用户名: 密码: 验证码:
赤泥脱碱放大试验及硅肥标准制订
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赤泥是氧化铝工业冶炼过程排放的碱性固体废弃物,含有多种金属氧化物活性成分、有价金属等,同时含有4%-9%的(Na2O+K2O)及灼碱成份,其碱性强而难以得到有效利用。随着铝工业的快速发展,赤泥排放量急剧增长,带来的环境污染及其综合利用问题倍受关注。本研究任务来源于河南省重大公益科研项目,旨在降低赤泥中碱含量,使其在建材、农业等领域得到资源化利用。
     在前期赤泥脱碱小试成功的基础上,利用自行设计安装在中国长城铝业公司的工业化装置进行了放大试验,对实验室最佳脱碱工艺条件进行了验证,获得较佳的放大工艺条件。采用铝土矿化学分析方法、XRD、筛分法及SEM等分析手段对脱碱前后赤泥的组成和物相特征进行了全面分析对比;并对脱碱后赤泥用于硅肥生产进行了初步研究,为实现脱碱赤泥的农业规模化应用奠定基础。
     本文选用PC400×300锤式破碎机、振动筛(筛网孔径5mm)、MQG900×2100型单仓湿式溢流型球磨机、DU0.8/500-A型橡胶带式真空过滤机等设备,采用一段连续进料球磨、二段加酸连续进料球磨工艺流程,进行了烧结法赤泥脱碱试验研究。结果表明,赤泥料浆的固含量对球磨效果影响不大,但针对本试验装置,采用固含量为30%料浆比较适宜。在固含量为30%的赤泥料浆中,加入酸(按从原赤泥中脱除3.81%Na2O所需的硫酸计量)脱碱,脱碱后赤泥料浆经过滤、洗涤、烘干,Na2O含量降低了51.44%,K20含量降低了38.06%,脱碱效果较好,基本达到了预期目标,日处理赤泥量在10-15t。此外,采用此工艺对拜耳法赤泥进行了探索性脱碱试验研究,结果表明,拜耳法赤泥脱碱后Na2O含量仅降低了25.04%,K20仅降低了12.29%,没有烧结法赤泥脱碱效果好。
     此外,通过球磨机的球磨细化,赤泥颗粒的形态结构发生了变化,活性增加。对脱碱后赤泥进行XRD分析发现,其活性硅和活性钙总含量可达50%以上,且含有Mg、P、K等植物所需的养分,因此,将脱碱后赤泥制成的肥料于2011年施于信阳罗山春季水稻试验田,水稻增产约15%,具有成熟早、病虫害少、抗倒伏等特点。同时为了尽快实现赤泥硅肥的产业化,保证产品质量,规范赤泥硅肥市场,促进其健康快速的发展,初步制订了赤泥硅肥企业标准。
     最后,对脱碱中试试验结果进行了经济评价,采用此生产装置,年处理赤泥量可达54753吨,按照每年处理赤泥5000吨,赤泥加入量为70%生产硅肥,年销售硅肥量7000吨,800元/吨,年净利润为259.07元,具有良好的经济效益和工业应用价值。同时,也为实现赤泥规模化应用提供了理论基础和技术依据。
Red mud is the alkaline solid wastes discharged from alumina during smelting process, in addition to contain a variety of metal oxides, valued metals and other active ingredients, while also containing4%-9%(Na2O+K2O) and ignition loss, its strong alkaline and is difficult to be effectively utilized. Along with the rapid development of aluminum industry, the amount of the red mud has increased dramatically which bring about environmental pollution and comprehensive utilization issues concerned. The study comes from Henan province major commonweal scientific research project, aimed at reducing the content of alkali in red mud, so that resource utilization in building materials, agriculture and other fields.
     The study of early lab trials in the red mud dealkalization process was successful, on the basis of this, designed and installed the industrialization of the enlargement test device in the Great Wall of China Aluminum Corporation,verified the optimal conditions of dealkalization process on laboratory tests, to obtain better amplification process conditions.The methods for bauxite chemical analysis, XRD,sieving method, SEM and other means were analyzed and compared for the composition and phase characteristics of the red mud off before and after alkali.and the red mud dealkalization after for silicon fertilizer production is studied, in order to realize the red mud of agricultural scale application.
