用户名: 密码: 验证码:
仪表级SiC/Gr/Al复合材料制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以惯性仪表为应用背景,在SiC/Al复合材料的基础上以易加工、高比刚度、低膨胀、高阻尼及高尺寸稳定性等性能为目标进行了材料设计,通过添加3%~7%,1μm~70μm的鳞片状石墨的手段获得上述性能。采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、体式显微镜、摩擦磨损试验机、原子力显微镜(AFM)、切削力测试仪、热膨胀仪、电子拉伸机、硬度计、X射线衍射仪(XRD)和内耗仪等手段研究了石墨的加入对SiC/Gr/Al复合材料微观组织、力学性能、加工性能和尺寸稳定性的影响,并深入探讨了其影响机理。
     根据化学稳定性和润滑性能要求,选择具有固体润滑性质的石墨作为添加颗粒,并采用固体润滑的相关理论分析了减磨机制。通过H-S模型和混合定律确定了石墨润滑剂的上限值7.2%。定性分析了影响复合材料尺寸稳定性的的各种因素。综合考虑石墨对加工性能、力学性能和尺寸稳定性的影响,提出了SiC/Gr/Al复合材料的设计原则。
     TEM观察表明,SiC-Al和Gr-Al界面都未观察到界面反应物,这与制备工艺相关,同时Gr-Al界面未生成界面反应物与高的石墨化率相关。石墨与基体为弱界面结合,且片层间容易滑移,在材料制备和热处理过程中石墨可以释放微观应力,这使得SiC/Gr/Al复合材料中位错密度较低或形成亚晶界;同时,依赖位错形核的析出相密度也相应降低。
     SiC/Gr/Al复合材料的热膨胀系数介于11.5~13×10-6/℃之间,可以与轴承钢的热膨胀系数(12~13×10-6/℃)较好的匹配,阻尼性能达到铝合金的2~6倍左右,满足仪表级复合材料对热膨胀匹配及高阻尼性能的需求。
     石墨体积分数增加,颗粒间距减小,基体连续性破坏,SiC/Gr/Al复合材料的拉伸强度显著降低。SiC/Gr/Al复合材料的断裂方式以石墨片层间或石墨/基体界面的脆性断裂为主,但SiC+Al基体中具有一定的塑性变形特征;根据断口分析将SiC+Al看成基体,石墨作为增强体,采用H-S模型SiC/Gr/Al复合材料的弹性模量进行预测,准确度可达到实际值的93.5%。
     通过摩擦磨损试验对刀具/复合材料摩擦副切削过程中的摩擦状况进行分析,揭示了SiC/Gr/Al复合材料表面磨擦过程中固体润滑膜的生成是其摩擦系数和磨损率降低的主要原因。进一步通过润滑理论对减磨机理进行分析,认为在摩擦副之间既使润滑膜不完整或极薄也能起到减磨作用.
     石墨添加通过降低复合材料的强度和硬度,有利于切屑形成及石墨的固体润滑性质三种机制改善SiC/Gr/Al复合材料的加工性能。刀具磨损与石墨加入的体积分数相关,与粒径关系不大,但切削力的大小受石墨粒径影响较大。石墨的加入没有改变SiC/Al复合材料切削过程背向力大于主切削力的特点。
     尺寸稳定性的研究表明:石墨的加入有利于材料的尺寸稳定提高,主要原因粒径为6μm,体积分数为5%石墨颗粒的加入使SiC/Al复合材料的宏观应力降低30%,微观应力降低20%,满足应力的稳定性,同时石墨的加入促进了位错结构的稳定化。无负载下的尺寸稳定性和微屈服强度综合考虑,确定A+TCC(0)为提高SiC/Gr/Al复合材料尺寸稳定性的最佳热处理工艺。
     本文基于仪表级复合材料的性能要求设计了SiC/Gr/Al复合材料,并找到了合适的热处理工艺。在添加高纯石墨颗粒(粒径: 6μm,体积分数:5%)的SiC/Gr/Al复合材料,刀具寿命提高40%,弹性模量保持在150GPa,σ0.0001达到333MPa,变温的尺寸性稳定性低于0.61×10-6,满足惯性仪表材料的性能需求。
In the present paper, material design on the background of inertial instrument application is carried out with the aim of acquiring good machinability,high special elastic modulus, high damping properties and good dimension stability, which is on the basis of SiC/Gr/Al composites. For this purpose, flaky graphite (volume fraction of 3%~7%, and particle size of 1μm~70μm) were additioned. Effects of graphite particles on microstructure, mechanical properties, machinability and dimension stability were studied by using scanning electron microscope (SEM), transmission electron microscope(TEM), optical microscope , friction-wear tester, atomic forces microscope (AFM), cutting force tester, thermal conductivity tester, tensile testing machine, Brinell hardness, X-ray diffraction and internal friction apparatus. And their influencing factors were also discussed.
