用户名: 密码: 验证码:
氮化硼基精铸复合型壳及制备工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金是一种性能优异、用途广泛的金属材料。熔模精密铸造工艺是钛合金成型的重要方法之一。当前,钛合金熔模精密铸造技术发展的关键,仍在于寻找出一种低成本,工艺性能好,与钛合金反应较小的钛合金熔模精密铸造用的制壳材料,并探索与之配套的制备技术,生产出性能优异的钛合金铸件。
     论文围绕着这一目标,通过对稳定化氧化锆、高纯热压氮化硼与熔融钛界面反应的比较研究,发现六方氮化硼是一种与钛合金反应较小的耐火材料。在此基础上,尝试将氮化硼作为钛合金精密铸造用型壳的面层造型材料,并开发了一种新型钛合金精密铸造型壳——氮化硼基复合型壳和其制备工艺。
     在此型壳体系中,面层和次面层以经过预处理的六方氮化硼和少量氧化钇作为造型材料,钇溶胶作为粘结剂;而型壳的背层则使用普通钢熔模精密铸造的造型材料即硅溶胶和莫来石。
     通过对目前市场上销售的各种氮化硼包括t-BN、高纯氮化硼等各种氮化硼粉体性能特性进行了考察比较,发现这些氮化硼存在比表面积大、流动性差、成本昂贵等问题,无法用于熔模精铸型壳的造型材料。我们探索了一种对普通氮化硼进行热压预处理工艺,使得氮化硼粉体形状得到明显改善,比表面积大幅降低,氮化硼在粘结剂中的含量大幅增加。这种既能节约成本又能有效改善氮化硼粉体在溶剂中流动性的预处理工艺,使普通氮化硼用于钛合金熔模精铸型壳的造型材料成为可能。
     论文还开发了一种由氮化硼、氧化钇和钇溶胶组成的新型氮化硼基复合涂料,并对含有不同比例的氮化硼和氧化钇复合涂料的基本性质进行了研究。研究发现氮化硼基复合涂料具有熔模精密铸造涂料所需的屈服性、剪切稀释等流变性特点。
     本文还研究了一种新型脱蜡工艺——微波脱蜡。并研究了型壳的背层数量和型壳在微波场中的放置方式等各种因素对微波脱腊效果的影响,确定了微波脱腊的最佳工艺。该工艺不仅解决了大部分钛合金熔模精密铸造用粘结剂(如钇溶胶粘结剂)干燥后遇水回溶的难点,也避免了溶剂脱蜡中所使用的有机溶剂对人体的危害。微波脱蜡是一种用于钛合金熔模精密铸造中很有发展潜力的脱蜡工艺。
     在型壳制备工艺中,焙烧是重要的工序之一,为了研究氮化硼基复合型壳在焙烧过程中面层发生的物理化学变化,本文通过使用失重分析(TG)、差热分析(DSC)、扫描电镜(SEM)和强度分析等多种检测手段,对经过不同焙烧工艺的氮化硼基复合型壳的表面形貌、内部成分、残余强度等性质进行了系统研究。研究发现氮化硼基复合型壳在空气中高温加热(≥800℃)时候,面层中的氮化硼与氧化钇之间会发生反应,反应生成了低熔点YBO_3。YBO_3的生成可以改善氮化硼基复合型壳的表面质量,提高型壳高温残余强度但可能会影响型壳对钛液的“惰性”。因此在充分考虑型壳制备成本、型壳表面质量和型壳强度等因素的情况下,氮化硼基复合型壳的焙烧工艺分为两个阶段。在低于900℃时,采用在空气中焙烧;当加热温度高于900℃时,采用在氮气保护下焙烧,提高加热温度至1000℃保温1~2个小时(具体看型壳大小)。型壳随炉冷却,当炉内温度低于800℃时,才停止氮气保护。
     此外,为了验证氮化硼基复合型壳在精密铸造中的可用性,本文还进行了型壳与TiNi合金以及Ti-6Al-4V合金之间的浇铸试验和界面反应机理研究。试验中分别使用了真空感应熔炼和真空水冷铜感应熔炼两种不同的熔炼方法,并通过使用扫描电镜(SEM),电子探针(EPMA)等检测方法,对型壳与熔融钛合金之间的反应界面进行了研究。氮化硼基复合型壳与TiNi合金界面反应研究发现,这种型壳用于铸造TiNi合金时,具有良好的铸造性能和耐火度;即使浇铸温度高达1600℃(300℃过热度),型壳与钛镍合金反应仍然较小,铸件表面反应层和扩散层都仅为几个微米。而氮化硼基复合型壳与高温下的Ti-6Al-4V合金反应较为严重,当浇铸温度为1750℃以上时,铸件表面的“沾污层”厚度为180~200μm,其中反应层厚度约为30~50μm,由N原子和少量B原子扩散入钛基体形成的硬化层(扩散层)大约为150μm。
     本文还对TiNi合金和铸造钛合金Ti-6Al-4V的活度进行了计算,并研究了两种钛合金与氮化硼基复合型壳界面反应机理。研究发现TiNi合金的活度要低于Ti-6Al-4V合金,由于钛合金与型壳之间的反应是一个双向迁移的过程,钛合金的种类、浇铸温度和型壳内表面质量是对此过程有巨大的影响。
     总之,氮化硼基复合型壳为主线的熔模精铸工艺技术路线是一条很有发展潜力的钛合金熔模精铸生产的技术路线。它不仅具备当前常规的钛合金熔模精铸工艺对其他各种成形工艺的优势,而且与当前常规的钛合金熔模精铸工艺相比,还有鲜明的成本低、环境友好型的特色。但是,应该看到,我们的工作还没有结束,还需要进一步改进这种氮化硼基复合陶瓷型壳的性能,完善其制备工艺,并对其在钛合金精铸件产业化生产应用的作出系统评估。只有这样,才能使这氮化硼基复合型壳钛合金熔模精铸生产工艺技术路线推向产业化,有一个扎实可靠的基础。一旦能够在它的产业化转化获得突破,那么它就有可能成为当前氧化钇型钛合金熔模精铸工艺的替代技术,大幅降低钛合金零件的生产成本,形成真正意义上的高效、优质、环境友好型的钛合金零件的生产技术路线,大大拓展钛合金工业生产领域,扩大钛合金的用途,为真正实现钛合金从军用到民用的转变奠定基础。
Titanium alloys are one of the excellent metallic materials, which have high properties and wide usages. The investment casting technology is the one of most important forming technologies for Ti alloys parts. Currently the key of the development of the investment technology for Ti alloy casting still is to search a kind of shell mould material which has lower cost, good technologic properties and high chemical inertness for investment casting of Ti alloys and to explore its preparation technology and to manufacture excellent Ti alloy castings with the investment shell mould.