     This paper selects PC400x300hammer crusher, vibrating screen (screen aperture5mm), MQG900×2100Dan Cang wet overflow type ball mill, DU0.8/500-A rubber belt vacuum filter and other equipment, using a continuous feed milling, two acid continuous feed milling process, the sintering red mud off the alkali test results showed that, the red mud slurry solid content on the ball milling effect little, but for the test device, the use of the solid content of30%slurry is more appropriate.The red mud slurry solid content of30%, adding acid (from the original red mud by removing3.81%Na2O required sulfuric acid measurement) to take off the alkali, off alkaline red mud slurry after filtering, washing, drying, decreased the content of Na2O51.44%, K2O decreased by38.06%, alkali removing effect was good, basically achieved the expected goals, the amount of dealed with red mud every day was about in10-15t.In addition, the use of this technology in Bayer red mud off the alkali exploratory test.The results showed that, the content of No2O is reduced by25.04%, K2O only decreased by12.29%, alkali removing effect is not good.
     In addition,, through the ball mill milling thinning, red mud particle morphology was changed, greatly improving the content of active components. In the sintering red mud after the removal of alkali based on XRD analysis, the active silica and active calcium content could reach above50%, and containing Mg, P, K and other nutrients plants required, which could be directly used in the production of silicon calcium fertilizer after dry ball milling. Applied fertilizer made of red mud off alkali Xinyang Luoshan in2011spring rice experimental field, rice yield of about15%, with early maturity, fewer pests and diseases, lodging resistance and other characteristics. At the same time in order to achieve the red mud silicon fertilizer industrialization as soon as possible, guarantee of product quality, specification of red mud silicon market, to promote its healthy and rapid development, the initial formulation of the red mud fertilizer enterprise standard was made.
     Finally, according to the economic evaluation, the production equipment, this production unit with annual production capacity was up to5475tons, in accordance with the annual processing5000tons, the red mud addition amount about70%to produce silicon fertilizer, annual sales volume is about7000tons,800RMB/ton, the annual net profit was about2590700RMB,with good economic benefit and application value, at the same time, also for red mud achieve scale application provided theoretical basis and technical basis.
引文
[1]景英仁,景英勤,杨奇.赤泥的基本性质及其工程特性[J].轻金属,2001(4):20-23
    [2]白英彬.浅谈赤泥的资源化综合利用[J].科技情报开发与经济,2011(22):137-140
    [3]南相莉,张廷安,刘燕等.我国主要赤泥种类及其对环境的影响[J].过程工程学报,2009(S1):459-464
    [4]罗道成,刘俊峰,易平贵等.氧化铝厂赤泥综合利用的新工艺[J].中国矿业,2002(5):50-53
    [5]戚焕岭.氧化铝赤泥处置方式浅谈[J].有色冶金设计与研究,2007(Z1):121-125
    [6]周存旋,张济宇,李宝霞.硅肥发展现状及展望[J].化学工业与工程技术,2006(6):48-53
    [7]李晓东,吴一峰,张冬梅等.赤泥综合利用的探索[J].铝镁通讯,2007(3):14-16
    [8]饶平平.拜耳法干式赤泥基本特性及堆场运行特征分析[J].工程地质学报,2010,18(3):340-344
    [9]李小雷,翟二安,陶丰等.赤泥的特性及其在建材方面的应用[J].科协论坛,2010(2):7-8
    [10]王平升.烧结法赤泥的矿物学特征与快速固化机理[J].有色金属,2005(3):115-119
    [11]郭晖,管学茂,马小娥.烧结法赤泥物理化学特性的研究[J].山两冶金,2010(6):1-3
    [12]和丽锋.联合法生产氧化铝的基本流程及优缺点分析[J].今日科苑,2010(2):59-60
    [13]杨重愚.氧化铝生产工艺学[M].冶金工业出版社,1982
    [14]刘福刚.赤泥综合利用技术应用回顾和展望[J].化学工程师,2011,25(6):45-46
    [15]Braithwait M. Beneficiation of iron oxide waste, GB Patent 2078211-A., Jan.1982
    [16]李卫东.拜耳法赤泥选铁新技术研究[D],[硕士论文].长沙:中南大学图书馆.2006
    [17]Qinfang Xiang X L M E. Watson.Low-temperature reduction of ferric iron in red mud[J]. Light Metals.2001:157-162
    [18]罗道成,刘俊峰,等.氧化铝厂赤泥综合利用的新工艺[J].中国矿业,2002,11(5):50-53
    [19]Mishra B, Stahy A. Kirkpatrick D. Recovery and utilization of ironfrom red mud[J].Light Metal:proceeding of Sessons,sgns. TMS Annual,2000:149-156
    [20]Mishra B,Staley A. Recovery of value added producla from red mud..Minerals and metallurgical Processing society for mining Metallurgy,2002.19(2):87-89
    [21]Carbothermic reduction of bauxite residue. Shigen-to-Sozai.1999,115(8):611-617
    [22]W. Liu, J. Yang, B. Xiao. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues[J]. Hazard. Mater. (2008),doi:10.1016/ j.jhazmat.2008.03.122
    [23]刘万超,杨家宽,肖波.拜耳法赤泥中铁的提取及残渣制备建材[J].中国有色金属学报,2008,18(1):187--192
    [24]ERCAGT E,APAK R. Furnace smelting and extractive metallurgy of red mud:recovery of TiO2,Al2O3 and pig iron[J]. Journal of Chemical Technology and Biotechnology,1997,70 (8):103-108
    [25]DOBOS G,HORVATH G,FELFOLDI Z.Complex utilization of red mud including the production of pig iron[J].Desalination,1974,195(12):151-159..
