用户名: 密码: 验证码:
电解锰废渣中耐锰霉菌Fusarium sp.的鉴定及其浸锰能力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物冶金是一种利用微生物从矿物中提取有价金属的经济方法,特别适用于处理贫矿、表外矿及废矿,并具有成本低、投入小、能耗低、环境污染小等突出优点。在生物冶金中,对高效浸矿菌种的选育和机理研究意义重大。彭小伟等已从电解锰废渣中筛选出一株锰抗性强的霉菌A5,并对其进行了初步鉴定。在本文研究中,通过扩增26S rDNA D1/D2区序列,A5菌进一步鉴定为Fusarium属的一个种。为了研究其在电解锰废渣浸出中的作用,从锰渣及Fusarium sp.的特性出发,通过摇瓶试验对其浸锰条件进行了优化,同时考察了Fusarium sp.浸取前后锰渣中金属锰的形态变化,并对其浸锰能力进行了研究,初步探讨了Fusarium sp.的浸锰机理。
     从电解锰废渣土壤中筛选分离到一株锰抗性强的霉菌A5,已对其形态特征进行了初步研究。其菌丝细长,菌落疏松,菌落表面有绿、青、黑、橙不同颜色,培养基正反两面颜色有一定差异。基于26S rDNA,测序结果表明此菌属于Fusarium属的一个种。利用Fusarium sp.进行锰渣摇瓶浸出试验,试验发现,矿浆浓度为10%时锰浸出率最高,当矿浆浓度大于10%时,锰浸出率有所下降;锰浸出率随时间的增加而提高,30h时达到最大;加大接种量,对锰浸出率影响不大。Fe2+和Fe3+的加入能够提高锰浸出率。
     采用优化的BCR(European Community Bureau of Reference)连续萃取方案对Fusarium sp.浸取前后的金属锰进行了形态分析,研究了其锰浸出率和浸取前后锰的形态变化特征。同时考察了3种萃取剂EDTA、HNO_3和CaCl_2对锰的萃取效率及萃取后金属锰的形态变化,发现Fusarium sp.对锰的浸取能力较显著,3天后锰浸出率达56.5%,有利于从锰渣中回收金属锰。3种萃取剂对锰的浸取效果为EDTA>HNO_3>CaCl_2,平均萃取效率依次为50.0%,28.8%和21.2%。浸取前后,酸溶解态锰所占比例变化较显著,酸溶解态锰是比较容易浸取的形态。
     浸取过程中真菌代谢产生的生物酸是最重要的浸取剂。真菌浸矿的过程,不仅仅是其代谢产生生物酸参与的化学反应,微生物本身也起到了重要的作用。通过考察不同浓度硝酸、柠檬酸和草酸(0.1M和0.5M)的浸锰能力及Fusarium sp.浸锰过程中培养液pH的变化,对Fusarium sp.的浸锰机理进行了初步研究。同时对浸取前后的Fusarium sp.进行了扫描电镜,结果显示,Fusarium sp.代谢过程产生生物酸并参与了反应, Fusarium sp.本身在锰浸出过程中也起到了一定的吸附作用。
Bioleaching is an economical method for the recovery of metals from minerals, especially from low grade ores, overburden and waste from current mining operations, which requires moderate capital investment with low operating cost. Furthermore, bioleaching is generally more environmentally friendly than conventional metal recovery processes. Therefore, it is of great significance for screening efficient strains and studying the mechanisms of bioleaching. The strain A5, which has strong resistance to manganese, has been isolated from electrolytic manganese residue and preliminarily identified by Peng Xiaowei. In this study, the strain A5 was further identified as Fusarium sp. through the amplification of 26S rDNA D1/D2 sequence. To understand the role Fusarium sp. plays in manganese bioleaching, according to the characteristics of Fusarium sp. and manganese residue, we focused on the optimized leaching conditions through shake-flask experiments and the redistribution of Mn before and after bioleaching and the leaching ability of Fusarium sp. and its effect on manganese dissolution from manganese residue.