     Graphite with solid lubrication is selected according to chemical stability and lubrication, and wear-resistence is explained by solid lubrication theory. The appropriate upper limit of the addition of graphite particles should be 7.2% on the based of analysis H-S model and the mixing rule. Effect of graphite particles on thermal expansion was analysised according to theory model, and influencing factors to dimension stability was analysised. Those factors was summarized, the design principle of SiC/Gr/Al was established.
     TEM observations indicate SiC-Al and Gr-Al interfaces are clean and free from interfacial reaction products, which are attributed to fabrication process. Meanwhile, there is no interface reactivity in Gr-Al interfaces, which is due to high degree of graphization. The bonding strength between graphite and matrix alloy is weak, and the lamellar is sliding easily. Micro-stress is relaxed in the process of fabrication and heat treatment, The addition of graphite particles decreases the dislocation density in the composite. Moreover, the dislocation in the casting microstructure generates the sub-boundary, and the density of precipitate phase dependent on the dislocation nucleation also reduces
     The coefficient of thermal expansion (CTE) and daming properties are tested, and the results show that CTE is between 11.5~13×10-6/℃and Q-1 for SiC/Gr/Al composite is 2~6 times higher than that of the aluminum matrix. These meet the requirements of thermal expansion matching the corresponding materials and high damping in precision instrument.
     The increment of graphite volume fraction, the decrement of particle spacing, destroyed continuity of matrix, result in the reducing of tensile strength of SiC/Gr/Al composites。The increment of interfacial area and reduction of partilcle spacing result in the increasing amount of crack source and destroy the continuity of aluminum matrix, which is the main reason for decrease of mechanical properties.
     Tribological conditions of tool/ composite in the process of cutting are analsized by wear test. Results show that the tribo-layer formed during wear cause the decreasing of friction coefficient and wear loss. Further analysis to the mechanism of the increase in wear resistance, the worn surface of SiC/Gr/Al composite covered by a continuous or thin tribo-layer can also improve wear resistance.
     Graphite particles improve that machinability from tool wear, cutting force and surface roughness. It is due to the decreasing of hardness and strength of composites, which has decreased the coefficient of chip distortion and promoting crack propagation of chip, and solid lubrication to tool. With increasing Vf of graphite particles, tool wear increase. Particle size of graphite has little effect on the tool wear, but has very remarble effect on cutting force. The characteristic of thrust force (Ft) higher than cutting force (Fc) is not change by the addition of graphite particles. The SiC+Al matrix failed in ductile manner while graphite particle fail in a brittle manner. The elastic modulus was estimated by H-S models and the estimated value is 93.5% of the tested values.
     The investigation of dimension stability show that: the addition of graphite is beneficial to improving dimensional stability Sufficient aging precipitation, stable dislocation structure and lower macro residual stress ensure dimension stability by appropriate thermal cycling procedure (A+TCC(0)and A+TCC(-70)) when compared with aging procedure. Besides thermal cycling procedure, relaxation of micro stress by graphite particles further improved dimension stability of SiC/Gr/Al. From analysis both micro-deformation resistance and dimension stability under no load, A+TCC (0) is the optimum procedure for improving the dimension stability.
     In the paper, we design SiC/Gr/Al composites according to the requirement of instrument materials, and find proper heat treatment process. For the 40%SiC/5%Gr(6μm)/Al composites, the tool life maching the composite was prolonged by 40%, the elastic modulus are maintained 150GPa, variable dimentional stability is lower than 0.61×10-6, which meet the requirements of instrument properties.
