用户名: 密码: 验证码:
热氧化工业纯钛表面硬化层的结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以提高医用钛合金植入体的耐磨性能和牙科用钛合金与烤瓷材料的结合性能为背景,对纯钛进行了大气热氧化处理,并对获得的氧化膜和渗氧层的微观组织结构、硬度性能和动力学生长规律进行了测试分析。
     对纯钛进行退火去应力处理和去脂预处理,然后在大气环境箱式电阻炉中进行600~900℃/0.5~24h热氧化处理,得到研究试样,并对部分试样进行金相处理,制备了横截面研究试样。
     采用X射线衍射法对热氧化处理后的纯钛表面进行微观组织结构测试分析。在纯钛表面生成了由金红石型二氧化钛构成的氧化膜,当氧化温度较低、时间较短时,氧化膜与金属基体结合良好,随着氧化温度的升高、时间的延长,结合力降低。氧化膜与纯金属钛之间是一层由α相Ti—O固溶体构成的渗氧层,随着氧化温度的升高、时间的延长,渗氧层含氧量增加、厚度增大。
     通过光学显微镜、扫描电子显微镜对试样横截面进行了微观组织观察分析。渗氧层被一条穿越晶界而连续的界线分为内渗氧层和外渗氧层。随着氧化温度的升高、时间的延长,内、外渗氧层的厚度都增大,并且内渗氧层的厚度始终略大于外渗氧层。
     对热氧比后的试样进行了表面和横截面显微硬度测试分析。随着氧化温度的升高、时间的延长,试样的表面硬度增大;随着加载载荷的增大即离表面距离的增大,硬度降低。相比较横截面显微硬度测试法,表面显微硬度测试法能测出更薄的硬化层,因此是一种更适合薄硬化层硬度表征的方法。
     通过测试厚度变化表征了纯钛氧化膜和渗氧层的动力学生长规律。在氧化的前期,渗氧层和氧化膜的生长都遵循抛物线规律,随着氧化时间的延长,氧化膜的生长向直线规律转化,渗氧层的生长向直线规律转化不明显。当氧化时间较短时,渗氧层的生长速度大于氧化膜的生长速度,随着氧化时间的延长,氧化膜的生长速度超过并大于渗氧层的生长速度。温度对于渗氧层厚度的影响大于时间的影响。
In an effort to improve the wear-resistance of titanium alloys for orthopaedic implants and understand the bonding behavior between dental titanium alloys and porcelain, thermal oxidation of pure titanium was systematically investigated. The microstructure, microhardness property and growth kinetics of the achieved oxide film and oxygen diffusion layer on the titanium surface were analyzed in the present research.
    After annealing and pretreatment, the thermal oxidation was carried out on pure titanium at 600-900for 0.5-24h in an air atmosphere. Specimens for surface analyses and cross-sectional analyses were prepared, respectively.
    The surface microstructure of the treated titanium was analyzed by X-ray diffraction method. The surface oxide films on all the specimens were identified to be rutile TiO2. When treated at low temperature and in short time, the oxide film bonds well with the metal substrate. While with increasing oxidation temperature and time, the adherence becomes poorer. The sublayer beneath the oxide film is an oxygen diffusion layer consisting of a -phase Ti-0 solid solution. With increasing oxidation
    temperature and time, the oxygen content and thickness of oxygen diffusion layer increase.
    The microstructure of the diffusion layer was observed using a LEICA MPS60 optical microscope and a HITACHI S-4700 field emission scanning electron microscope (FESEM). The diffusion layer is comprised of an inner and an outer oxygen diffusion layers which are separated by a line that runs across the grain boundaries. With increasing oxidation temperature and time, the thicknesses of inner and outer diffusion layers are both increase, and the inner diffusion layer is always a little thicker than the outer diffusion layer.
    The surface and the cross-sectional hardnesses were measured using an HV-1000 Vickers microhardness tester. With increasing oxidation temperature and time, the
    
    
    
    surface hardness increases. With increasing indenter load, i.e. increasing the distance from the surface, the hardness decreases. Comparing with the cross-sectional microhardness analysis, the surface microhardness analysis can detect more thinner hardening layer, so is a more sensitive method to identify the presence of surface hardening layers.