     The modality of A5, which was slender hyphae, loose colonies, has been studied. It has different colors of green, blue, black, orange in the colony surface and the colors between the positive and negative sides of the medium have a certain difference. Based on 26S rDNA, sequencing results showed that the strain belonged to the genus Fusarium. The shake-flask leaching experiments of Fusarium sp. found that the manganese leaching rate reached the best at the pulp concentration of 10%; when the pulp concentration was higher than 10%, the leaching rate of manganese decreased; with time increasing, the leaching rate of manganese increased and reached the maximum at 30h; the amount of inoculation had little effect on the leaching rate of manganese. Fe~(2+) and Fe~(3+) can enhance the leaching rate.
     The redistribution of Mn was determined using the sequential extraction procedures of the optimized European Community Bureau of Reference (BCR) before and after leaching. Extractions were compared with chemical leaching, where EDTA, HNO_3 and CaCl_2 were used as extractants. Results indicated that Fusarium sp., whose leaching efficiency was 56.5% after three days, showed strong leaching capacity for Mn, providing a scientific basis for manganese residue pollution treatment and resource utilization. The extractability of extractants for Mn was in the order EDTA > HNO_3 > CaCl_2 and the extractable efficiencies were 50.0%, 28.8% and 21.2% respectively. After leaching, the proportion of Mn in acid-extraction fraction varied considerably, showing that the acid-extraction fraction was proned to be leached.
     The bio-acids produced in fungal metabolism are the most important leaching agent. In the fungal bioleaching process, not just the bio-acids involve in the reactions, the microorganisms themselves also play an important role. In order to study the leaching mechanism of Fusarium sp., the leaching capabilities of different concentrations of nitric acid, citric acid and oxalic acid (0.1M and 0.5M) were investigated. The variation of pH of the culture medium was examined simultaneously and it was proved true that Fusarium sp. produced bio-acids which involved in the reactions. The results of the scanning electron microscope of Fusarium sp. before and after bioleaching showed that Fusarium sp. itself had played a certain amount of adsorption effect in the leaching process of manganese.
引文
[1]邱木清,张卫民.微生物技术在矿产资源利用与环保中的应用.矿产保护与利用, 2003, 12(6): 46-51
    [2]庾莉萍.破解我国锰资源贫乏困局.中国有色金属, 2008, ( 23): 36-37
    [3]国家环保总局.清洁生产标准(电解锰行业).北京:中国环境科学出版社, 2006: 1
    [4]喻旗,罗洁,涂文忠.电解金属锰生产的污染及其治理.中国锰业, 2006, 24(3): 42-45
    [5]刘胜利.电解金属锰废渣的综台利用.中国锰业, 1998, 16(4): 34-36
    [6]姚俊,田宗平,吴文学,等.电解锰废水及水底沉积物中重金属元素对流域污染的研究.吉首大学学报, 1999, 20(3): 30
    [7]葛晓霞,蔡固平,曾光明.硫酸锰废渣无害化及资源化研究.中国锰业, 2004, 22(1): l0-15
    [8]胡南,周军媚,刘运莲等.硫酸锰废渣的浸出毒性及无害化处理的研究.中国环境监测, 2007, 23(2): 49-51
    [9]关振英.电解锰生产废渣用作水泥生产缓凝剂的研究.中国锰业, 2000, 5(2): 51-52
    [10]谢显明.电锰渣及其研制品的肥效特性分析.中国锰业, 1999, 17(4): 45-49
    [11]徐风广.含锰废渣用于公路路基回填土的试验研究.中国锰业, 2001, 11(4): 1-3