引文
1吴波,刘一薇.复合材料在惯性器件中的应用研究.导弹与航天运载技术. 2000, (3): 17~20
    2周琪,单联洁.铝基复合材料在惯性平台结构件中的应用.航天工艺. 2001, (3): 36~39
    3 S. V. Nair, J. K. Tien, R. C. Bates. SiC-Reinforced Aluminum Metal Matrix Composites. Int. Met. Rev.. 1995, 30 (60): 275~288
    4王莹,刘向东.碳化硅颗粒增强铝基复合材料的现状及发展趋势.铸造设备研究. 2003, (3):18~22
    5 T. W. Clyne, P. J. Withers. An Introduction to Metal Matrix Composites〔M〕. London: Cambridge University Press. 1993
    6 K. Lee. Interfacial Reaction in SiCp/Al Composite Fabricated by Pressureless Inflitration. Scripta Materialia. 1997, 36(8 ): 847~852
    7 G. S. Cole, A. M. Sherman. Lightweight Materials for Automotive Applications. Mater Charact.1995, 35: 3~9
    8 W. R. Mohn, D.Vukobratorich. Recent Applications of Metal Matrix Composites in Precision Instruments and Optical Systems. Journal of Materials Engineer. 1988, 10: 225~231
    9 J. L. Henshall. The Wear of Polycrystalline Diamond Tools Used in the Cutting of Metal Matrix Composites. Journal of Refractory Metals & Hard Materials. 1999, 17:103~109
    10 R. M. Hooper. The Wear of Polycrystalline Diamond Tool used in the Cutting of Metal Matrix Composites. International Journal of Refractory Metal & Hard Materials. 1999, 17: 103~109
    11 M. Chen. Development of Diamond-Coated Drills and their Cutting Performance. Journal of Materials Processing Technology. 2002, 129: 81~84
    12 R. T. Coelho. The Application of Polycrystalline Diamond(PCD) Tool Materials when Drilling and Reaming Aluminium Based Alloys Including MMC, International Journal of Machine Tools & Manufacture. 1995, 35(5): 761~774
    13 D. J. Paulo. Diamond Tool Performance in Machining Metal-matrixComposites. Journal of Materials Processing Technology. 2002, 128: 100~105
    14 X. Ding, W. Y. H. Liew, X D. Liu. Evaluation of Machining Performance of MMC with PCBN and PCD Tools. Wear. 2005, 259: 1225~1234
    15 X. P. Li. Tool Wear Acceleration In Relation to Workpiece Reinforcement Percentage in Cutting of Metal Matrix Composites, Wear. 2001, 247: 161~171
    16 D. J. Paulo. Relationship between Cutting Force and PCD Cutting Tool Wear in Machining Silicon Carbide Reinforced Aluminium. Journal of Materials Processing Technology. 2000, 103: 417~423
    17 J. T. Lin. Machinability of a Silicon Carbide Reinforced Aluminium Metal Matrix Composite. Wear. 1995, 181-183: 883~888
    18 N. P. Hung. Machinability of Aluminum Alloys Reinforced with Silicon Carbide Particulates. Journal of Materials Processing Technology. 1996, 56: 966~977
    19王大镇. SiCp增强铝基复合材料切削加工中刀-屑摩擦模型及其磨损特性研究.摩擦学学报. 2000, 20(2): 85~89
    20 M. El-Gallab. Machining of Al/SiC Particulate Metal Matrix Composites PartⅠ: Tool Performance. Journal of Materials Processing Technology. 1998, 83:151~158
    21 L. Luliano. High-speed Turning Experiments on Metal Matrix Composites, Composites Part A . 1998, 29A: 1501~1509
    22 D. J. Paulo. Design of Optimization of Cutting Parameters for Turning Metal Matrix Composites on the Orthogonal Arrays. Journal of Materials Processing Technology. 2003, 132: 340~344
    23 M. El-Gallab. Machining of Al/SiC Particulate Metal Matrix Composites PartⅡ: Workpiece Surface Integrity. Journal of Materials Processing Technology. 1998, 83: 277~285
    24 N. P. Hung. Effect of Cutting Fluid on the Machinability of Metal Matrix Composites. Journal of materials processing Technology. 1997, 67: 157~161
    25 D. Mester, L. Cronj?ger. Bohren in Faserver startem Aluminium nur Moglich schneiden aus Hartmetall oder PKD, Machinenmark, Wurzurg, Gemany.1989, 23: 28~32
    26 L. Cronjager. Machining of Frible and Particle-reinforced Aluminum, Ann. CIRP. 1992, (1): 63~66
    27 I. Ciftci, M. Turker. U. Seker. CBN Cutting Tool Wear during Machining of Particulate Reinforced MMCs. Wear. 2004, 257: 1041~104
    28杨畅.航天惯性仪表40年与未来趋势.科学进步与经济社会协调发展.
