用户名: 密码: 验证码:
电镀锌硅酸盐钝化工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属的腐蚀给人类带来巨大的经济损失和社会危害。电镀锌是提高钢铁抗腐蚀能力的有效途径,但是锌镀层在潮湿的环境中,镀层极易发生腐蚀,从而失去防护作用。为进一步提高镀锌层的耐蚀性,提高其表面质量,延长其使用寿命,需对其进行钝化处理。传统铬酸盐钝化处理毒性大,污染环境和危害人体健康。本论文对无毒、无污染的硅酸盐(Na_2SiO_3)工艺进行了深入研究,并探讨了镀锌层硅酸盐钝化膜的耐蚀机理与成膜机理,主要内容包括:
     采用正交试验及单因素试验确定了硅酸盐钝化最佳钝化液组成:Na_2SiO_3·9H_2O15g/L,H_2SO_4 5ml/L,H_2O_2 10ml/L,HNO_3 5ml/L,添加剂3g/L。该钝化液稳定性好,使用寿命长,适应性强。采用正交试验确定了影响钝化膜耐蚀性的三个主要因素为:钝化温度、pH值、钝化时间;并用单因素试验法研究了各因素对钝化膜耐蚀性的影响,最终确定其最佳工艺条件为:钝化温度15~40℃,pH值2.0~2.8,钝化时间90s左右。
     对钝化及未钝化镀锌层进行中性盐雾试验(NSS)、盐水浸泡试验及CuSO_4点滴试验。试验结果表明,硅酸盐钝化膜能显著提高镀锌层的耐腐蚀性能及抗白锈能力,其耐蚀性优于低铬酸盐钝化膜。
     通过电化学测试等手段研究了钝化及未钝化镀锌钢板在5mass%NaCl溶液中的Tafel曲线、交流阻抗谱和开路电位—时间曲线,并运用计算机拟合方法求解腐蚀电化学参数。其中,硅酸盐钝化膜的电化学参数E_(corr)为-0.85736 V,I_(corr)为0.00012623Amp/cm~2,R_t值为580Ω·cm~2;而低铬酸盐钝化膜的电化学参数为:E_(corr)-0.9456V,I_(corr)0.00034980 Amp/cm~2,R_t 150Ω·cm~2。并结合试验结果,分析了硅酸盐钝化膜耐蚀机理,认为硅酸盐钝化膜提高镀锌层耐蚀性表现为三方面作用:(1)电化学作用;(2)隔离作用;(3)缓蚀作用。
     采用SEM、EDAX及XPS等测试技术对硅酸盐钝化膜表面形貌进行了微观观察及成分分析,并采用电化学方法研究了镀锌层在硅酸盐钝化液中的钝化过程,对硅酸盐钝化膜成膜机理进行了探讨,认为硅酸盐钝化膜形成的过程包括:1)镀锌层的溶解;2)聚合物成膜沉积过程。
     将硅酸盐钝化工艺进行工业扩大试验,研究了扩大规模后钝化液的稳定性及耐蚀性,结果表明,硅酸盐钝化工艺扩大试验后稳定性好,成膜均匀,耐蚀性良好。考察了硅酸盐钝化工艺应用于低铁Zn—Fe合金镀层所形成钝化膜的耐蚀性能,试验结果表明,Zn—Fe合金钝化膜耐蚀性良好,并优于镀锌钝化膜。
     综上所述,镀锌硅酸盐钝化工艺稳定性能好,耐蚀性优于传统低铬钝化工艺,操作简单,成本低,无毒、无污染,可改善电镀锌行业环境污染的现状。因此,硅酸盐钝化工艺在代替传统含铬钝化、促进电镀行业实现绿色生产方面,具有广阔的应用前景。
Enormous economic loss and society hazard are caused by metal corrosion.Even though electroplating zinc coating is an efficient means to improve the corrosion resistance ability of steel and iron,the corrosion is extremely easy to take place when the galvanized zinc coating is in the moist environment,thus the coating loses the protection effect.In order to enhance the corrosion resistance,improve the surface quality and extend the service life, the galvanized film must be carried on passivation processing.The traditional passivation processed by chromate is high toxicity,and it can easily cause the environment pollution and harm people's health.So,in this thesis,the non-toxic and non-pollution silicate (Na_2SiO_3)passivation technique was well studied.The passive film's anticorrosion mechanism and forming mechanism has been preliminary discussed.Therefore,the primary coverage of this thesis as follows:
     The optimum composition of the passivation solution was gained by the orthogonal experiment and the single factor test as follows:Na_2SiO_3·9H_2O 15g/L,H_2SO_4 5ml/L, H_2O_2 10ml/L,HNO_3 5 ml/L,additive 3 g/L.Three primary factors,which influence the corrosion resistance of the silicate films determined by the orthogonal experiment,were the solution temperature,the pH value and the immersion time.And their effects on the corrosion resistance of silicate films were studied by the single factor test.Finally,the best technological conditions were gained as follows:the solution temperature 15~40℃,the pH value 2.0~2.8,the immersion time 90s around.
