用户名: 密码: 验证码:
高梯度磁净化除尘的理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高梯度磁净化技术(High Gradient Magnetic Separation.HGMS)是一种高效快速而新颖的净化技术。本文研究了高梯度磁净化除尘的一些工艺条件及其对高梯度磁净化除尘效果的影响。主要内容包括:
     首先通过单因素多水平实验及正交实验确定了影响除尘效率的主要因素及其影响规律。实验得出最佳工艺条件为:磁场强度5.2KGs,钢毛填充率为5%,过滤速度为0.5m/s,过滤周期为300s。其中钢毛填充率对除尘效率的影响最大,其次为过滤风速,再次为磁场强度,最后是净化周期。
     在最佳工艺条件下,对磁种、武汉钢铁公司烧结厂采样粉尘以及青山造船厂粉尘三种强磁性粉尘的除尘效率可达90%以上,但对武钢乌龙泉矿石灰石破碎粉尘和洛阳水泥厂粉尘两种弱磁性粉尘的除尘效率均低于60%。对弱磁性粉尘采用加入磁种的方法来提高其除尘效率。除尘效率随着磁种投加比例的增加而有较明显的增加。对于武钢乌龙泉矿石灰石破碎粉尘在不投加磁种条件下除尘效率仅有59.1%,当投加比例为2%时,除尘效率增加到61%,而投加比例为10%时,除尘效率高达77.6%。
     本文建立了轴向饱和堆集模型,推导出粉尘的分级除尘效率计算式,讨论了影响高梯度磁净化除尘效率的外在操作参数。
     本文利用流体力学、磁学等理论,详细讨论了高梯度磁净化除尘的机理。通过聚磁介质与粉尘颗粒以及粉尘颗粒之间的作用分析,揭示出影响除尘效率的内在因素。
High Gradient Magnetic Separation (HGMS) is a new, efficient and speedy separation technology The technology characteristics and the influence of operative conditions on the dust removal efficiency of HGMS were systematically studied in this paper. The main aspects are as follows:
    The single condition experiments and the orthogonal experiments were conducted in order to get the main factors which effect on the rate of dust removal and to get the influence law. The result of the experiments shows that the best technological conditions are: the magnetic field intensity is 5.2KGs,the rate of steel wire filling is 5%, separation velocity is 0.5m/s, separation cycle is 300 .The result also shows that the rate of steel wire filling is greatest influence on the removal rate, the second is separation velocity, the third is magnetic field intensity, the last is separation cycle.
    It is shown by experiments that the rate of dust removal can exceed 90%, when the best technological condition were applied to strong magnetic dust, but for weak magnetic dust, the rate is lower than 60%. As to get a high dust removal rate of weak-magnetic dust, magnetic seeds are added into. The higher the ration of magnetic seed to dust, the higher the rate is. Take the limestone dust from Wuhan Iron and Steel work for example, the dust removal rate is only 59.1% without magnetic seed, but a rate of 61% can be get when the ration of magnetic seed to dust reaches 2%, a rate of 77.6% when the ration reaches 10%.
    According to some research results conducted by former researchers, the axial build-up model was established for the particle in HGMS process, and the removal rate of dust particle was conducted. And the operating parameters, which affect the removal rate, are studied.
    The mechanism of dust removal with HGMS is studied through hydrodynamics and magnetism in this paper. The inside factions, which have influenced the removal rate, are disclosed through analyzing the interaction between the medium and dust, and the interaction among dust.
引文
[1] Kolm H H, Oberteuffer J A, Kelland D R。High gradient magnetic separation. Sci Am 1975,223(5): 47-54
    [2] Oberteuffer J A. Magnetic Separation: A review of principles, device and applications.IEEE Trans on Magn, 1974, MAG-10(2) : 223-238
    [3] Appleton A D, Dobbing P P. A discussion on some aspects of high gradient magnetic separation. Filtration & Separation, 1977, May/June: 238-240