    29昝春燕,屠启基,石慧.静电陀螺转子用铍材的基本要求.中国惯性技术学报. 2003,11(5):63~65
    30任学章.本世纪末我国惯性技术发展水平及今后发展方向的探讨.中国惯性技术学会第四届学术年会论文集. 1999, 11
    31刘献礼.聚晶立方氮化硼刀具切削性能和制造技术研究.哈尔滨工业大学博士论文. 1999: 25~40
    32 N. P. Hung, K A Boey, C A Khor. Machinability of Cast and Power-Formed Aluminum Alloys Reinforced with SiC Particles. Journal of Materials Processing Technology. 1995, 48: 292~297
    33 R. L. Deuis, C. Subramanian, J. M.Yellup. Abrasive Wear of Aluminum Composites-Review. Wear. 1996, 201: 132~144
    34 F. Bergman, S. Jacobason. Tool Wear Mechanisms in Intermittent Cutting of Metal Matrix. Wear. 1994, 179: 89~93
    35 A. Manna, B. Bhattacharayya. A Study on Machinability of Al/SiC-MMC. Journal of Materials Processing Technology. 2003, 140: 711~716
    36 S. Sharadchandra. The Micromechanisms of Contracted Carbide Cutting Tool Wear. Ph.. D Thesis of McMaster University. 1993
    37 M. K. Brun, M. Lee. Wear Characteristics of Various Hard Materials for Machining SiC Reinforced Aluminum Alloy. Wear. 1985,104: 21~29
    38 K. Winert. A Consideration of Tool Wear Mechanism when Machining Metal Matrix Composites (MMCs). CIRP Ann. 1993, 42:95~98
    39 D. J. Paulo. A. M. Baptista. Relationship between Cutting Force and PCD Cutting Tool Wear in Machining Silicon Carbide Reinforced Aluminum. Journal of Materials Processing Technology. 2000, 102:25~29
    40 N. Tomac, K. Tonnessen, Machinability of Particulate Aluminum Matrix Composites. Ann. CIRP. 1992, 41(1): 55~58
    41全燕明.不同颗粒度SiC增强铝基复合材料的切削加工性能与适用刀具.材料科学与工程. 1996, 14(4): 59~64
    42 M. J. Mcginty, C. W. Preuss. Machining Ceramic Fiber Metal Matrix Composites. Proc. High Productivity Machining Materials and Processes. USA. 1985: 231~242
    43 C. Lane. The Effect of Different Reinforcements on PCD Tool Life for Aluminum Composites, in: Proceedings of the Machining of Composite Materials Symposium. ASM Material Week, Chicago, IL. 1-5 November 1992, 12~27
    44颜炳蕐. SiC粒子強化っルミニゥム合金基複合材料の被切削性.轻金属.1993, 43(4): 8~12
    45韩荣第,姚洪权,严春华. SiCp/2024复合材料切削力与刀具磨损的试验研究.复合材料学报. 1997, 2 (14): 71~75
    46张文峰,潘晓南. PCD刀具加工SiC颗粒增强铝基复合材料的合理切削速度.材料工程. 1999, 1: 14~17
    47韩荣第,姚洪权. SiC晶须增强铝基复合切削力研究.宇航材料工艺. 1996, 6: 71~75
    48韩荣第,王大镇.颗粒增强SiC/Al铝基复合切削力研究.高技术通信. 1997, 2: 13~15
    49全燕明. SiC增强铝基复合材料和过共晶铝硅合金的切削加工机理研究.华南理工大学博士学位论文. 1997, 34~43
    50王大镇.非连续增强铝基复合材料切削特性及机理研究.哈尔滨工业大学博士论文. 2000, 46~48
    51杜树芳.金属材料的尺寸稳定性.机械工程师. 1984, 6: 36~40
    52张力宁,周锦根.金属微应变抗力及其弯曲试验法测定的可行性.理化检验. 1989, 6: 26~30
    53武高辉,马森林,赵永春.亚微米级颗粒增强6061铝基复合材料的微变形特性.材料研究学报. 1998, 12(3): 307~310
    54武高辉,赵永春,栾伯峰.金属基复合材料力学性能设计的初步探索.全国第十一届复合材料学术会议论文集,上海, 1998: 342~346
    55梅志,顾明元,吴人洁.金属基复合材料残余应力测量的新方法.宇航材料工艺. 1996, (6): 39~43
    56刘秋云,费维栋,姚忠凯,赵连城.金属基复合材料的热残余应力研究进展.宇航材料工艺. 1998, (3):1~6
    57 P. J. Withers. D. H. Bhadeshia. Residuals Stress PartⅠ-MeasuementTechniques. Materials Science and Technology. 2001, 17: 355~365
    58史冬梅. LY12铝合金尺寸稳定化处理的研究.哈尔滨工业大学硕士论文. 1987, 42~50
    59杨峰. LY12铝合金尺寸稳定化处理工艺原理及其评价方法.哈尔滨工业大学博士论文. 2000, 37~41
    60孙东立,杨峰,武高辉.尺寸稳定性的评价新方法-圆环开口法的初步尝试.理化检验(物理分册). 1999, 35(10): 447~448
    61李义春.颗粒增强铝基复合材料的微塑性变形行为.哈尔滨工业大学博士学位论文. 1996: 47~104
    62张帆,李小璀,孙鹏飞.热处理对SiCp/Al复合材料尺寸稳定性的影响.中国有色金属学报. 2000, 9(4): 759~763
    63王秀芳. SiCp/2024Al复合材料的尺寸稳定性研究.哈尔滨工业大学博士学位论文. 2003: 93~98
    64张洪立,许奔荣,周海丽.铝基复合材料在惯性导航仪表中的应用分析.宇航材料工艺. 2001, (3): 10~14
    65 W. R. Mohn, Engineering Metal Matrix Composites for Precision Optical Systems. SAMPE Journal. 1988, 1: 26~32
    66吴人洁.金属基复合材料的发展现状及应用前景.航空制造技术. 2001, 3: 20~22
    67冯端,师昌绪,刘国治.材料科学导论.化学工业出版社.北京. 2002: 680~740
    68 S. Y. Du. Research and Development of Advanced Composite Materials for Aerospace Industry In China. 13th International Conference on Composite Materials. Beijing, Scientiflc and Technical Documents Publishing House. 2001, 1~4
    69 W. W. Moore, J. O. Lord. Gray Cast Iron of Machinability, AFS Transactions.1959, 670: 193~198
    70 R. D. Griffin, H. J. Li, E. Eleftheriou, C.E. Bates. Machinability of Gray Cast Iron. AFS Transactions.2002, 159: 1~17
    71 G. Leroy, J. D. Embury, G. Edwards, M. F. Ashby, Acta Metall. 1981, 29: 1509~1522
    72 F. P. Bowden, D. Tabor. The Friction and Lubrication of Solid. Oxford: Clarenden Press, 1964
    73温诗铸,黄平.摩擦学原理.清华大学出版社,2002: 276~284
    74 N. P. Suh, N. Saka. Fundamentals of Tribology. Cambridge: The MIT Press, 1978
    75吴芳.碳化鹏陶瓷及摩擦学研究.中南大学博士学位论文. 2001.