     The corrosion resistances of passive film and galvanized film were studied by the neutral salt spray test(NSS)、dipping in salt solution and CuSO_4 solution drop test.The test results indicat that the silicate passive films can obviously improve the anti-corrosive performance and anti-white rust ability.Compared with the low chromate passive film,the silicate passive film's corrosion resistance is better.
     Tafel polarization curve、EIS and Open circuit potential-time curve on passive film and galvanized film were investigated.The electrochemical parameters of electrochemistry were gained by computer fitting.And,the electrochemistry parameters of silicate passive films are:E_(corr)-0.85736 V,I_(corr)0.00012623 Amp/cm~2,R_t 580Ω·cm~2.But the low chromate passive film's electrochemistry parameters are:E_(corr)-0.9456 V,I_(corr)0.00034980 Amp/cm~2,R_t 150Ω·cm~2.According to the results from experiments,the silicate passive film's anticorrosion mechanism has been analyzed.It is thought that the silicate passive film has three aspects affects to enhance the corrosion resistance performance of galvanized Zinc coating,which are electrochemical effect,isolation effect and corrosion inhibitive effect.
     The microscopic appearance and the component analysis of the silicate passive film have been investigated by SEM,EDAX and XPS techniques.The passivation process in silicate passivation solution has been investigated by electrochemistry methods.So the mechanism of forming the silicate passive film has been discussed.It is considered that the process of forming passive film has two steps:1)dissolved Zinc coating;2)the process of forming the membrane by polymer deposition.
     After scale-up experiment,the stability and corrosion resistance of silicate passivation solution have been investigated.The results show that the stability of the solution is good, the film is even,and the corrosion resistance is good.When the silicate applies in the low-iron galvanized iron alloy coating,the anticorrosion performance of the formed silicate passive film has been studied.The results indicate that the silicate passive film can improve the corrosion resistance of the Zn-Fe alloy coating effectively.Compared with the Zn coating,the corrosion resistance silicate passive film on Zn-Fe coating is better.
     In conclusion,the silicate passivation technique of electrogalvanized coating has many advantages,for example:Good stability,better corrosion resistance than the low chromate passivation,simple operation,low cost,non-toxic and non pollution,etc.The present situation of the environment pollution can be improved if the silicate passivition technique can be used in electro-plating industry.The silicate passivition technique has broad application prospect,because it can replace the traditional chromate passivation and promote a realization of green production in electro-plating industry.
引文
[1]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003
    [2]李鑫庆,陈迪勤,宇静琴.化学转化膜技术与应用[M].北京:机械工业出版社,2005
    [3]吴双成.高耐蚀性低铬钝化工艺的应用[J].材料保护,1996,29(3):33-34
    [4]曾祥德.镀锌层铬酸盐钝化经验谈[J].材料保护,1992,25(9):44-47