    [12]宁平,陈亚雄,孙佩石等.含锰废渣吸收低浓度SO2生产MnS04·H2O研究.环境科学, 1997, 11(18): 58-60
    [13] Brieriey L.细菌的氧化作用.湿法冶金, 1996, (4): 44-47
    [14]杨显万,沈庆峰,郭玉霞.微生物湿法冶金.北京:冶金工业出版社, 2003: 3-4
    [15] Colmer A R, Hinckle M E. The role of microorganisms in acid mine drainage: a preliminary report. Science, 1947, 106(2751): 253-256
    [16] Temple K L, Delchamps E W. Autotrophic bacteria and the formation of acid in bituminous coal mines. Applied Microbiology, 1953, 1(5): 255-258
    [17] Leathen W W, Kinsel N A, Braley S A. Ferrobacillus ferrooxidans: a chemosynthetic autotrophic bacterium. Journal of Bacteriology, 1956, 72(5): 700-704
    [18] Zimmerley S R, Wilson D G, Prater J D. Cyclic leaching process employing iron oxidizing bacteria. US Patent: 2829964, 1958-04-08
    [19] Olson G J, Brierley J A, Brierley C L. Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology, 2003, 63(3): 249-257
    [20] Rohwerder T, Gehrke T, Kinzler K, et a1. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. AppliedMicrobiology and Biotechnology, 2003, 63(3): 239-248
    [21] Suzuki I. Microbial leaching of metals from sulfide minerals. Biotechnology Advances, 2001, 19(2): 119-132
    [22] Brierley J A, Brierley C L. Present and future commercial applications of biohydr- ometallurgy. Hydrometallurgy, 2001, 59(2-3): 233-239
    [23] Morin D, Lips A, Pinches T, et al. BioMinE-Integrated project for the development of biotechnology for metal-bearing materials in Europe. Hydrometallurgy, 2006, 83(1-4): 69-76
    [24] Yang S, Xie J, Qiu G H. Research and application of bioleaching and biooxidation technologies in China. Minerals Engineering, 2002, 15(5): 361-363
    [25] Ruan R M, Wen J K, Chen J H. Bacterial heap-leaching: practice In Zijinshan copper mine. Hydrometallurgy, 2006, 83(1-4): 77-82
    [26] Rawlings D E, Dew D, du P C. Biomineralization of metal-containing ores and concentrates. Trends in Biotechnology, 2003, 21(1): 38-44
    [27] Clark M E, Batty J D, van Buuren C B, et a1. Biotechnology in minerals processing: technological breakthroughs creating value. Hydrometallurgy, 2006, 83(1-4): 3-9
    [28] Visca P, Bianchi E, Polidoro M, et a1. A new solid medium for isolating and enumerating Thiobacillus ferrooxidans. Journal of General and Applied Microbiology, 1989, 35(2): 71-81
    [29] Garcia O J R, Mukai J K, Andrade C B. Growth of Thiobacillus ferrooxidans on solid medium: effects of some surface-active agents on colony formation. Journal of General and Applied Microbiology, 1992, 38(3): 279-282
    [30] Khalid A M, Bhatti T M, Umar M. An improved solid medium for isolation, enumeration and genetic investigations of autotrophic iron- and sulphur-oxidizing bacteria. Applied Microbiology and Biotechnology, 1993, 39(2): 259-263
    [31] Sugio T, Uemura S, Makino I, et al. Sensitivity of iron-oxidizing bacteria Thiobacillus ferrooxidans and Leptospirillum ferrooxidans. Applied and Enviromental Microbiology, 1994, 36(2): 722-725
    [32] Dejong G A H, Hazeu W, Bos P, et a1. Polythionate degradation by tetrathionate hydrolase of Thiobacillus ferrooxidans. Microbiology, 1997, 143(2): 499-504
