用户名: 密码: 验证码:
无氰碱性镀铜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为顺应国家淘汰氰化物电镀的行业政策,保护环境,本文以无氰碱性镀铜为研究对象,试图开发出成本低、具实用性的环境友好型无氰镀铜液。考虑到焦磷酸盐、HEDP等含磷络合剂废水处理困难,含氨基络合剂镀铜液在电镀过程中易产生Cu~+等诸多因素,本文选择碱性条件下对Cu~(2+)络合能力较强的柠檬酸为主络合剂作为研究对象,进行了镀液开发和试验测试。
     研究表明,仅由柠檬酸、铜离子、碱组成的碱性配方普遍存在彩色镀铜层。加入硼酸、葡萄糖酸钠、氨基磺酸等均可消除彩色镀层,使赫尔槽电镀试片呈有序规律地变化。加入氨基磺酸和葡萄糖酸钠效果显著,消除彩色镀层的效率明显优于硼酸系添加物。但过量加入葡萄糖酸钠对镀层有其它负面影响。对彩色镀铜层的系统研究很少见有文献报道,通过文献检索发现在镀铜液配方中加入氨基磺酸组分以及该组分在镀液中所起作用的报道也很少。
     FL作为辅助络合剂可较明显地改善镀层质量。辅助络合剂改变了碱性条件下柠檬酸与铜之间的双核多元络合物Cu_2(OH)_2(H_(-1)Cit)_2~(6-)等结构,改变了Cu~(2+)电沉积的电化学过程。自行开发的复合添加剂TJ可明显地增加阴极极化,使铜络离子在阴极的沉积变得困难,沉积速度降低,结晶细致、结合力好。复合添加剂TJ的主要成分未发现在电镀行业中使用的报道。试验结果表明,大豆蛋白胨等高分子化合物可在阴极表面吸附,提高镀层、特别是电流密度高区镀层的质量。线性伏安曲线测定表明铜离子的阴极还原过程分两步进行。其电极主要过程受电化学控制,同时也受扩散控制。
     通过对镀液中各组分优化试验和工艺条件试验,确定了以柠檬酸为主络合剂的较好配方为:铜离子20g/L~30g/L(以碱式碳酸铜形式加入),柠檬酸160g/L~200g/L,辅助络合剂FL 12g/L~24g/L,氨基磺酸2g/L~6g/L,大豆蛋白胨0.1g/L~0.2g/L,复合添加剂TJ 2g/L~3g/L,pH约9.5,镀液温度30℃~40℃,电流密度范围0.1A/dm~2~1.4A/dm~2。
As to conform the policy of replacing cyanide electroplating, and to protect environment, this paper chooses non-cyanide copper electroplatig as our research object. We try to develop a low-cost, practical and environment friendly non-cyanide copper electrolyte. Considering the phosphorous wastewater such as wastewater containing pyophosphate and HEDP is hard to treat, and considering the Cu~+ is easy to form in the copper electrolyte containing -NH_2 complexing agent, this paper chooses citrate as the major complex agent, which can complexes well with cupric in the alkaline environment. With citrate as our research object, and we do the job of electrolyte developing and some testing.
     With our research, from an alkaline bath which is only containing citrate, cupric and alkali, we ofen get a multicolored copper coating. Adding boric acid, sodium gluconate or aminosulfonic acid can eliminate the multicolored copper coating, and make the coating on the Hull-trough testing pattern change regularly. The effect of eliminating multicolored coating through adding aminosulfonic acid or sodium gluconate is very obvious, and the efficiency is better than adding boric acid series. But adding excess sodium gluconate may give a bad effect to the coating. There is very few literatue systematically researchs on multicolored copper coating. Through literatue search, we find very few reports of adding aminosulfonic acid in copper eletroplating bath, and we did not find any report of the effect of amidosulphonic acid in copper eletroplating bath.
     The auxiliary complex agent FL can improve the quality of copper coating. The auxiliary complex agent changes the structure of the dimer Cu_2(OH)_2(H_(-1)Cit)_2~(6-), which is dominant in our alkaline electrolyte. And the auxiliary complex agent also changes the electrochemical process of copper electrodeposition. Adding the mulripe electroplating addtives TJ can obvious increase cathode polarization, and make the copper electrodiposition slower. The adding of TJ make the coating brighter, and improve the adhesion with the substrate too. The main component of TJ has not found being used as electroplating addtive in the electroplating industry. Through our test, we found soya peptone can adsorb on the surface of cathode, and improve the quality of the coating, especially in the high current density zone. From the voltammetric curves, we find the electrode process is under electrochemistry control and diffusion control.
     Through the Hull-trough test, we determine a good formula for copper electroplating which based on citrate as the major complex agent. The formula and the elctroplating process conditions is copper(add to electrolyte by the cupric salt:Cu_2(OH)_2CO_3) 20g/L~30g/L, citric acid monohydrate 160g/L~200g/L, auxiliary complex agent FL 12g/L~24g/L, aminosulfonic acid 2g/L~6g/L, soya peptone 0.1g/L~0.2g/L, the mulripe electroplating addtives TJ 2g/L~3g/L, pH9.5, 30℃~40℃, current density of 0.1A/dm~2~1.4A/dm~2.
引文
[1] 张立茗,方景礼,袁国伟,等.实用电镀添加剂[M].第1版.北京:化学工业出版社,2006:249-250
    