    [26]Vinod K. Gupta, Monika Gupta, Saurabh Sharma, Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste, Wat.Res.,35(5),2001,1125-134.
    [27]李轶韬,李军旗,肖伟,等.赤泥酸浸回收钛的实验研究[J].云南化工,2009(6):18-20.
    [28]刘嫦娥,李楠,姜怡娇,等.铝工业废渣-赤泥的综合利用[J].云南环境科学,2006,25(3):39-41
    [29]Smirnov D I,Molehanova T V. The Investigation of Sulfuric Acid Sorption Recovery of Scandium and Uranium from the Red Mud of Alumina Production[J].Hydrometallurgy,1999, 45 (3):249259
    [30]马淑花,郑诗礼,张懿.赤泥中氧化钠和氧化铝的回收[J].矿产综合利用,2008(1):27-31
    [31]Dobos G.,Horvath G., Kaptay G. et al. Method for the treatment of red mud.United States Patent,3989513,1976
    [32]李莉,陈焕平.浅谈氧化铝废料赤泥的综合利用[J].中州煤炭,2009(2):37-38
    [33]刘喜会,康志军,王建军,等.赤泥的脱碱与贮存[J].水泥,1999(10):4-7
    [34]Nevin Y VahdettinS.Utilization of Bauxite Wastein Cerami Glazes[J].Ceram.Int,2000,(26): 485-490
    [35]邢国,焦古忠.利用赤泥粉煤灰研制免蒸烧砖[J].稀有金属与硬质金,1993,6(13):154-163
    [36]杨爱萍.赤泥粉煤灰砖的研制[J],轻金属,1996,12(8):17-18
    [37]张培新.赤泥制作瓷砖黑色颗粒料的研究[J],矿产综合利用,2000,(3):41-43
    [38]吴建锋,王东斌,徐晓虹.利用工业废渣制备艺术型清水砖的研究[J].武汉理工大学学报,2005,27(5):4649
    [39]徐晓虹,邸永江,吴建锋等.利用固体废弃物制备多孔陶瓷滤球的研究[J].陶瓷学 报,2003,24(4):197-200
    [40]张培新,阎加强.显泥微晶玻璃的研究[J].有色金属,2000,52(4):77-79
    [41]刘福刚.赤泥综合利用技术应用回顾和展望[J].化学工程师,2011,25(6):4546
    [42]赵颖,王军,王琪等.赤泥吸附去除淀粉废水中高浓度磷的研究[J].中国给水排水,2009,25(3):20-22
    [43]LOPEZ E.SOTO B,ARIAS M. Adsorbent properties of red mud and its U8e for wastewater treatment.Wat. Res,1998,32(5):1314-1322
    [44]顾明明,栗伟.Al_2O_3赤泥综合利用关键技术与推广应用研究[J].中国有色冶金,2011(2):49-53
    [45]朱强,齐波.国内赤泥综合利用技术发展及现状[J].轻金属,2009(8):7-10
    [46]李莉,陈焕平.浅谈氧化铝废料赤泥的综合利用[J].中州煤炭,2009(2):37-38
    [47]李怡帆,罗亚红,孙剑辉.赤泥对重金属污染土壤的修复效果[J].吉林农业,2010(6):142
    [48]J.Alvaerz,R.Rosal,H.Sastre,F.V.Diez.Characterization and deactivation studies of an activated Sulfided red mud as hydrogenation catalyst[J].Applied CatalysisA:General,1998, 167:215-223.
    [49]J.Alvarez,S.Ordonez,R.Rosal,H.Sastre,F.V.Diez.A new method for enhancing the performance of red mud as a hydrogenationc atalyst[J].Applied CatalysisA:General,1999,180 (1-2):399-409.