     In this paper, the interaction between the Ti melt and some refractory such as hBN, ZrO_2 were studied. From those studies, it is found that hBN has enough chemical inertness for the melting Ti. So we tried to adopt hBN particles to wax pattern surface as the mold material to reduce the thickness of reaction layers on Ti castings.
     Based on the interaction study, we developed a new kind of investment shell mold,which is BN based shell mold used for the Ti casting. The face coatings of BN based investment shell mold are made of pretreated hexagonal Boron nitride (hBN) particles with a few yttria powders and colloidal yttria as binder. And the back up coatings of the shell mold are composed of mullite powders and colloidal silica.
     Moreover, some facts of that shell mold were also studied including all kinds of typical properties of those shell mold, interaction between the melting Ti and shell mold, so as to improve both of the properties and preparation process of those shell mold, and clarify whether that shell mold could be used for investment casting Ti.
     The slurry used for manufacturing face coatings of shell mold should have an appropriate value of filler/binder ratio with a low viscosity which is needed to achieve better surface of shell mould. Otherwise, the cost of those BN particles is another important impact concerned, which has to be cheap enough to low the cost of shell mold. There are different grades of BN with various properties such as tap density, area, flexibility and cost, but some kinds of BN are not suitable enough for making the shell mold, such as t-BN and high purity hBN. In this study, it is found that pretreated BN particles which were treated in high temperature and high pressure could be used to making the face coating of BN based investment shell mold.
     In order to produce shell mold with enough glabrous and compact inner surface, the slurries made of different BN content and filler/binder ratio were studied in this paper. The results show that the slurries made of Boron nitride particles, yttria powders and colloidal yttria have yield and psendoplastic property which means the appearant viscosity decreased with increasing shear rate. The BN particles content have great influence on appearant viscosity, suspension rate and thickness of slurry. Meanwhile the increase of yttria powders content will lead to improve filler/binder ratio, density of the slurries.
     Because bind yttria colloidal used in shell mold will resolve when it meets water. To keep the shell mold from cracks, a new kind of dewaxing method—microwave dewaxing was studied. The results show that microwave dewaxing is an effective dewaxing process, and some influence which mainly impact dewaxing efficiency are quantity of back-up coatings, design of wax mold and the way shell mold located in microwave.