    76 Y. Flom, R. J. Arsenault. Interfacials Bond Strength in an Aluminum Alloy 6061-SiC Composite. Mater. Sci. Eng..1986, 77: 191~201
    77 B. Dune. New Materials In Space. Materials World. 2000, (1): 13~15
    78 A . L . Geiger , M. Jackson. Low-Expansion MMCs Boost Avionics. Advanced Materials Process. 1989, 136(7):23~28
    79耿林,温炳先,姚忠凯.压铸SiCW/Al复合材料的热物理性能研究.复合材料学报. 1996, 13(3):48~52
    80 S. Lemirux, S. Elomari, J. A. Nemes, M. D. Skibo. Thermal Expansion of Isotropic Duralcan Metal-Matrix Composites. Journal of Materials Science. 1998, 33: 4381~4387
    81 H. O. Pierson. Handbook of Carbo Graphite Diamond and Fullerenes. Noyes Pubilcations, New Jersey, U. S. A.
    82李德珊.片状石墨微观形貌及结构的SEM、TEM观察与分析,铸造, 1996, 2: 9~12
    83费维栋. SiC/Al-Ni复合材料高温压缩变形与界面结构的研究.哈尔滨工业大学博士论文. 1993: 42~45
    84耿林.压铸态SiCW/LD2复合材料晶须及界面的微观结构.哈尔滨工业大学博士论文. 1990: 4~8
    85 R. J. Arsenault, C. S. Pande. Interfaces in Metal Matrix Composites. Scripta Materialia. 1984,18: 1131~1134
    86 M. Vedani, E. Gariboldi, G. Silva, C. D. Gregorio. Influences of Interface Properties on Mechanical Behaviors of Particle Reinforced Metal Composite. Mater. Sci. Tech.. 1994, 10(2):132~140
    87 K. H. Baik. G. C. Lee. S. Ahn. Interface and Tensile Behavior of Squeeze Cast AC8A-Al2O3 Composites. Scr. Metall. Mater. 1994, 30(2): 235~239
    88樊建中,徐骏,桑吉梅,左涛,石力开.高性能铝基复合材料的颗粒分布及界面结合.宇航材料工艺. 2001, (1): 30~34
    89 S. Li, R. J. Arsenault. Quantum Chemical Study of Adhesion at the SiC/Al Interface. J. Appl. Phys.. 1988, 64: 6246~6257
    90 J. C. Romero. L. Wang, R. J. Arsenault. Interfacial Structure of a SiC/Al Composites. Mater..1992, 40: 281~287
    91姜龙涛.亚微米Al2O3颗粒增强铝基复合材料近界面区的显微结构特征.哈尔滨工业大学博士论文. 2001: 92~105
    92罗承萍,隋贤栋,欧阳柳章,骆灼旋. SiCP/Al-Si复合材料中SiC/Al的晶体学位向关系.金属学报, 1999, 35 (04): 343~346
    93 N. Wang. Interface Structure and Aging Characteristics of SiC Particulate Reinforced Aluminum (A356) Alloy. Master Thesis of Unicersity of Toronto. 1991:28~34
    94 P. K Rohatgi, D. Nath, S. S Singh . Factors Affecting the Damping Capacity of Castaluminum-matrix Composites. J. Mater. Sci.. 1994, 29(22): 5975~5982
    95 D. B. Ge, M. Y. Gu. Mechanical Properties of Hybrid Reinforced Aluminum Base Composites. Materials Letters. 2001, 49: 334~339
    96 T. W. Clyne. P. J. Withers.金属基复合材料导论.余永宁,房志刚译.冶金工业出版社. 1996: 181~185
    97张福勤,黄伯云,黄启忠,刘根山,蒋建纯.炭/炭复合材料可石墨化性能研究.矿冶工程. 2001, 21(1): 59~61
    98 J. J. Kubler. Fracture Resistance Testing of Monolithic and Composite Brittle Materials, ASTM STP 1409, in: J.A. Salem, G.D. Quinn, M.G. Jenkins (Eds.), American Society for Testing and Materials, West Conshohocken, PA, 2002, 93~96
    99 J. Mering, J. Maire. 1st Conf on Industrial Carbon and Graphite. 1958, 204~208
    100 J. Maire, J. Mering, Graphitization of Soft Carbon. Marcel Dekker. 1970. 125~129
    101刘继富,沈仰云.颗粒弥散复相陶瓷材料热应力分析.耐火材料,1994, 28(2):117~119
    102华南工学院等编.陶瓷材料物理性能.建材工业出版社. 1981.