    The growth kinetics of oxide film and oxygen diffusion layer were characterized by measuring their thicknesses. The growth of the oxide film agrees with parabolic-linear law, and the oxygen diffusion layer agrees with parabolic law with a linear trend at the end of the growth curve. When oxidized in relatively short time, the oxygen diffusion layer thickens faster than the oxide film does. While with increasing oxidation time, the oxide film grows faster than the oxygen diffusion layer. Oxidation temperature has a more obvious effect on the thickening of oxygen diffusion layer than time dose.
引文
[1] 储成林,朱景川,尹钟大. 医用钛合金及其表面改性.材料科学与工艺;1998,6(2):40-44.
    [2] 宁聪琴,周玉.医用钛合金的发展及研究现状.材料科学与工艺,2002,10(1):100-106.
    [3] Van noort R. Review titanium : the implant material of today. J Mater Sci, 1987, 22 : 3801-3811.
    [4] Liu Fengling(刘凤岭), Li Jingui(李金桂), Feng Zixiu(冯自修). Evolution of surface technologies for titanium alloys. Corrosion & Protection(腐蚀与防护), 2001; 22(2) : 54.
    [5] K.Matsuura, M.Kudoh. Surface modification of titanium by a diffusional carbonitriding method. Acta Materialia, 2002; 50 : 2693.
    [6] R.W.Hanzel. Surface hardening processes for titanium and its alloys. Metal Progress, 1954; 3:89.
    [7] 张新平,于思荣,夏连杰,等.钛及钛合金在牙科领域中的研究现状.稀有金属材料与工程,2002,31(4):246-271.
    [8] 秦川.钛和钛合金铸件在牙科医疗上的应用.稀有金属与硬质合金,2002,30(4):54-56.
    [9] 程逵,翁文剑,葛曼珍.生物陶瓷涂层.材料科学与工程,1998,16(3):8-12.
    [10] 陈长春,孙康,吴人洁.髋关节置换用股骨假体材料的研究与应用.材料导报,1998,12(6):1-5.
    [11] C.Y.Yang, B.C.Wang, et al. The influences of plasma spraying parameters on the characteristics of hydroxyapatite coating : a quantitative study. J Mater Sci : Mater Med, 1995, 6 : 249-257.
    [12] R.Mcpherson, N.Gane, T.J.Bastow. Structural characterization of plasma-sprayed hydroxyapatite coatings. J Mater Sci :Mater Med, 1995, 6 : 327-334.
    [13] 曾晓雁,吴懿平.表面工程学.机械工业出版社,2001.
    [14] Spivak J, Ricci J, Blumenthal N, et al. A new canine model to evaluate the biological response of intramedullary bone to implant materials and surfaces. J biomed Mater Res, 1990, 24 : 1121-1149.
    [15] 魏斌,费敬银.钛合金生体材料及其表面改性.材料导报,2000,14(7):18-21.
    [16] E.Chang, W.J.Chang, et al. Plasma spraying of zirconia-reinforced hydroxyapatite composite coatings on titanium : Part Ⅰ Phase, microstructure and bonding strength. J Mater Sci : Mater Med, 1997, 8 : 193-200.
    [17] E.Chang, W.J.Chang, et al. Plasma spraying of zirconia-reinforced hydroxyapatite composite coatings on titanium : Part Ⅱ dissolution behaviour in simulated body fluid and bonding degradation. J Mater Sci : Mater Med, 1997, 8 : 201-211.
    [18] 夏志道,李世普.从无生命到有生命.生命科学,1994,6(4):4-6.
    [19] J.Rieu, A.Pichat, et al. Structural modifications induced by ion implantation in metals and
    
    polymers used for orthopaedic prostheses. Mater Sci and Technol, 1992, 8 : 589-593.