    [33] Sanhueza A, Eerier I J, Vargas T, et al. Attachment of Thiobacillus ferrooxidans on syn- thetic pyrite of varying structural and electronic properties. Hydrometallurgy, 1999, 51(1): 115-129
    [34] Sampson M I, Phillips C V, Blake R C.Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides. Minerals Engineering, 2000, 13(4): 373-389
    [35] Sampson M I, Phillips C V, Ball A S. Investigation of the attachment of Thiobacillusferrooxidans to mineral sulfides using scanning electron microscopy analysis. Minerals Engineering, 2000, 13(6): 643-656
    [36] Okibe N, Johnson D B. Biooxidation of pyrite by defined mixed culture of moderately thermophilic acidophiles in pH-controlled bioreactor:significance of microbial interac- tion. Biotechnology and Bioengineering, 2004, 87(5): 574-583
    [37]魏以和,王军.矿物生物技术的微生物学基本方法.国外金属矿选矿, 1996, (1): 14-27
    [38]耿冰,郑宇,邸进申等.氧化亚铁硫杆菌的生物学特性研究进展.生物技术, 2004, 14(2): 71-74
    [39]熊英.氧化亚铁硫杆菌的驯化与诱变选育.矿产综合利用, 2001, 12(6): 27-30
    [40]刘振盈.氧化亚铁硫杆菌质粒PTf-52限制图谱和嵌合质粒pSDF-1的构建.山东大学学报, 1990, 25(3): 389-394
    [41]刘振盈.氧化亚铁硫杆菌w-55基因文库的构建.山东大学学报, 1993, 28(3): 358-364
    [42]骆海明,赵军.嗜热氧化亚铁菌株的筛选及其特性研究.首都师范大学学报, 2002, 22(3): 44-46
    [43]邹平,杨家明.嗜热嗜酸菌对低品位原生硫化铜矿的柱浸试验.有色金属, 2003, 55(4): 48-51
    [44]刘汉钊,张永奎.微生物在矿物工程上应用的新进展.国外金属矿选矿, 1999, 36 (12): 9-12
    [45]柳建设,邱冠周.硫化矿物细菌浸出机理探讨.湿法冶金, 1997, (3): 1-3
    [46]张广积.生物氧化浸矿的发展和现状.黄金科学技术, 2000, 8(6): 28-35
    [47]汪询,龚文琪.微生物学在浸矿技术中的应用研究.武汉理工大学学报, 2005, 27(3): 56-58
    [48]方兆珩.硫化矿细菌氧化浸出机理.黄金科学技术, 2002, 1(5): 26-31
    [49]胡凯光.细菌浸矿机理和影响因素.中国矿业, 2004, 13(4): 73-77
    [50]李宏煦,王淀佐.生物冶金中的微生物及其作用.有色冶金, 2003, 55(2): 58-63
    [51]李宏煦,刘晓荣.黄铁矿和镍黄铁矿混合细菌浸出过程的原电池效应.有色金属, 2002, 54(2): 47-51
    [52] Pracejus B, Vargab R A, Madgwick J C, et al. Effects of mineral composition on microbiological reductive leaching of manganese oxides. Chemical Geology, 1990, 88(1): 143-149
    [53] Myers, Charles R, Nealson, et al. Microbial reduction of manganese oxides-Interactions with iron and sulfur. Geochimica et Cosmochimica Acta, 1988, 52(11): 2727-2732
    [54]杜竹玮,李浩然.微生物还原浸出法回收废旧电池粉末中的金属锰.环境污染治理技术与设备, 2005, 6(9): 62-64
    [55]都瑞霞,关广击.共生生金菌与锰的相互作用机制.地质与勘探, 1996, 32(2): 19-22
    [56]陈祥军,高占凤.锰的细菌氧化实验研究.石家庄铁道学院学报, 1999, 12(3): 77-79
    [57] Ehrlich H L, Ghiorse W C, Johnson G L. Distribution of microbes in manganese nodules from the Atlantic and Pacific Oceans. Devel Ind Microbiol, 1972, (13):57-65
    [58] Ghiorse W C , Hirsch P. Iron and manganese deposition by budding bacteria. Environ- mental Biogeochemistry and Geomicrobioloqy, 1978, (3): 897-909
    [59]李浩然,冯雅丽.微生物催化还原浸出大洋结核中锰的研究.中国锰业, 2001, 19(4): 4-7
    [60]钟慧芳,蔡文六.细菌浸出天台山锰矿半工业性试验.无机盐工业, 1989, (5): 1-5
    [61] Das N, Jana R.K. Adsorption of some bivalent heavy metal ions from aqueous solutions by manganese nodule leached residues. J Colloid Interface Sci, 2006, 293(2): 253-262
    [62] Salgado A L, Veloso A M O, Pereira D D, et al. Recovery of zinc and manganese from spent alkaline batteries by liquid-liquid extraction with Cyanex 272. J Power Sources, 2003, 115(2): 367-373
    [63]徐凤广,徐怡珊.将锰泥用于路基稳定土的试验研究.化工环保, 2002, 22(5): 253-256