    [4] Kelland D R. Submicron magnetic particle separation. Particle Science and Technology,1985,3:101-113
    [5] Iannicelli J. New developments in magnetic separation. IEEE Trans on Magn, 1976, MAG-12(5) : 436-443
    [6] 郑必胜。高梯度磁净化机理及应用技术的研究。广州:华南理工大学轻化研究所,1997
    [7] 赵翌东。磁选设备的新发展。冶金矿山设计与建设。1998,30(1):51-56
    [8] Shoumkov S, Dimitrov Z, Brakalor L. High gradient magnetic treatment of Kaolin. Interceram, 1987, 6: 26-28
    [9] Lofthouse C H. The beneficiation of Kaolin using a commercial high intensity magnetic separator. IEEE Trans on Magn, 1981, MAG-17(6) : 3302-3304
    [10] Besley L M. The new role machinery using superconducting magnets in the industrial beneficiation of Kaolin clays. Ceramic Developments, 1988, 34-36 : 941-945
    [11] Oder R R. High gradient magnetic separation theory and applications. IEEE Trans on Magn, 1976, MAG-12(5) : 428-435
    [12] Dunlop E H, Feiler W S, Mattione M J. Magnetic separation in biotechnology. Biotech Advances 1984, 2 : 63-74
    [13] Setchell C H. Magnetic separation in biotechnology - A review. J Chem Tech Biotechnol, 1985, 35B : 175-182
    [14] Frank P, Mekville D, Roath S. Transverse particle trajectories in high gradient magnetic separations. IEEE Trans on Magn, 1982, MAG-18(5) : 1517
    [15] Dauer R R, Dunlop E H. High gradient magnetic separation of yeast. Biotech Bioeng, 1991, 37 : 1021-1028
    [16] Flygare S, Mkstrom P, Larson P. Magnetic aqueous two-phase separation in preparative applications. Enzyme Microbiol Technol, 1990, 12 : 95-103
    [17] Watson J H P, Ellwood D C. Biomagnetic separation and extraction process. IEEE Trans on Magn, 1987, MAG-23(5) : 3751-3752
    [18] Bifulco J M, Schaefer F W. Appl Envirn Microbiol, 1993, 69(3) : 772-776
    
    
    [19] Bahai A S, Ellwood D C ,Watson J H P. Extraction of heavy metals using microorganisms and high gradient magnetic separations. IEEE Trans on Magn, 1991, MAG-27(6) : 5371-5374
    [20] Teymurz Abbasov, Mubammet Koksal. Theory of High-gradient Magnetic Performance.. IEEE Trans on Magn, 1999, MAG-35(4) : 2128-2132
    [21] 雷国元.磁种和磁处理技术在废水处理中的应用.上海环境科学,1997,16(11):24-27
    [22] Oberteuffer J A, Wechsler I, Marston P G, McNallan M J. High gradient magnetic filtration of steel mill process and waste waters. IEEE Trans on Magn, 1975, MAG-11 (5) : 1591-1593
    [23] 宋金璞等。大梯度磁过滤器对饮用水中有害物质的去除[J]。中国给水排水,1997,13(2):4
    [24] 张朝升等。利用大梯度磁滤器处理水中有害物质及藻类的研究[J]。广州大学学报(综合版),2001,15(2):82—85
    [25] 张朝升等。大梯度磁滤器去除水中藻类研究[J]。给水排水,2001,27(8):22—24
    [26] 张朝升,宋金璞等。大梯度磁滤器处理微污染珠江源水[J]。中国给水排水,2001,17(4):70—72
    [27] Sharklh Ahamad M H, Dixit S G. Removal of phosphate from water by precipitate and high gradient magnetic separation. Water Res, 1992, 26(6) : 845-852
    [28] 黄自力,胡岳华。“磁种—高梯度磁净化”污水除磷技术的研究。环境污染治理技术与设备,2003,4(5):70—73
    [29] L.Petrakis等。工业流体中微细颗粒的高梯度磁选。国外金属矿选矿,1982;19(6):28-38
    [30] 朱又春等.磁分离法处理含油废水研究.广东工业大学学报,1998,15(2):
    [31] 陈国华等。高梯度磁净化在污水处理方面的应用。环境科学,1980,(5):71
    [32] 宋金璞等。高梯度磁滤法除菌的研究。给水排水,1997,23(1):16
    [33] N.A.Booker, etal. Sewage Clarification with Magnetic Particles, J.water Sci Tech, 1991, 23(12):1703
    [34] 沈晓鲤等。高梯度磁净化技术在重金属离子废水处理中的应用。环境科学从刊,1980,4(7);59
    [35] 郑必胜等.应用高梯度磁净化技术处理糖蜜酒精废水.环境科学学报,1999,19(3):252-255
    [36] 郑必胜,张智平等.磁分离技术处理食品发酵工业废水.食品与发酵工业,1999,25(1):74-77