    [20] 季红兵,夏立芳,等.Ti6A14V合金氮离子注入层的成分、组织结构及摩擦学性能.金属热处理,2000,2:7-10.
    [21] Tengvall P, Lundstrom I. Physico-chemical considerations of titanium as a biomaterial. Clin Mater, 1992, 9 : 115-134.
    [22] Mckellop H A, Rostlund T V. Wear behaviour of ion-implanted Ti6A14V against UHMW polyetbylene. J Biomed Mater Res, 1990, 24 : 1413-1425.
    [23] Rostlund T, Thomsen P et al. Difference in tissue response to nitrogen-ion-implanted titanium and c.p.titanium in the abdominal wall of the rat. J Biomed Mater Res, 1990, 24 : 847-860.
    [24] S.M.Johns, T.Bell, et al. Wear resistance of plasma immersion ion implanted Ti6A14V. Surf Coat Technol, 1996,85 : 7-14.
    [25] 汪大林.用离子注入法改善钛种植体的性能.钛工业发展,1998,3:16.
    [26] 段德生,姜鸿志,等.一氧化碳离子注入的钛合金体外细胞培养与耐磨效果观察.中华医学杂志,1991,71(9):518-519.
    [27] Perry A. Ion implantation of titanium alloys for biomaterial and other applications. Surf Eng, 1987, 3 : 154-159.
    [28] 冯庆玲,罗忠升,等.’96中国材料研讨会论文集.化学工业出版社,1997,p2.
    [29] F.Z.Cui, Z.S.Luo, Q.L.Feng. Highly adhesive hydroxyapatite coatings on titanium alloy formed by ion beam assisted deposition. J Mater Sci : Mater Med, 1997, 8 : 403-405.
    [30] 刘仲阳,廖小东,等.氩离子辅助沉积生物玻璃陶瓷的结构和特性研究.功能材料,2002,33(2):200-203.
    [31] Daniel J Chwirut, H.Semih Oktay, Tara Ryan. Proceedings of the 2nd international conference on shape memory and superelastic technologies (USA, Pacific Grove) ,1997,p369.
    [32] 陈吉华,杨大智,等.Ti—Ta—O复合薄膜的制备及抗腐蚀性.材料研究学报,2001,15(5):587-592.
    [33] 王昌祥,陈治清.生物材料的离子束表面改性.功能材料,1999,30(3):246-248.
    [34] 张通和,易仲珍,等.离子束医用材料改性.北京师范大学学报,2001,37(6):750-753.
    [35] 刘谦祥,李德军.氮化钛薄膜的制备及其机械性能的研究.天津师范大学学报(自然科学版),2001,21(1):19-22.
    [36] Xudong Li, Jie Weng, Wei Tong, et al. Characteriazation of hydroxyapatite film with mixed interface by Ar~+ ion beam enhanced deposition. Biomaterials, 1997, 18:1487-1493.
    [37] J.L.Ong, L.C.Lucas, et al. Structure, solubility and bond strength of thin calcium phosphate coatings produced by ion beam sputter deposition. Biomaterials, 1992, 13(4) : 249-254.
    [38] 王昌祥,陈治清,邱静,等.离子束溅射沉积羟基磷灰石涂层钛种植体材料的制备和表征.功能材料,1999,30(4):438-440.
    [39] 陈飞,潘俊德,等.网状阴极溅射法在钛合金表面渗镀Ta的耐蚀性研究.材料热处理学报,2002,23(1):54-56.
    [40] D.M.Grant, W.J.Lo, et al. Biocompatible and mechanical properties of low temperature deposited quaternary (Ti,Al,V)N coatings on Ti6A14V titanium alloy substrates. J Mater
    
    Sci : Mater Med, 1996, 7 : 579-584.
    [41] 黄金昌.低温沉积在Ti一6Al一4V合金上的(Ti,Al,V)N涂层生物相容和机械性能.稀有金属快报,1997:14.15.
    [42] G.Heinrich, T.Grogler, et al. CVD diamond coated titanium alloy for biomedical and aerospace applications. Surf Coat Technol, 1997, 94-95 : 514-520.