    103 L. K. Lee, Y. Y. Earmme, H. I. Aaronson. Plastic Relaxation of the Transformation Strain Energy of a Misfitting Spherical PrecipitatE:Ideal Plastic Behavior. Metall. Trans., 1980, 11(A): 1837~1847
    104 M. F. Ashby. Quantitative Observation of Misfit Dislocation Arreays inShort fiber Reinforced Metal Matrix Composites. Phil. Mag.. 1970, 21: 399~411.
    105 R. J. Arsenault, N. Shi. Dislocation Generation Due to Differences between the Coefficients of Thermal Expansion. Materials Science and Engineering. 1986, 81: 175~187
    106 M. Vogelsang, R. J. Arsenault, R. M. Fisher. An in situ HREM Study of Dislocation at Al/SiC Interfaces in Metal Matrix Composites. Metall. Trans.. 1986, 81: 175~187
    107 Y. Song, T. N. Braker. Accelerated Aging Processes in Ceramic Reinforced AA6061Al composite. Mater. Sci. Tech.. 1994, 10(5): 406~413
    108 T. G. Nieh, R. F. Karlak. Aging characterics of B4C Reinforced 6061Al. Scripta Materialia. 1984, 18: 25-28
    109 J. S. Lin, P. X. Li. R. J. Wu. Aging Evaluation of Cast Particulate-reinforced SiC/2024Al Composites. Scripta Materialia. 1993, 28: 281~286
    110 I. Dutta, D. L. Bourell. A Theoretical an Experimental Study of Aluminum Alloy 6061-SiC Metal Matrix Composite to Identify the Operative Mechanism for Accelerated Aging. Mater. SCi. Eng., 1989, A112: 67~77
    111 P. B. Prangnell , W. M. Stobbs. The Effect of Internal Stress on Precipitation Behaviour in Particulate Reinforced Al Matrix MMCS, Metal Matrix Composites Processing. Microstrucutre and Properties. 12th Riso Int. Symp. 1991
    112 P. B. Prangnell, S. J. Barnes, S. M. Roberts, P. J. Withers. The effect of particle distribution on damage formation in particulate reinforced metal matrix composites deformed in compression. Materials Science and Engineering. 1996, A220: 41~56
    113 J. E. Allison, G. S. Cole. Metal-Matrix Composites in the Automotive Industry: Opportunities and Challenges. JOM. 1993, 45(2):19~25
    114 P. K. Ghosh, S. Ray. Effect of Porosities on the Strengh and Hardness of Particulate Composites, Metallkunde. 1998, 75: 1667~1674
    115 A. M. Hassan, G. M. Tashtoush, J. A. Al-Khalil. Effect of Graphite and/or Silicon Carbide Particles Addition on the Hardness and Surface Roughness of Al-4wt% Mg Alloy. J. Comp. Mater.. 2007, 41: 453~45
    116 K. K. Chawla, Ceramic Matrix Composites. Chapman and Hall, London,1993, 164~168
    117植村益次,砂川惠.日本机械学会论文集. 1958,459~265
    118原田昭治,野口徹,鈴木秀人.球墨铸铁的强度评价. 2001, 51~85
    119 G. H Wu, S. L. Ma, R. H Li, L.T Jiang. Chinese Inertial Instruments and Component Academic Conference1998, Wenzhou, China.