     Sintering process is one of the most important process in investment casting processes. The DSC, TG and some other analysis were employed to study appearance of inner surface, blending strength and composition of those BN based shell mold sintered in different heat process. The physical and chemical changes of those shell mold occurred during sintering process were also studied. The results show that during the sintering process in air, in the face coating of shell mold the BN particles reacted with yttria powders and formed YBO_3, which has a low melting temperature and low chemical inertness to molten Ti.
     Considered with cost of shell mold, the sinter process of BN based shell mold should be as fellow: The sinter temperature should be 1000℃, and according to the size of shell mold, and heat preservation time is different. When the sinter temperature is lower than 900℃, shell mold can be heated in air; when the sinter temperature is over 900℃, it should be heated in protective atmosphere such as N2. Moreover, the interaction between the shell mold and melting TiNi alloy and Ti-6Al-4V alloy were also studied, so as to clarify whether this kind of shell mold could be used for investment casting Ti alloys. The TiNi alloy casting process was done in a controlled atmosphere induction melting furnace, and TiNi alloy was melted in CaO crucible, and the Ti-6Al-4V alloy was melted in a controlled atmosphere induction furnace with a high purity BN and a segment water-cooled copper vessel crucible (ISM). The cross-section of reaction intersurface between Ti alloys and BN based shell mold was investigated by electron microscopy (SEM), electron probe micro-analyzer (EPMA) and mircohardness analysis. The results show that the reaction between melting TiNi and shell mold is slight and the thickness of the reacting layer is only about several micrometers. The results also show that when the casting alloy was 1750℃Ti-6Al-4V alloy, the thickness ofα-case in Ti casting is about 180~200μm.
     The activity of TiNi and Ti-6Al-4V alloy, and theα-case formation mechanism were also discussed. The resluts indicated that activity of Ti-6Al-4V alloy was higher than that of TiNi alloy, and the mold-metal interation was a dual diffusion process which would be influenced by Ti alloys activity, pouring temperature and quality of shell mold。
     Except the study of mold-metal interation, the comparison of the making cost of these shell mold with that of the yttria one was also studied. And the result shows that Ti parts casted in BN based investment shell mould with a low cost and a low thickness of“α-case”.
     In brief, the Ti investment casting technology with the BN based investment shell mould is a development potential technoiogy. It not only has the dominance of the Ti investment casting technology over other forming techniques, but also has strickingly features of lower cost and environment friendship, comparing to the conventional Ti investment casting technology. However it is still not the end and our research on the Ti investment casting technology does not finish. There are a lot of things to be done, such as the property modification of the BN based investment shell mould, the manufacture technology improvement, the appreciation about its value in use and so on, which make a solid base of the industrial appication of the BN based investment shell mould for Ti alloy casting. Once its industrial appication has been realized for the future, it is possibly as a substitute for the conventional Y2O_3 based investment casting technology. Thus it may become an environment friendship technology which greatly decrease the production cost and make a continuation of the Ti alloy application from the military to the civil use.
引文
[1]张喜燕等.钛合金及应用[M].北京:化学工业出版社,2005,pp21~186
    [2]王桂生,田荣璋.钛的应用技术[M].湖南:中南大学出版社,2007,pp30~158