    [5]李鸿宾.镀锌层表面硝酸铈盐钝化研究[硕士学位论文].沈阳:东北大学 2002
    [6]张景双,安茂忠等.电镀锌及锌合金镀层钝化处理的应用与发展[J],材料保护,1999,32(7):14-16
    [7]安成强,郝建军,牟世辉.镀锌钢板无铬钝化技术的发展[J].表面技术,2003,32(2):6-8
    [8]Basket Veeraraghavan,Dragan Slavkov,Swaminatha Prabhu,et al.Synthesis and characterization of a novel non-chrome electrolytic surface treatment process to protect zinc coatings[J].Surface and Coatings Technology,2003,167(1):41-51
    [9]Motoaki Hara,Ryoichi Ichino,Masazumi Okido,et al.Corrosion protection property of colloidal silicate film on galvanized steel[J].Surface and Coatings Technology,2003,169-170:679-681
    [10]Sandrine Dalbin,Georges Mautin,Ricardo P.Nogueira,et al.Silica-based coating for corrosion protection of electrogalvanized steel[J].Surface & Coatings Technology,2005,194(2-3):363-371
    [11]Montemor M.F,Simoes A.M,Ferreira M.G.S,et al.The corrosion performance of organosilane based pre-treatments for coatings on galvanized steel[J].Progress in Organic Coatings.2000,38(1):17-26
    [12]Wolfgang E.G.Hansal,Selma Hansal,et al.Investigation of polysiloxane coatings as corrosion inhibitors of zinc surfaces.Surface & Coatings Technology[J].2006,200(9):3056-3063
    [13]Trabelsi W,Triki E,Dhouibi L,et al.The use of pre-treatments based on doped silane solutions for improved corrosion resistance of galvanized steel substrates.Surface &Coatings Technology[J],2006,200(14-15):4240-4250
    [14]Montemor W.F,Trabelsi W,Zheludevich M,et al.Modification of bis-silane solutions with rare-earth cations for improved corrosion protection of galvanized steel substrates.Progress in Organic Coatings[J],2006,57(1):67-77
    [15]韩克平,叶向荣,方景礼.镀锌层表面硅酸盐防腐膜的研究[J].腐蚀科学与防护技术,1997,9(2):167-170
    [16]宫丽,卢燕平.纳米硅溶胶/丙烯酸复合防蚀薄膜的研究[J].材料保护,2005,38(1):17-19
    [17]宫丽,卢燕平,于洋.纳米硅溶胶改性有机复合钝化膜耐蚀性研究[J].表面技术,2004,33(6):18-20
    [18]Vukasovich M.S,Farr J.P.G.Molybdate in Corrosion Inhibition-A Review[J].Materials Performance,1986,25(5):9-15
    [19]Wilcox G.D,Gade D.R.Chemical Molybdate Conversion Treatments for Zinc[J].Met Fin,1998,86(9):71
    [20]Tang P T,Bech-Nielsen G,Moiler P M.Molybdate Based Alternatives to Chromating as a Passivation Treatment for Zinc[J].Plat& Surf Fin.1994,81(11):20
    [21]Tang P T,Bech.Nielsen G,Moiler P M.Molybdate Based Passivation of Zinc[J].Trans IMF,1997,75(4):144
    [22]Bech-Nielsen G,Tang P T.A method for post-treatment of an article with a metallic surface as well as a treatment solution to be used in the method[P].WO 9310278,1993-05-27
    [23]Kurosawa K,Fukushima T.Effect of pH of An Na_2MoO_4-H_3PO_4 Type Aqueous Solution on the Formation of Chemical Conversion Coatings on Steels[J].Corros Sci,1989,29(9):1103
    [24]郝建军,安成强,邵忠财等.A3钢镀锌层钼酸盐钝化膜的组成和性能[J].材料研究学报,2006,20(4):427-430
    [25]卢锦堂,孔纲,陈锦虹等.热镀Zn层钼酸盐钝化工艺[J].腐蚀科学与防护技术,2001,13(1):46
    [26]肖鑫,龙有前,钟萍等.镀锌层钼酸盐.氟化锆体系钝化工艺研究[J].腐蚀科学与防护技术,2005,17(3):184-186
    [27]Wharton J A,Wilcox G D,Baldwin K R.Non-Chromate Conversion Coating Treatments for Electrodeposited Zinc-Nickel Alloys[J].Trans IMF,1996,74(6):210
    [28]郝建军,安成强,刘常升.不同添加剂对镀锌层钼酸盐钝化膜腐蚀电化学性能的影响[J].材料保护,2006;39(10):23-25
    [29]刘小虹,颜肖慈.镀锌层铝酸盐转化膜及其耐蚀机理[J].电镀与环保,2002,22(6):17-19