    120崔岩.碳化硅颗粒增强铝基复合材料的航空航天应用.材料工程, 2002, (6): 3~6
    121袁广江,章文峰,王殿斌. SiC颗粒增强铝基复合材料制备及机加工性能的研究.复合材料学报, 2000, 17 (2): 38~41
    122 W. R. Mohn. Engineering metal matrix composites for precision optical systems. SAMPE 1988. January/February: 26~35
    123 D. J. Lloyd. Particle Reinforced Aluminum and Magnesium Matrix Composites. Int. Met. Rev. 1994, 39(1): 1~23
    124 B. S. Rao, C. Hemambar. Al/SiC Carriers for Microwave Integrated Circuits by a New Technique of Pressureless Infiltration. IEEE Transactions on Electronics Packaging Manufacturing. 2006, 29(1):325-332
    125 F. Zhang, P. F. Sun. A Comparative Study on Microplastic Deformation Behavior in a SiCp/2024Al Composite and its Unreinforced Matrix Alloy. Materials Letters, 2001(45):69~74
    126 M. Occhionero, R.W. Adams, D. Saums. Al/SiC for optoelectronic thermal management an packaging designs. Proceedings of the 2003 International Symposium on Microelectronics, Boston, 2003.
    127 G. Bi, H. W. Wang.Characterination and Measure-ment of Interfacial Reaction in Metal Matrix Composites.Materials for Mechanical Engineering, 1999, 23(5): 1~3.
    128 D. C. Zweben. Advanced Composites and Other Advanced Materials for Electronic Packaging Thermal Managemen. IMAPS Intemational Symposium on Advanced Packaging Materials. 2001: 360~365
    129 S. Ramrattan, F. Sitkins, M. Nallakatala. Optimization of the Casting and Machining Processes for a Metal-matrix Composite, Proc. Canadian Soc. Mech. Eng. Symp. McMaster University. 1996: 624~629
    130 A. Manna, B. Bhattacharayya A Study on Machinability of Al/ SiC-MMC. Journal of Materials Processing Technology. 2003, 140:711~716
    131 W. Ames, A. T. Alpas Wear Mechanisms in Hybrid Composites of Graphite-20pct SiC in A356 Aluminum Alloy (Al-7pct Si-0.3pct Mg). Metall. Mater. Trans. A. 1995, 26A: 85~98.
    132 A. R. Riahi, A.T. Alpas. The Role of Tribo-Layers on the Sliding Wear Behavior of Graphite Aluminum Matrix Comoposites. Wear. 2001, 251:1396~1407
    133 P. K Rohatgi, D.Nath, S. S Singh. Factors Affecting the Damping Capacity of Cast Aluminum-matrix Composites. J. Mater. Sci.. 1994, 29(22): 5975~5983
    134 M. C. Gui, S. B. Kang. Aluminum Hybrid Composite Coatings Containing SiC and Graphite Particles by Plasma Spraying. Materials Letter. 2001, 51: 396~401
    135 R. Perze, J. Zhang J, E. J Lavernia. Damping Behaviors of 6061Al/Gr Metal Matrix Composites. Metal Trans A. 1993, 24: 701~708
    136 J. Zhang, R. J. Perze, E. J. Lavernia. Effect of SiC and Graphite Particulates on the Damping Behaviors of Metal Matrix Composites. Acta Metal Mater.. 1994, 42:395l~3957
    137 E. J. Lavernia, R. J. Perze, J. Zhang. Damping Behaviors of Discontinuously Reinforced Al Alloy Metal Matrix Composites. Metal. and Mater. Trans. A, 1995, 26: 2803~2808
    138赵威.基于绿色切削的钛合金高速切削机理研究.南京航空航天大学博士论文. 2006, 16~35
    139 B. B. N. Pramila, B. S. Ramasesh, M. K. Surappa. Dry Sliding Wear of A356-Al-SiCp Composites. Wear. 1992, 157: 295~304
    140 A. T. Alpas, J. Zhang. Effect of Microstructure (Particulate size and volume faction) and Counterface Materials on the Sliding Wear Resistance of Particulate-reinforced Aluminum Matrix Composites. Metall.Tran. . 1994, 25A: 969~983
    141 M. L Ted Guo, C. Y. A Tsao. Tribological Behavior Self-lubricating Aluminum/SiC/Graphite Hybrid Composites Synthesized by the Semi-solid Power-Densification Method. Composites Science and Technology. 2000, 60: 65~74
    142 H. L. Lee, W. H. Lu, S. L. Chan. Abrasive Wear of Power Metallurgy AlAlloy 6061-SiC Particle Composites. Wear. 1992, 159: 223~231
    143卢德宏,顾明元,施忠良,金燕苹. SiC含量对混杂复合材料的摩擦磨损性能的影响.材料工程. 2000, 3: 26-28
    144 M. L. Ted Guo, C. Y. A. Tsao. Tribological behavior self-lubricating aluminum/SiC/graphite hybrid composites synthesized by the semi-solid power-densification method. Composites Science and Technology. 2000, 60:65~74
    145 C. S. Lee, Y. H. Kim, K. S. Han. Wear Behaviour of Aluminum Matrix Composites Materials. Mater. Sci.. 1992, 27: 793~800
    146张弘弢.金属切削过程中的剪切角、切削力的预报及切屑折断机理研究.大连理工大学博士学位论文, 1988.
