,9'-spirobifluorene derivatives.2. NMR characterization, thermal behaviors, and electrochemical properties[J]. J. Org. Chem., 2002,67(23):8104-8113;
    [143]Kumaresan D., Thummel R. P., Bura T., Ulrich G., Ziessel R. Color tuning in new metal-free organic sensitizers (bodipys) for dye-sensitized solar cells[J]. Chem. Eur. J., 2009,15(26):6335-6339.
    [144]Frommer J. E., Chance R. R. Electrically conducting polymers[J]. Encyl. Polym. Sci. Eng.,1986,5:462-507.
    [145]Miller L. L., Nordblom G. D., Mayeda E. A. Simple, comprehensive correlation of organic oxidation and ionization potentials[J]. J. Org. Chem.,1972,37(6):916-918.
    [146]Chen Z. Y., Ma D. G. Improved color purity and efficiency in polyfluorene-based light-emitting diodes[J]. Mater. Sci. Eng. B,2007,141:71-75.
    [147]Lee S. H., Tsytsui T. Molecular design of fluorene-based polymers and oligomers for organic light-emitting diodes[J]. Thin solid films,2000,363:76-80.
    [148]Promarak V., Saengsuwan S., Jungsuttiwong S., Sudyoadsuk T., Keawin T. Synthesis and characterization of N-carbazole end-capped oligofluorenes[J]. Tetrahedron. Lett., 2007,48:89-93.
    [149]Promarak V., Punkvuang A., Sudyoadsuk T., Jungsuttiwong S., Saengsuwan S., Keawin T., Sirithip K. Synthesis and characterization of N-carbazole end-capped oligofluorene-thiophenes[J]. Tetrahedron,2007,63:8881-8890.
    [150]Li Y. N., Ding J. F., Day M., Tao Y., Lu J. P., D'iorio M. Novel stable blue-light-emitting oligofluorene networks immobilized by boronic acid anhydride linkage[J]. Chem. Mater.,2003,15:4936-4943.
    [151]Chinelatto Jr L. S., del Barrio J., Pinol M., Oriol L., Matranga M. A., De Santo M. P., Barberi R. Oligofluorene blue emitters for cholesteric liquid crystal lasers[J]. J. Photochem. Photobio. A:Chem.,2010,210:130-139.
    [152]Zhang Q., Chen J. S., Cheng Y. X., Wang L. X, Ma D. G., Jing X. B., Wang F. S. Novel hole-transporting materials based on 1,4-bis(carbazolyl)benzene for organic light-emitting devices[J]. J. Mater. Chem.2004(14):895-900.
    [153]Yang H. S., Xie W. F., Zhao Y., Hou J. Y. Liu S. Y. Enhanced current efficiency in organic light-emitting devices using 4,4'-N,N'-dicarbazole-biphenyl as hole-buffer layer[J]. Solid-State Electron.2007,51:111-114.
    [154]Huang C. W., Peng K. Y., Liu C. Y., Jen T. H., Yang N. J., Chen S. A. Creating a molecular-scale graded electronic profile in a single polymer to facilitate hole injection for efficient blue electroluminescence[J]. Adv. Mater.,2008,20:3709-3716.
    [155]Surin M., Hennebicq E., Ego C., Marsitzky D., Grimsdale A. C., Mullen K., Bredas J. L., Lazzaroni R., Leclere P. Correlation between the microscopic morphology and the solid-state photoluminescence properties in fluorene-based polymers and copolymers[J]. Chem. Mater.,2004,16:994-1001.
    [156]Chen J. S., Ma D. G. Investigation of charge-carrier injection characteristics in NPB/Alq3 heterojunction devices[J]. Chem. Phys.,2006,325:225-230.
    [157]Hosoi K., Mori T., Mizutani T., Yamamoto T., Kitamura N. Effects of molecular weight on polyfluorene-based polymeric light emitting diodes[J]. Thin Solid Films 2003,438-439:201-205.
    [158]Li C. L., Shieh S. J., Lin S. C., Liu R. S. Synthesis and seectroscopic properties of finite Ph2N-containing oligo(arylenevinulene) derivatives that emit blue to red fluorescence[J]. Org. Lett.2003,5(7):1131-1134.
    [159]Lyu Y. Y., Kwak J., Kwon O., Lee S. H., Kim S., Lee C., Char K. Silicon-cored anthracene derivatives as host materials for highly efficient blue organic light-emitting devices[J]. Adv. Mater.,2008,20:2720-2729.
    [160]Liu B., Yu W. L., Lai Y. H., Huang W. Blue-light-emitting fluorene-based polymers with tunable electronic properties[J]. Chem. Mater.2001,13(6):1984-1991.
    [161]Lu J. P., Tao Y., D'iorio M., Li Y. N., Ding J. F., Day M. Pure deep blue light-emitting diodes from alternating fluorene/carbazole copolymers by using suitable hole-blocking materials[J]. Macromolecules 2004,37(7):2442-2449.
    [162]Hung L. S., Zhang R. Q., He P., Mason G. Contact formation of LiF/Al cathodes in Alq-based organic light-emitting diodes[J]. J. Phys. D:Appl. Phys.,2002,35: 103-107.
    [163]Park H. C., Park J. W., Oh S. G. Highly efficient three wavelength WOLEDs by controlling of electron-transfer[J]. Bull. Korean Chem. Soc.,2009,30(10):2299-2302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700