    [2] 陈亚.现代实用电镀技术[M].第1版.北京:国防工业出版社,2003:131
    
    [3] Krishnan R.M, Kananagasabapathy M. Electroplating of Copper from a Non-cyanide Electrlyte[J]. Plating&Surface Finishing, 1995, 82(7): 56-59
    
    [4] 李永清,张勇飞,徐惠法.柠檬酸盐镀光亮厚铜工艺在自行车电镀生产中的应用[J].PlYing and Finishing,1991,13(6):26-28
    
    [5] 任山雄.防渗碳碱性无氰镀铜新工艺[J].电镀与涂饰,2006,25(12):49-51
    
    [6] Vernon A. Lamb, Christian E. Johnson, Donald R. Valentine. Physical and Mechanical Properties of Electrodeposited Copper[J]. Journal of the Electrochemical Society, 1970,117(9): C291-C318
    
    [7] 刘仁志.无氰电镀工艺技术现状[J].表面工程资讯,2004,4(3):1-3
    
    [8] 何建平.无氰电镀工艺的研究现状及解决问题的途径[J].电镀与涂饰,2005,24(7):42-45
    
    [9] 王鸿建.电镀工艺学[M].第2版.哈尔滨:哈尔滨工业大学出版社,1995:103
    
    [10] 温青,陈建培.无氰碱性镀铜工艺的研究进展[J].材料保护,2005,38(4):35-37
    
    [11] 吴双成.光亮焦磷酸盐滚镀铜[J].材料保护,2000,33(2):11-12
    
    [12] Radisic A, Long G.J, Hoffmam M.P, Searson C.P. Nucleation and Growth of Copper on TiN from Pyrophosphate Solution. J. Electrochem. Soc., 2001, 148(1): C41-C46
    
    [13] 储荣邦,关春丽,储春娟.焦磷酸盐镀铜生产工艺(I)[J].材料保护,2006,39(10):58-66
    
    [14] Madison Y.O. Copper Electroplating Process[P]. US Pat: 4933051,1984-9-4
    
    [15] 傅世姚,刘育第,张炳乾,等.快速光亮焦磷酸盐镀铜工艺研究[J].上海电镀,1992,1:2-7
    
    [16] 冯绍彬.关于电位活化现象的探讨[J].材料保护,1994,27(9):15-18
    
    [17] 蔡梅英,倪步高.缩二脲无氰碱性镀铜[J].材料保护,1993,26(1):23-25
    
    [18] 王钥,冯立明,李华,等.丙三醇无氰光亮镀铜液[P].CN1757798,2006-04-12
    
    [19] 程良.三乙醇胺碱性光亮镀铜[J].材料保护,1988,21(4):30-33
    
    [20] 张勇飞.柠檬酸盐全光亮镀铜[J].电镀与涂饰,1990,9(4):50-51
    
    [21] 周卫铭,郭忠诚,龙晋明,等.无氰碱性镀铜[J],电镀与涂饰,2004,23(6):??17-19
    
    [22] 陈高,杨志强,刘烈炜.新型柠檬酸盐镀铜工艺[J].材料保护,2005,38(6):24-26
    
    [23] 安茂忠.电镀理论与技术[M].第1版.哈尔滨:哈尔滨工业大学出版社,2004:117
    
    [24] 蒲海丽,蒋雄.无氰碱性镀铜[J].材料保护,2004,37(6):61-42
    
    [25] Kline G.A. Cyanide-free Copper Plating Process[P]. US Pat: 4933051,1990-6-12
    
    [26] Chiba A. Ultrasonic Agitation Effects on the Electrodeposition of Copper from aCupric-EDTA Bath[J]. Plating&Surface Finishing, 1992, 79(12): 62-66
    
    [27] Tomaszewski L C, Tomaszewski T W. Cyande-free Copper Plating Process[P]. USPat: 4469569,1984-09-04
    
    [28] Tremmel R A. Cyanide-free Copper Electrolyte and Process[P]. US Pat: 4521282,1985-06-04.
    