    [37] Ozaki H, Liu Z, Terashima Y. Utilization of microorganisms immobilized with magnetic particles for sewage and wastewater treatment. War Sci Technol, 1991,23 : 1125-1136
    [38] 凯克迪杰克等.矿物组成和粒度对高梯度磁选法选煤的影响.选煤技术,1986;12(2):58-61
    [39] 俣川恭辅等.利用高梯度电磁分选机(HGMS)进行煤炭的干法脱硫、脱灰.选煤技术,1983;12(4):54-57
    [40] 赵跃民.我国选煤技术的现状与发展趋势.国外金属矿选矿,1998;35(16):46-48
    [41] C.H.Gooding etal.气体流中微细颗粒的高梯度磁过滤技术。国外环境科学技术,1984;24(2):26-31
    [42] 汤达祯等。燃煤电厂飞灰物质成分筛分磁选实验研究。中国矿业大学学报,2000,29(5):468-471
    [43] 颜幼平,陈凡植,康新宇,林美强。磁分离除尘的初步实验研究及其机理分析。环境工程,1999,17(4):41—43
    
    
    [44] 陈松明,颜幼平,蓝惠霞。高梯度磁净化除尘实验研究。环境污染治理技术与设备,2002,3(6):57-61
    [45] 颜幼平,陈凡植,吴昭俏,康新宇,林美强。高梯度磁除尘的实验研究。电力环境保护,2002,16(1):7-9
    [46] Dimitar Tabakov, Neofit Techolakov. Environ Pint Eng, 1988, 14(3-4) : 77-84
    [47] 朱申红等。选矿技术在固体废物处理中的应用。环境保护,1998,(8):14
    [48] 中国环境科学学会。磁选法有效处理城市生活垃圾。环境导报,2003,5
    [49] 沈国舫主编。中国环境问题院士谈。北京:中国纺织工业出版社,2001.5
    [50] 中国环境科学学会。法国科学家证实空气污染严重影响人体健康。环境导报,2003,10—18
    [51] 刘纪元。唐钢2560m~3高炉出铁场除尘设计。环境工程,2000,8,18(4):30—31
    [52] 王利民等。ESP内沉积粉尘层积累电荷对收尘性能影响的研究。工业安全与防尘,2000,3:5—7
    [53] 赖强。一种新型电除尘器的半工业性试验。工业安全与防尘。2000,4:10—11
    [54] Chen-Lu Yang,Michael Beltran。Electrostatic Precipitator for Metal and Particulate Emission Control. Environmental Engineering(J), Mar,2000:233-238
    [55] 王毅。长袋低压大型脉冲袋式除尘器在100t直流电弧炉除尘系统中的应用。工业安全与防尘,2000,1:3—5
    [56] 李兴华。声波辅助清灰袋滤器的研究。工业安全与防尘,2000,9:3—5
    [57] 张力等。旋流雾化水雾膜提高文丘里水膜除尘效率的实验研究。环境工程,2000,4,18(2):30—32
    [58] 王新泉等。文丘里水膜除尘器在热电厂锅炉烟尘治理中的运用。污染防治技术,2000,6,13(2):93—96
    [59] 张国斌。破碎筛分厂的粉尘污染及其治理。工业安全与防尘,2000,7:8—11
    [60] 李锦.改良MPS型抑尘剂在料堆防尘中的实验研究.工业安全与防尘,2000,1:13—15
    [61] 赵志强.磁化水灭尘的研究.工业安全与防尘,2000,7:44—45
    [62] 陈军等.我国工业锅炉污染存在的问题及治理对策.中国环境管理,2003,22(2):26—27
    [63] 李力清.曾光明。锅炉烟气脱硫除尘一体化装置的开发与应用。污染防治技术,2000,3,13(1):3—16
    [64] 王银生.季学李。脉冲电晕等离子体脱硫脱氮与除尘技术。上海环境科学,2000,1,19(1):17—19
    [65] 刘君侠.除尘脱硫一体化的理论与试验研究[学位论文]。2003,5
    [66] 李彩亭等.燃煤烟气湿式除尘脱硫技术研究。环境工程,2000,8,18(4):32—34
    [67] 施耀等.2×25MW机组旋流板塔双碱法烟气脱硫除尘.环境污染与防治.2000,8,22(4):28—30
    [68] Watson J H P. Theory of capture of panicles in magnetic high-intensity filters. IEEE Trans on Magn, 1975, MAG-11(5) : 1597-1599
    [69] Luborsky F E, Drummond B J. High gradient magnetic separation: Theory verses experiment. IEEE
    
    Trans on Magn, 1975, MAG-11(6) : 1696
    [70] 向晓东著。现代除尘理论与技术。北京:冶金工业出版社,2002.6
    [71] 丘继存等.选矿学.冶金工业出版社,1987:118
    [72] 严济慈编.电磁学.高等教育出版社出版,1989
    [73] 郑必胜,郭祀远,李琳,蔡妙颜.高梯度磁净化器中填料的研究.华南理工大学学报(自然科学版).1998,26(10):34-39
    [74] 向发柱,何平波,陈荩.高梯度磁选数学模型研究概况及发展方向.矿冶工程.1997,17(1):42-46
    [75] 王卫星.随机过程在流膜选矿中的应用.北京:科学出版社出版,1995
    [76] Zebel G. Deposition of aerosol flowing past a cylindrical fiber in a uniform electric field. J Collid Sci, 1965, 20 : 522
    [77] Birss R R, Gerber R, Parker M R. Theory and design of axially ordered filters for HGMS. IEEE Trans on Magn, 1976, MAG-12(5) : 892-894
    [78] Luborsky F E, Drummond B J. Build-up of particles on fibers in a HGMS. IEEE Trans on Magn, 1976, MAG-12(5) : 463
    [79] O'Neill M E. A sphere in contact with aplane wall in slow linear flow. Chem Engng Sci,1968,23:1293
    [80] 郝吉明,马广大等编著。大气污染控制。北京:高等教育出版社,1989
    [81] 蒋朝澜编著。磁选理论及工艺。北京:冶金工业出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700