    [43] J.Narayan, W.D.Fan, et al. Diamond, diamond-like and titanium nitride biocompatible coatings for human body parts. Mater Sci and Eng, 1994, B25 : 5-10.
    [44] F.L.Freire Jr, G.Mcriotto, et al. Amorphous hydrogenated carbon nitride films obtained by plasma-enhanced chemical vapour deposition. Surf Coat Technol, 1995, 74-75 : 382-386.
    [45] 程宇航.人工关节无机涂层材料.功能材料,1999,30(5):467-469.
    [46] T.Kokubo, H.M.Kim, et al. Ceramic-metal and ceramic-polymer composites prepared by a biomimetic process. Composites, 1999, A30 : 405-409.
    [47] 杨贤金,何菲,朱胜利,等.化学修饰对NiTi形状记忆合金氧化膜的影响.功能材料,2002,33(2):169-171.
    [48] Xiao-Xiang Wang, Satoshi Hayakawa, et al. Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H_2O_2/HCI solution. Biomaterials, 2002, 23 : 1353-1357.
    [49] Xiao-Xiang Wang, Satoshi Hayakawa, et al. Improvement of bioactivity of H_2O_2/TaCl_5-treated titanium after subsequent heat treatments. J Biomed Mater Res, 2000, 52 : 171-176.
    [50] M.Shirkhanzadeh. Bioactive calcium phosphate coatings prepared by electrodeposition. J Mater Sci Lett, 1991, 10 : 1415-1417.
    [51] M.Shirkhanzadeh. XRD and XPS characterization of superplastic TiO_2 coatings prepared on Ti6A14V surgical alloy by an electrochemical method. J Mater Sci : Mater Med, 1995, 6 : 206-210.
    [52] M.Shirkhanzadeh. Calcium phosphate coatings prepared by electrocrystallization from aqueous electrolytes. J Mater Sci : Mater Med, 1995, 6 : 90-93.
    [53] M.Shirkhanzadeh. Nanoporous alkoxy-derived titanium oxide coating : a reactive overlayer for functionalizing titanium surface. J Mater Sci : Mater Med, 1998, 9 : 355-362.
    [54] 孙洪志.钛合金表面的改性研究.稀有金属快报,1999:3-5.
    [55] 薛文斌,王超,等.TC4钛合金表面交流微弧氧化膜研究.无机材料学报,2002,17(2):326-331.
    [56] 憨勇,徐可为.微弧氧化生成含钙磷氧化钛生物薄膜的结构.无机材料学报,2001,16(5):951-956.
    [57] 刘敬肖,杨大智,蔡英骥.医用NiTi合金表面溶胶-凝胶法制备TiO_2-SiO_2薄膜.无机材料学报,2001,16(1):75-80.
    [58] 刘敬肖,杨大智.医用NiTi合金表面溶胶-凝胶法制备含磷TiO_2薄膜.硅酸盐学报,2002,30(1):45-50.
    [59] 黄立业,憨勇,徐可为.电化学沉积-水热合成法制备羟基磷灰石生物涂层的工艺研究.硅酸盐学报,1998,26(1):87-91.
    [60] Li Yu Bao, K.De.Groot, et al. Morphology and composition of nanograde calcium phosphate needle-like crystals formed by simple hydrothermal treatment. J Mater Sci : Mater Med, 1994,
    
    5:326-331.
    [61] 张亚平,高家诚,文静.钛合金表面激光熔凝一步制备复合生物陶瓷涂层.材料研究学报,1998,12(4):423-426.
    [62] Rostlund T, Mckellop H, Albrektsson B, et al. Wear of ion implanted pure titanium against UHMWPE. Biomaterials, 1989, 10 : 176-181.
    [63] Narayan J, Fan W D, Narayan R J, et al. Diamond, diamond-like and titanium nitride biocompatible coatings for human body parts. Mater Sci and Eng, 1994, B25 : 5~10.
    [64] 王坚.钛瓷结合的研究现状.江西医学院学报.2002,42(6):189-190.