    [64]关振英.电解锰生产废渣用作水泥生产缓凝剂的研究.中国锰业, 2000, 18(2): 51-52
    [65]张碧泉,卢兆忠,陈安.以富锰渣为原料制备氯化锰溶液.中国锰业, 2000, 18(1): 30-32
    [66]欧阳玉祝,彭小伟,曹建兵等.助剂作用下超声浸取电解锰渣.化工环保, 2007, 27(3): 257-259
    [67]彭小伟,欧阳玉祝,李佑稷等.电解金属锰废渣中霉菌的分离驯化及吸附特性研究.中国锰业, 2008, 26(2): 24-27
    [68]魏景超.真菌鉴定手册.上海:上海科学技术出版社, 1979: 63-133
    [69]党志,刘从强,尚爱安.矿区土壤中重金属活动性评估方法的研究进展.地球科学进展, 2001, 16(1): 86-92
    [70] Quevauviller P H, Rauret G., Lopez-Sanchez J F, et al. Certification of trace metal extractable contents in a sediment reference material (CRM601) following a three-step sequential extraction procedure. Sci Total Environ, 1997, 205(2-3): 223-234
    [71] Rauret G., Lopez-Sanchez J F, Sahuquillo A, et al. Improvement of the BCR three-step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit, 1999, 1(1): 57-61
    [72] Barona A, Aranguiz I, Elias A. Metal associations in soils before and after EDTA extractive decontamination: implications for the effectiveness of further clean-up procedures. Environ Pollut, 2001, 113(1): 79-85
    [73] Pueyo M, Lopez-Sanchez J F, Rauret G.. Assessment of CaCl2, NaNO3 and NH4NO3extraction procedures for the study of Cd,Cu,Pb and Zn extractability in contaminated soils. Anal Chim Acta, 2004, 504(2): 217-226
    [74] Lebourg A, Sterckeman T, Ciesielski H, et al. Trace Metal Speciation in Three Unbuffered Salt Solutions Used to Assess their Bioavailability in Soil. J Environ Qual, 1998, 27(3): 584-590
    [75] Abbruzzese C, Duarte M Y, Paponetti B, et al. Biological and chemical processing of low-grade manganese ores. Miner Eng, 1990, 3(3-4): 307-318
    [76] Stone A T. Microbial metabolites and the reductive dissolution of manganese oxides: Oxalate and pyruvate. Geochim Cosmochim Acta, 1987, 51(4): 919-925
    [77]刘兴起,于昇松,邵明昱.察尔汗盐湖91-Ⅳ_ 4孔沉积地层元素地球化学的研究.湖泊科学, 1995, 7(4): 321-326
    [78] Valix M, Usai F, Malik R. Fungal bio-leaching of low grade laterite ores. Miner Eng, 2001, 14(2): 197-203
    [79]马建立,郭斌,赵由才.绿色冶金与清洁生产.北京:冶金工业出版社, 2007: 352-353
    [80]钟慧芳.浸锰微生物及其浸锰的研究.中国锰业, 1986, 3(12): 68-72
    [81] Ehrlich H L, Brierley C L. Microbial mineral recovery. New York: McGraw-Hill,1990: 55-65
    [82]微生物生態研究会.極限環境の微生物.東京:学会出版センター, 1980: 68-72
    [83] Acharya C, Kar R N, Sukla L B. Studies on reaction mechanism of bioleaching of manganese ore. Miner Eng, 2003, 16(10): 1027-1030
    [84] Mulligan C N, Kamali M, Gibbs B F. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger. J Hazard Mater, 2004, 110(1-3): 77-84
    [85] Yang J, Wang Q H, Wang Q, et al. Heavy metals extraction from municipal solid waste incineration fly ash using adapted metal tolerant Aspergillus niger. Bioresour Technol, 2009, 100(1): 254-260
    [86] Gupta A., Ehrlich H L. Selective and non-selective bioleaching of manganese from a Manganese-containing silver ore. Bioresour Technol, 1989, 9(4): 287-304
    [87] Wu H Y, Ting Y P. Metal extraction from municipal solid waste(MSW) incinerator fly ash-Chemical leaching and fungal bioleaching. Enzyme Microb Technol, 2006, 38(6): 839-847

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700