    [3]李梁,孙健科,孟祥军.钛合金的应用现状及发展前景[J].Vol.21,No.5,2004,pp19~24
    [4]王金友,葛志明等.航空用钛合金[M].上海:上海冶金出版社,1985
    [5] R.E.Waznock,The science, Technology and Application of titanium[J],1970, pp341~141
    [6]蒋伟,赵金平,龚敏.钛及钛合金在防腐应用中的研究现状和前景[J],轻金属,2007.9,pp59~63
    [7]卫晏华.我国钛材工业的发展现状及市场展望[J],有色金属加工, Vol.33,No.1, 2004,pp14~17
    [8]宋西平.钛合金在汽车零件上的应用现状及研发趋势,钛工业进展[J], Vol 25,No5,2007.10,p9~13
    [9] Friedrich Hetal. Titanium in Automotive Applications-nightmare, Vision or Reality[M]. Weinheim: TMS, 2003, p3393
    [10]王乐安,难变形合金锻件生产技术[M],北京:国防工业出版社,2007,p1-4,p202-210
    [11]张春江,钛合金切削加工技术,西安:西北工业大学出版社,1986,p10-24
    [12]谢成木.铸造钛合金及其铸造技术的发展和应用[J].金属学报,Vol.35,1999,pp550~556
    [13]闫平,王利,赵军等.高强度铸造钛合金的应用及发展[J].铸造,2007,Vol.56 No.5,pp 451~454
    [14]上海科学技术情报所,钛的加工及应用实例[内部资料],上海市,1974,p31
    [15]孙康,钛提取冶金物理化学[M],北京:冶金出版社,2001,p21
    [16]张喜燕,赵永庆等,钛合金及应用[M],北京:化学工业出版社,2005,p155-159
    [17]耿浩然、丁宏升等,铸造钛、轴承合金[M],北京:化学工业出版社,2007,p67
    [18]曾昭昭.特种铸造[M].浙江:浙江大学出版社,1997,pp1~33
    [19]姜不居.熔模精密铸造[M].北京:机械工业出版社,2004. pp3~117
    [20]谢成木.钛及钛合金铸造[M].北京:机械工业出版社,2004,pp98~190
    [21]蒋海燕.钛合金熔模精密铸造氧化锆陶瓷型壳的研究.博士论文,哈尔滨工业大学,1999
    [22]王新英,谢成木.国内外钛合金精密铸造型壳材料的发展概况[J].特种铸造及有色金属,Vol.3,2001,pp40~42
    [23]黄东,谢成木,南海等.国外钛和钛合金熔模精铸涂料浆的研究和发展[J].铸造, Vol 53,No3,2004.5,pp179~183
    [24]黄东,谢成木等.国外钛合金熔模铸造耐火材料的研究[J].特种铸造及有色金属,Vol.3,2004,pp47~49
    [25] U.S.P.O No 3.256.574,1966
    [26] U.S.P.O No 3.241.200,1966
    [27] U.S.P.O No 3.266.106,1966
    [28] U.S.P.O No 3.296.666,1967
    [29] U.S.P.O No 3.321.005,1967
    [30] U.S.P.O No 3.994.376,1976
    [31] U.S.P.No 4.057.433,1975
    [32]史兴利,郑子樵.钛及钛合金铸造用石墨型的制造[J].铸造,Vol.3,1998,pp37~39
    [33] U.S.P.No 5.766.329,1998
    [34]蒋海燕,李邦盛,李志强等.钛合金熔模精密铸造工艺的研究[J].金属学报(增刊),1999
    [35]蒋海燕.钛合金的氧化物陶瓷型壳熔模精铸工艺[J].金属学报,Vol.35,1999,pp563~565
    [36]陈玉勇,齐秀梅,田竞等.钛熔模精铸用氧化物陶瓷型壳制壳工艺的研究[J].材料工程,No.8,1999,pp38~40
    [37]贾清,崔玉友,杨锐.钛合金精密铸造陶瓷型壳研究[J].金属学报, Vol .40,No.11,2004.11,pp1171~1174
    [38] Q. JIA, Y. Y. CUI, R. YANG. A study of two refractories as mould materials for investment casting TiAl based alloys[J]. J MATER SCI 41 (2006), pp3045–3049
    [39] X.-P. Luo, T.-W. Guo, Y.-G. Oub. Titanium casting into phosphate bonded investment with zirconite[J]. Dental Materials Vol.18, 2002, pp512~515
    [40] U.S.P.No 4.703.806, 1997
    [41] U.S.P.No 5.221.336, 1993
    [42] U.S.P.No 5.464.797, 1995
    [43] Fukumoto R. Development of dental quick casting with zircon-phosphoric acid investments[J]. Shika Zairyo, Kikai , Vol.9, 1990, pp336~56.
    [44] Chun-ChengHung, Guey-LinHou, Chi-ChengTsai, Pure titanium casting into zirconia-modified magnesia-based investment molds [J], DentalMaterials, Vol.20, 2004 , pp846~851
    [45] L Nastac, M.N. Gungor, I.Ucok, Advances in investment casting of Ti-6Al-4V alloy: a review, internationall journal of cast Metals Research [J]. Vol .19, No.2, 2006, pp73~93
    [46] Federico Smeacetto, Milena Salvo,Monica Ferraris, Protective coatings for induction casting of titanium[J], Surface & Coatings Technology, Vol 201, 2007, pp9541~9548
    [47]戴介泉.钛精铸陶瓷型壳用新耐火材料研究[J].材料工程,Vol.1,No.2,1996,pp20~21
    [48] M.Garfinkle, H.M.Davis. Reaction of liquid titanium with some refractory compounds [J].Transactions of the ASM. Vol.58, 1965, p521~530
    [49] WATANABE, M. WOLDU, K. WATANABE. Effect of casting method on castability of titanium and dental alloys[J]. JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE , 2000, Vol.11, p547~553
    [50]林柏年编著,铸造流变学[M].黑龙江:哈尔滨工业大学出版社,1991,pp16~101
    [51]韩辉,魏兆连,徐福先等.铸造涂料流变模型及流变特性参数化评价研究[J].武汉汽车工业大学学报,Vol.18 No 5,1996,pp38~40
    [52]李邦盛,蒋海燕,李志强等.双峰级配对钛合金熔模精铸涂料粘度的影响[J].铸造,Vol.6,1999,pp22~24
    [53]朱丽鹃,张玉海,李润华等.粉料粒度优化级配降低铸件表面粗糙度的机理及应用[J].铸造, Vol.5,1996,pp6~9
    [54]晋勇,谢华锟.微波烧结技术的应用与进展[J].工具材料,Vol.39,NO.1,2005,pp19~22
    [55] Wang RR, Welsch GE, Castro-Cedeno M. Interfacial reactions of cast titanium with mold materials [J]. International Journal of Prosthodontics,Vol.11, 1998, pp33~43.