    [65] 何惠明,毛勇,温宁.溶剂处理对钛一瓷结合强度的影响.临床口腔医学杂志,2000,16(1):13-14.
    [66] Adachi M. Oxide adherence and porcelain bonding to titanium and Ti6A14V alloy. Dent Res, 1990, 69 (10) : 1230.
    [67] 何惠明,艾绳前,王宝成,等.钛表面烤瓷的预氧化处理工艺研究.实用口腔医学杂志,1998,14(1):14-17.
    [68] 任卫红,郭天文.影响钛一瓷结合力的因素分析.中华口腔医学杂志,2000,35(4):309-311.
    [69] Xiao-xiang Wang, Akiyoshi Osaka, et al. Biomimetic deposition of calcium phosphate on thermally oxidized titanium and PTFE substrates. Key Eng Mater, 2001, 192-195 : 291-294.
    [70] Xiao-Xiang Wang, Satoshi Hayakawa, et al. A comparative study of in vitro apatite deposition on heat-, H_2O_2-, and NaOH-treated titanium surfaces. J Biomed Mater Res, 2001, 54 : 172-178.
    [71] H.Dong, X.Y.Li. Oxygen boost diffusion for the deep-case hardening of titanium alloys. Mater Sci & Eng, 2000, A280 : 303-310.
    [72] H.Dong, A.Bloyce, P H.Morton, T.BelI. Surface engineering to improve tribological performace of Ti-6Al-4V. Surf Eng, 1997, 13 (5) : 402-406
    [73] H.Dong, T.Bell. Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment. Wear, 2000,238 : 131-137.
    [74] J.Komotori, B.J.Lee, H.Dong, P.A.Dearnley. Corrosion response of surface engineered titanium alloys damaged by prior abrasion. Wear, 2001, 251 : 1239-1249.
    [75] A.Bloyce, P.-Y.Qi, H.Dong, T.Bell. Surface modification of titanium alloys for combined improvements in corrosion and wear resistance. Surf Coat Technol, 1998, 107: 125-132.
    [76] R-Y.Qi, X.Y.Li, et al. Characterisation of the palladium-modified thermal oxidation-treated titanium. Mater Sci and Eng, 2002, A326: 330-342.
    [77] 表面氧化处理的生体用钛合金,金属功能材料,2002,p42.
    [78] M.F.Lopez, J.A.Jimenez, A.Gutierrez. Corrosion study of surface-modified vanadium-free titanium alloys. Electrochimica Acta, 2003, 48: 1395-1401.
    [79] 朱月秀,胡云展.溅射—阳极氧化法在釉面砖上制备多彩TiO_2膜.真空,2001,6:26-28.
    [80] 张永德.钛的着色工艺原理及其应用.表面技术,2001,30(2):33-35.
    [81] 闫召民,郭天文,余建军,等.电解电压对钛阳极氧化色彩的影响.实用口腔医学杂志,2001,17(6):530-533.
    [82] Karl Hauffe. Oxidation of Metals. Plenum Press, 1965.
    
    
    [83] Zheng Chuan-Lin, Xu Zhong, Xie Xi-Shan, et al. Study on plasma oxygen permeation of titanium. Journal of University of Science and Technology Beijing, 2002, 24(1): 44-46.
    [84] W.Rostoker. Observations on the Lattice Parameters of the Alpha and TiO Phases in the Titanium-Oxygen System. Journal of Metals, 1952, 9: 981-982.
    [85] 范雄.金属X射线学.机械工业出版社,1988.
    [86] 有色金属及其热处理.国防工业出版社,1981.
    [87] 夏立芳.金属热处理工艺学.哈尔滨工业大学出版社.1998.
    [88] 杨迪,杨辉其,周培贤,等.金属硬度试验.计量出版社.1983.
    [89] 杨迪,李福欣.显微硬度试验.中国计量出版社.1988.
    [90] K.-H. 哈比希.材料的磨损与硬度.机械工业出版社.1984.
    [91] 翟金坤.金属高温腐蚀.北京航空航天大学出版社.1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700