    147 Y. B. Liu, S. C. Lim, S. Ray. Friction and wear of aluminium-graphite composites: the smearing process of the graphite during sliding. Wear. 1992, 159: 201~205
    148 O. Quigley, J. Monaghan, P. O. Reilly. Factors Affecting the Machinability of An Al/SiC Metal Matrix Composite. J. Mater. Process. Technol.. 1994, 48: 21~36
    149张强.高体积份数铝基复合材料的微观组织和性能研究.哈尔滨工业大学博士论文. 2003, 52~54
    150徐福祥.卫星工程.中国宇航出版社,2002, 253~270
    151罗松保,张建明.航空航天制造技术及设备的现状和发展趋势.制造技术与机床. 2003,(6):135-139
    152 M.Л.亨金,И. X.洛克申.精密机械制造中金属和合金的尺寸稳定性.蔡安源,杜树芳译.科学出版社, 1981
    153张力宁,朱平.金属微应变抗力及其影响因素分析.金属学报. 1990, 26(3): B208~212
    154 A. J. Allen. M. A. Bouke, S. Dawes, et al.. The Analysis of Internal Strains Measured by Neutron Diffraction in Al-SiC Metal Matrix Composites. Acta. Metall. Mater.. 1992, 40(9): 2361~2373
    155汤光平,黄文荣.循环处理对铝合金尺寸稳定性的影响.金属热处理. 1999, 10: 11~14
    156刘淑云,安希墉,何晓燕,孔淑英. ZL104合金的尺寸稳定化研究.宇航材料工艺. 1991, 3: 4~8
    157丁声兰.铝硅系铸铝尺寸稳定化工艺研究.航天工艺. 1993, 4:10~13
    158王元良,陈明鸣. LD10铝合金残余应力测试分析.中国有色金属学报. 1999, 9(4): 759~763
    159李建.铝合金残余应力的降低和释放.航天工艺. 1993, 4:48~50
    160王世中,欧阳宇平. LY12冷热加工的残余应力及其消除.航天工艺. 1993, 4: 48~50
    161张帆,金城,李小璀,陈培烈. 2024铝合金的微屈服行为.中国有色金属学报.1998, 8:136~140
    162 S. Yoda. N. Kurihara. K. Wakashima. S. Umekawa. Thermal Cycling Induced Deformation of Fibrous Composites with Particular Reference to the Tungsten-Copper System. Metall. Trans.. 1978, 9A: 1229~1236
    163张帆,李小璀,张国定. SiCp/Al复合材料温度变化引致尺寸不稳定性的研究.热加工工艺. 2000, 1: 5~7
    164李志林,姚忠凯. SiCw/Al复合材料的尺寸稳定性.宇航学报. 1996, 17(1): 62~65
    165李志林,姚忠凯. SiCw/Al复合材料的尺寸稳定性及稳定化处理工艺.热加工工艺. 1996, 6: 5~7
    166 S. H. Thomin, P. A. Noel, D.C. Dunand. Cracking Mechanisms in Thermal Cycled Ti-6Al-4V Reinforced with SiC Fibers. Metall. Mater. Trans. A. 1995, 26: 883~895
    167 M. H. Lin. W. Buchgraber, G. Kord. P.W. Kao. Thermal Cycling Induced Deformation and Damage in Carbon Friber Reinforced Copper Composite. Scripta Materialia. 2002, 46:169~173
    168 J. J. Ahn, S. Ochiai. The effect of Thermal Cycling and Isothermal Exposure on the Mechanical Properities of SiC Particle Reinforced Al Composites. Journal of Composite Materials. 2002, 36(17): 2073~2083
    169 S. I. Hong, G. T. Gray. Quenching and Thermal Cycling Effects in a 1060-Al Matrix -10vol%Al2O3 Particulate Reiforced Metal Matrix Composite. Material Science and Engineering. 1993, A171: 181~189
    170 H. Y. Hunsicker. Dimensional Changes in Heat Treating Aluminum Alloys. Metall. Trans. A. 1980, 11A: 759~773
    171 C.R.布鲁克斯.有色合金的热处理、组织与性能.丁夫等译校.冶金工业出版社. 1988, 7
    172 C. Bartels. D. Raabe. G. Gottstein. U. Huber. Investigation of Precipitation Kinetics in an Al6061/TiB2 Metal Matrix Composite. Materials Science and Engineering. 1997, A237: 12~23
    173肖纪美.合金的相与相变.冶金工业出版社. 1987: 6~15
    174冯端.金属物理学(第一卷结构和缺陷).科学出版社. 1998:345~352
    175 N. Brown, K. F. Lukens. Microstrain in Polycrystalline metals. Acta Met. 1961, 9(2), 106~111
    176 R. D. Carnahan, J. E. White. Some Comments on Strain gage Techniques for Determining Microstrain. Trans. TMS-AIME, 1964, 230:249 ~254

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700