    [56] Luo XP, Guo TW, Ou YG, Wang BC. Analysis on reaction of cast titanium with investment with electric micro-probe [J]. Journal of Fourth Military Medical University Vol.17, 1996, pp228~232.
    [57] Si-Young Sung, Young-Jig Kim. Alpha-case formation mechanism on titanium investment castings, Materials Science and Engineering A[J], Vol.405, 2005, pp173~177
    [58]李邦盛,蒋海燕,李志强等.钛合金熔模精铸氧化锆陶瓷型壳金属界面反应研究[J].航空材料学报,Vol.19,No.2,1999.6,pp43~47
    [59]蒋海燕,李邦盛,李志强等.液钛与氧化锆陶瓷型壳的相互作用[J].中国有色金属学报,Vol.2,1999,pp273~277
    [60]丁宏升,傅恒志,贾均等.钛合金熔体活度计算及合金与铸型的界面反应[J].材料科学与工艺. Vol.9 No.2,2001,pp130~134.
    [61]朱艳,杨延清.钛合金及金属间化合物中各组分的活度系数[J].稀有金属材料与工程,Vol.32,No.8,2003,pp601~603
    [62] http://www. Advceramics.com
    [63]顾立德.新型无机非金属材料——氮化硼[M],北京,中国建筑工业出版社, 1982:pp1~9
    [64]赵凤鸣,姚世义.热解氮化硼坩埚在特种熔炼上的应用[J].稀有金属,1993,Vol.17,No.2,pp152~154
    [65] Crimp.M.j,Oppermann.D.a,Krehbiel.k. Suspension properties of hexagonal BN powders:Effect of PH and oxygen content[J]. Journal of Materials Science, 1999, Vol.34:pp2621~2625
    [66] U.S.P.No 5. 898. 009
    [67] U.S.P.No 6.713.088, 2001
    [68] U.S.P.No 6.645.612, 2001
    [69]吕志刚,闫双景,韩笑等.硅溶胶型壳熔模铸件毛刺缺陷的研究[J].铸造技术,2005,26(4):382~287
    [70]乐启炽等,金属合金溶液热力学研究进展[J],金属学报,2003,1:35-42
    [71]范鹏,周国治,由组元的物性参数预测金属熔体的热力学性质[J],金属学报,1999,4:421-427
    [72]王海川等,三元金属熔体活度系数计算的模型研究[J],华东冶金学院学报,2000,1:1-5
    [73]E.Faran,Experimental study of the reaction zone at boron nitrde ceramic-Ti metal interface[J],Materials Science and Engineering A ,2000,A288:66-74
    [74]E.Faran,Coating of BN vis solid state reaction with Ti powder[J],Materials letters, 2000,43:192-196
    [72] S. Kurooka, Formation and characterization of BN films with Ti added, Surface and Coatings Technology [J],2003,166:111–116
    [73]于任红,蒋明学,TiN的性质、用途及其粉末制备技术[J],耐火材料,2005,39(5):386-389
    [74]董艳玲,王为民,TiB2复合材料的研究进展及其应用[J],佛山陶瓷,2004,2:7-11
    [75]陈肇友,化学热力学与耐火材料[M],北京,冶金工业出版社,2005:653-658
    [76] K.S. Debey, P. Ramachndrarao, S. Lele, Thermodynamic and viscous behavior of undercooled liquids [J], Thermochimica Acta ,1996, 280/281:25-62
    [77]虞觉奇等,二元合金状态图集[M],上海市,上海科学技术出版社,1987:479,206
    [78] Xiaoyan Ma, Changrong Li, Weijing Zhang. Thermodynamic assessment of the TI-B system[J],Journal of Alloy and Compounds,2004,370:149-158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700