    [50]刘作霖,罗玉长,张丽玲.烧结法赤泥脱碱及其表面改性处理工艺[P].CN1141264:山东铝业公司,1997
    [51]刘喜会,康志军.赤泥的脱碱与贮存[J].水泥,1999(10):4-7
    [52]王云山,杨刚,张金平.脱除氧化铝工业产出的赤泥中钠的方法[P].CN102190322A:中国科学院过程工程研究所,2011
    [53]吴永贵,刘方,喻阳华等.用磷石膏对赤泥进行快速脱碱的方法[P].CN102206024A:,2011
    [54]位朋,李惠萍,靳苏静等.氧化铝赤泥用于工业烟气脱硫的研究[J].化工进展,2011(30):344-347
    [55]白光辉,李鹏程,徐鹏等.粉煤灰脱硅碱渣或提取Al2O3工艺后的碱性赤泥的碳分洗涤脱钠方法[P].CN101941783A:西安建筑科技大学,2011
    [56]梅贤功,孔宗毅.国外氧化铝赤泥脱钠的进展[J].轻金属,1992,7:10-13
    [57]王利英,李小雷,翟二安等.赤泥脱碱的研究[J].科技信息.2010(7):367
    [58]栾兆坤,王琪,贾智萍.一种烧结法赤泥常压脱碱方法[P].CN101468866:中国科学院生态环境研究中心,2009.
    [59]吴一峰,李晓东,李慧萍等.一种赤泥脱碱的方法[Z].CN101423318:中国长城铝业公司,2009
    [60]王利英,李小雷,翟二安等.脱硫石膏法赤泥脱碱新工艺研究[J].科技信息,2010,21:48-96
    [61]孙恒虎,冯向鹏,刘晓明等.机械力化学效应对赤泥结构特性和胶凝性能的影响[J].稀有金属材料与工程.2007,36(A02):568-570
    [62]蔡德龙.国内外硅肥研究及应用进展[M].山东泰安:2007
    [63]周春旋,张济宇,李宝霞.硅肥发展现状及展望[J].化学工业与工程技术.2006(6):48-53.
    [64]冯元琦.硅肥应成为我国农业发展中的新肥种[J].化肥工业.2000(4):9-11
    [65]马朝红,杨利,胡时友.土壤供硅能力与硅肥应用研究进展[J].湖北农业科学.2009(4):987-989
    [66]王鑫书,黄德修.赤泥利用的研究[J].轻金属.1999(5):13-15
    [67]焦有.粉煤灰的特性及其农业利用[J].农业环境与发展,1997,12(4):470-475
    [68]汤其章.利用高炉渣开发硅肥[J].粉煤灰,2001,(4):32-33
    [69]杨春华.炼钢炉渣综合利用的经济效益与社会效益[J].环境污染与防止,1992,14(4):43-45
    [70]张锦瑞,王传之.利用粉煤灰生产农用肥[J].化工矿物与加工,2000,(6):14-16
    [71]J.Geiseler,M.Kuehn. Steel & iron Slag fertilizer[J].Iron & Steel Scrap,2000, (3):34-35
    [72]唐福军,曲红杰,张之一.硅肥生产技术综述[J].黑龙江八一农垦大学学报.2006,18(4):72-75
    [73]叶元林,臧惠林等.电解锰渣灰的治理方法及其产品[P],中国:ZL91103273
    [74]Segawa,Hiroshi,Akizuki. Process for producing potassium silicate fertilizer and apparatus for practicing said process[P],America:US 4313753
    [75]Agaric S,Hanaoka N,Ueno O etal. Effects of silicon on tolerance to water deficR and heat stress in rice plants(Oryza satival.),,monitored by electrolyte leakage[J],Plantproductionsci, 1998,1(2):96-103
    [76]Agaric SHU,Agta W, Kubota F etal.Effects of silicon Oil transpiration and leaf conductance in rice plants(Oryza satival.)[J],Plantproduction sci,1998,1(2):89-95
    [77]Richard RB,Patricia AB,David LE etal.Soluble silicon its role in crop and disease management of greenhouse crops[J],Plant Disease,1995,4:329-336
    [78]中华人民共和国农业部.NYT797-2004.硅肥[S].北京:中国农业出版社.2004
    [79]杨丽萍.磷矿石中二氧化硅测定方法的比较[J].磷肥与复肥.2004,19(5):63-64
    [80]国家质量监督检验检疫总局,国家比标准化管理委员会.GB/T 19203-2003.复混肥料中钙、镁、硫含量的测定[S].北京:中国标准出版社.2003
    [81]国家质量监督检验检疫总局,国家比标准化管理委员会.GB/T 23349-2009.肥料砷、镉、铅、铬、汞生态指标[S].北京:中国标准出版社.2003
    [82]河北省质量技术监督局.DB13/T 1225-2010.肥料pH值测定方法[S].河北
    [83]国家质量监督检验检疫总局,国家比标准化管理委员会.GB/T 8576-2010.复混肥料中游离水含量的测定[S].北京:中国标准出版社.2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700