    [29] Brasch W R. Cyanide-free Monovalent Copper Electroplating Solutions[P]. US Pat:5750018,1998-05-12
    
    [30] 韩恩山,许寒,张俊平,等.乙二胺快速镀铜体系的研究[J].精细石油化工进展,2007,8(10):31-33
    
    [31] 费敬银,辛文利,梁国正,等.乙二胺在电刷镀铜溶液中的作用[J],表面技术,2003,32(5):34-37
    
    [32] Sallee N, Cromer M. Electroplating of Copper on Aluminium with Direct and Pulsed Currents[J]. Canadian Metallurgical Quarterly, 1994,33(2): 155-162
    
    [33] 安茂忠,李丽波,杨培霞.电镀技术与应用[M].第1版.北京,机械工业出版社,2007:269
    
    [34] 方景礼.多元络合物电镀[M].第1版.北京,国防工业出版社,1983:129,165,344,227
    
    [35] Terrence B. Field, McCourt Janet L, McBryde W. A. E. Composition and Stability of Iron and Copper Citrate Complexes in Aqueous Solution[J]. Can. J. Chem.1974, 52(17): 3119-3124
    
    [36] 李彩华,李燕群,黄中越.酸性镀铜中铜粉产生的原因及控制[J].南方金属,2005,143:45-46
    
    [37] 袁诗璞.无氰碱铜路漫漫兮[J].涂料涂装与电镀,2006,4(2):31-33
    
    [38] 唐雪娇,韩长秀,张宝贵.无氰电镀铜新工艺试验研究[J].南开大学学报(自然科学版),2006,39(6):37-40
    
    [39] 王瑞祥.钢铁基体上碱性无氰镀铜[J].电镀与涂饰,2005,24(7):13-15
    
    [40] Sabine Rode, Christophe Henninot. Complexation Chemistry in Copper Plating from Citrate Baths[J]. Journal of Applied Electrochemistry, 2004,151(6): C405-C411
    
    [41] Chassing E, Quang K.VU. Kinetics of Copper Electrodeposition in Citrate Electrolytes[J].Journal of Applied Electrochemistry, 1986,16: 591-604
    
    [42] Jonas Eskhult, Merja Herranen, Leif Nyholm. On the Origin of the Spontaneous Potential Oscillations Observed duing Galvanostatic Deposition of Layers of Cu and Cu_2O in Alkaline Citrate Solutions[J]. Journal of Electroanalytical Chemistry, 2006, 594: 35-49
    
    [43] 冯立明,王钥,孙华,等.电镀工艺与设备[M].第1版.北京:化学工业出版社,2005:56,67
    
    [44] 李华为.电镀工艺实验方法和技术[M].第1版.北京:科学出版社,2006:254-256
    
    [45] 吴天材.彩色镀铜[J].电镀与涂饰,1993,12(3):1-4
    
    [46] 黎德育,李宁,邹忠利.电镀材料和设备手册[M].第1版.北京:化学工业出版社,2007:82
    
    [47] 王成典,诸荣孙,肖厚佑.锡镍铜三元合金电镀新工艺的研究[J].当代化工,2006,35(6):392-395
    
    [48] 费世东,张小华,许岩.碱性体系电镀锌镍合金工艺中配位剂对镀层的影响[J].材料保护,2005,38(4):48-50
    
    [49] 奚兵.光亮酸性镀铜故障处理[J].电镀与环保,2007,27(1):43
    
    [50] 钟国清,曾仁权.固相法合成缩二脲铜钾配合物[J】.化学研究与应用,2002,14(4):461-462
    
    [51] Mayanna S.M, Maruthi B.N. A Noncyanide Alkaline Bath for Industrial Copper Plating[J]. Metal Finishing, 1996, 94(3), 42-45
    
    [52] 方景礼.电镀添加剂理论与应用[M].第1版.北京:国防工业出版社,2006:33
    
    [53] 关云山.酸法水解明胶的试制[J].青海大学学报(自然科学版),2001,19(1):32-34
    
    [54] 缪进康,黄明智,韦志军.马来酰化明胶的制备及其电泳-电沉积性能的初步研究[J].明胶科学与技术,1990,10(3):115-120
    
    [55] 韩文斌,陈涛,关云山.水解明胶的酸法制备[J].明胶科学与技术,1998,18(2):83-86
    
    [56] 张立萍.酶法生产水解明胶工艺研究[J].化工时刊,1996,10(10):16-18
    
    [57] 黄雅钦,黄明智,廖进康.明胶的酶法水解及其产物的应用[J].明胶科学与技术,1997,17(4):169-175
    
    [58] 袁诗璞,支国富,袁林春.锌压铸件镀无氰碱铜失败原因分析及改进[J].电镀??与涂饰,2006,25(10):17
    
    [59] DE Almeida M.R.H, Carlos LA, Barbosa L.L. Voltammetric and Morphological Characterization of Copper Electrodeposition from Non-cyanide Electrolyte[J]. Journal of Applied Electrochemistry, 2002,32: 763-773
    
    [60] 杜登学,张长鑫.二甲基甲酰胺体系三价铬镀铬的研究[J],材料保护,1995,28(5):19-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700