    [30]Hinton B.R.W,Wilson L.The Corrosion Inhibition of Zinc with Cerous Chloride[J].Corros Sci.1989,9(9):967-985
    [31]Montemor M.F,Simoes A.M,Ferreira M.G.S.Composition and behaviour of cerium films on galvanised steel.Progress in Organic Coatings[J].2001,43(4):274-281
    [32]Montemor M.F,Simoes A.M,Ferreira M.G.S.Composition and corrosion behaviour of galvanised steel treated with rare-earth salts:the effect of the cation.Progress in Organic Coatings[J].2002,44(2):111-120
    [33]Arenas M.A,Damborenea J.J.Growth mechanisms of cerium layers on galvanised steel[J].Electrochimica Acta,2003,48(24):3693-3698
    [34]Yasuyuke Kobayashi,Yutaka Fujiwara.Effect of SO_4~(2-)on the corrosion behavior of cerium-based conversion coatings on galvanized steel[J].Electrochimica Acta,2006,51(20):4236-4242
    [35]王济奎,方景礼.镀锌层表面混合稀土转化膜的研究[J].中国稀土学报,1997,15(1):31-34
    [36]龙晋明,杨宁,陈庆华等.锌表面稀土化学钝化及耐蚀性研究[J].稀有金属,2002,26(2):98-102
    [37]龙晋明,韩夏云,杨宁等.锌和镀锌钢的稀土表面改性[J].稀土,2003,24(5):52-56
    [38]朱立群,杨飞.环保型镀锌层蓝色钝化膜耐腐蚀性能的研究[J].腐蚀与防护,2006,27(10):503-507
    [39]张安富.镀锌系钢板表面处理新工艺[J].表面技术,1991,20(5):29-33
    [40]周金保.镀锌层无铬钝化工艺的新进展[J].电镀与环保,1991,11(5):7-9
    [41]Chen Z W,Kennon N F,See J Betal.Technigalve and Other Developments in Batch Hot-Dip Galvanizing[J].JOM,1992,44(1):22
    [42]Wippermann K,Schultze J.W,Kessel R,et al.The inhibition of zinc corrosion by bisaminotriazole and other triazole derivatives[J].Corrosion Science,1991,32(2): 205-223
    [43]陈旭俊.乙酸胺钼酸盐的缓蚀作用与机理[J].中国腐蚀与防护学报,1995,15(4):279-284
    [44]王济奎,方景礼.镀锌层表面有机膦合钼聚多酸盐转化膜的研究[J].应用化学,1996,13(5):73-75
    [45]陈锦虹,卢锦堂等.镀锌层上有机物物铬钝化涂层的耐蚀性[J].材料保护,2002,35(8):29-31
    [46]曾华梁,吴仲达,陈钧无等.电镀工艺手册[M].北京:机械工业出版社,1997
    [47]吴荫顺.金属腐蚀研究方法[M].北京:冶金工业出版社,1993
    [48]张允诚,胡如南,向荣.电镀手册[M].北京:国防工业出版社,1997
    [49]刘永辉.电化学测试技术[M].北京:航空学院出版社,1987
    [50]王洪仁.耐海水腐蚀锌基合金镀层底浓度铬酸盐钝化研究[D].东北大学,1998
    [51]高颖,邬冰.电化学基础[M].北京:化学工业出版社,2004
    [52]朱立群,杨飞.环保型镀锌层蓝色钝化膜耐腐蚀性能的研究[J].腐蚀与防护,2006,27(10):503-507
    [53]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1999
    [54]王成,江峰.LY12铝合金钼酸盐转化膜及其耐蚀性[J].电镀与环保,2001,21(5):16-18
    [55]刘永辉,张佩芬.金属腐蚀学原理[M].北京:航空工业出版社,1993
    [56]宫丽,卢燕平,于洋.纳米硅溶胶改性有机复合钝化膜耐蚀性研究[J].表面技术,2004,33(6):18-20
    [57]Takahiro K,Masaaki Y.Mechanism of Corrosion Control by silica in Organic Composite Coated Steel Sheet[J].Yestsu-to-Hagane,1995,91(1):76-81
    [58]朱立群,杨飞,黄慧洁等.镀锌层无铬钛盐的蓝色钝化[J].江苏大学学报(自然科学版),2007,28(2):127-130
    [59]Dikinis V,Niaura G,Rezaite V,et al.Formation of conversion silicate films on Zn and their properties[J].Transactions of the Institute of Metal Finishing.2007,85(2):87-93
    [60]刘劼,胡士幸,杨召辉.马钢无铬钝化热镀锌产品的研制[J].上海金属,2007,29(5):193-195
    [61]Vail J.G.Soluble silicates:their properties and uses[J].New York,Reinhold Publishing Corporation.1952,Vol.1
    [62]Bass J.L,Tuner G.L.J.Phys.Chem.B[M],1997,101B:10638-10644.
    [63]Zhu Liqun,Yang Fei,Ding Nan.Corrosion resistance of the electro-galvanized steel treated in a titanium conversion solution[J].Surface & Coatings,2007,201:7829-7834
    [64]曾祥德.锌铁合金在五金与建材领域的应用[J].五金科技,2001,29(5):22-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700