用户名: 密码: 验证码:
形状记忆合金大尺寸单晶及其制备技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对Cu基形状记忆合金的应用研究已经证实,将各向异性的多晶Cu基记忆合金材料制备成柱状晶甚至单晶,能够显著提高合金的最大可恢复应变和疲劳性能,改善加工和机械性能,扩大记忆合金的应用领域。尽管TiNi形状记忆合金的弹性各向异性(A≈2)要小于Cu基记忆合金(A≈13),但研究表明,TiNi合金的记忆性能和力学性能与晶体学取向也有着很大的依赖性和关联性。本论文通过自主设计、自行研制高温度梯度真空感应熔炼-定向凝固单晶炉和迷宫式选晶器,利用改进的Bridgeman定向凝固技术成功制备出较大几何尺寸(Ф15-20×200mm)的Cu基合金(CuAlNiBe、CuAlNi、CuAlBe)单晶或柱状晶和TiNi合金(Ti-55.1Ni wt%)单晶。其中Cu-12.5Al-3.5Ni-0.5Be合金成分的设计为首先提出。通过光学显微镜(OM)、扫描电镜(SEM)、示差扫描量热仪(DSC)、X射线衍射仪(XRD)、材料综合实验机和自制的记忆特性测量仪器等设备对所研制的单晶样品的宏、微观组织结构、相组成、相变特性及形状记忆特性、机械性能进行了系统研究。
     研究结果证明自行研制的高温度梯度真空感应熔炼-定向凝固单晶炉设计思路正确,结构紧凑,各分系统衔接良好,满足了多种记忆合金单晶制备的需求。迷宫式选晶器有效地实现了晶体的择优取向,成功地制备出具有较优性能的单晶和定向凝固的柱状晶记忆合金。选晶器模壳的界面反应的研究表明,高品质三高石墨可以作为定向凝固TiNi单晶及Cu基记忆合金单晶的选晶器模壳材料;而国产BN,因其会与TiNi熔体发生较剧烈的反应,不适宜作为选晶器模壳。
     通过宏、微观组织分析研究确认,利用自行研制的定向凝固单晶炉拉制的Cu基合金和TiNi合金铸棒样品确为单晶。Cu基记忆合金单晶内无晶界,其单晶生长方向即为记忆性能较佳的择优取向;TiNi合金单晶的试样横截面与纵截面均呈枝状晶分布特征,枝晶生长方向与定向凝固方向基本一致,没有出现晶界,单晶横截面法向与[111]取向夹角15°,接近TiNi合金记忆性能最佳的晶粒取向( [233], [111] ),是一个基本达到设计要求的取向。枝晶之间平行析出了Ti2Ni相,同时也有少量C元素在凝固过程中以TiC颗粒的形式析出,但碳化物的存在未影响单晶的制备与其性能。
     DSC法相变参数测定表明,Cu基合金及TiNi合金单晶样品具有典型的记忆合金相变特征,Mf、Ms、As、Af各相变点显示明显,相变温度与其成分范围基本吻合,为后续研究奠定了良好基础。
     形状记忆效应弯曲试验、拉伸变形实验及冷热循环疲劳实验的结果表明,自主研制的Cu-12.5Al-3.5Ni-0.5Be记忆合金单晶经热处理后记忆性能优异,最大可恢复应变达到10%以上,记忆疲劳性能明显优于多晶,其机械性能和加工性能也明显好于多晶合金;经过500℃热处理的TiNi合金单晶样品弯曲记忆性能最好,最大可恢复应变接近10.83%,与普通铸造、加工的多晶材料相比有了25%左右的提高,与理论计算的最大值10.7%相近,验证了我们优化合金性能的设想。同时其记忆疲劳性能也得到了较大的提升。由于等原子比TiNi合金单晶基体中未出现增强相,试样高温相基体塑性变形屈服强度较低,导致在达到应力诱发马氏体临界屈服应力之前,材料已经发生了部分滑移,导致出现了不可逆塑性变形,因此材料在Af温度点以上仅表现出了部分超弹性,残余变形较大,总体强度也偏低。
The investigation of copper-based shape memory alloys has confirmed that, the maximal recoverable strain and fatigue property of shape memory alloy (SMA) can be significantly improved by means of preparing the anisotropic poly-crystal into the columnar crystal or the single crystal. Although the elastic anisotropy of TiNi alloy (A≈2) is much smaller than that of the copper-based alloy (A≈13), its shape memory property and mechanical property are also strongly dependent on the asymmetric and orientation.
     In this thesis, the unidirectional solidification equipment based on Bridgman method with high temperature gradient was designed, and the single crystal and/or the columnar crystal of Ti-50.0at%Ni and Cu-based alloy were successfully fabricated by this equipment as well as a selective growing zigzag-shaped crystallizer and a steady growth container that were made of electro graphite(Ф15-20×200mm ) . In addition, a novel quarternary Cu-based alloy Cu13.5Al3.5Ni0.5Be was designed. The heat treatment process was studied for these alloys. The microstructures of single crystal sample were studied by means of OM, SEM and EDS; the orientation of single crystal was measured by X-ray technology; the phase transformation points were determined by DSC. This may find a way to explore the preparation of the single crystal SMA with the excellent performance, especially the better shape memory effect and superelasticity. Main conclusions were obtained as follows:
     1. The unidirectional solidification equipment based on Bridgman method with high temperature gradient is compact, rational and systematical. The equipment can fulfill the requirement to preparing the single crystal of shape memory alloys. The single crystal of TiNi and Cu-based alloy is successfully fabricated by this equipment with a selective growing zigzag-shaped crystallizer. With the analysis of the interaction between the refractory and the melt of TiNi, it is showed that the electro graphite can be served as the material of a selective growing zigzag-shaped crystallizer and a steady growth container, but the domestic BN can not.
     2. The macro- and micro-structures of the ingot of TiNi and Cu-based alloy prepared by this method were verified as the single crystals. For the Cu-based ingot, there is no the grain boundary, the direction of growth is the preferred orientation with the better shape memory property. For the TiNi alloy, the microstructure is dendritic, there exists Ti2Ni intermetallic between the dendrites, the angle between the orientation of single crystal and [111] plane is about 15 degree, which is closing to the orientation of crystal with the best performance ([223] and [111]). In addition, a small amount of the carbon dissolved into the melt of the TiNi alloy and the carbides TiC formed. These carbids TiC particles can not become the nucleus of new grain, thus they almost have no influence on the further direction solidification growth of crystal grain, and also no effect to the shape memory property.
     3. The phase transformation points of TiNi and Cu-based alloys were determined by DSC. It is found that, all these alloys exhibit the typical feature of phase transition of SMA, all peaks of transition points, including Ms, Mf, As and Af are obvious in the DSC curve, the phase transition points vary around the expectation predicted by their chemical composition. All these data can support the further investigation for the property of alloys.
     4. Bending shape memory test, tensile test and thermal circle fatigue test were carried out, it is obtained that, the novel CuAlNiBe single crystal possesses the excellent shape memory properties, its maximum recoverable strain reaches about 10%, and the fatigue life and mechanical properties are also better than that of the poly-crystal alloys. For the TiNi alloy, the specimen with 500℃treatment exhibits the best shape memory property, the maximum recoverable strain is 10.8%, which is very close to the theoretical value (10.7%), and 25% higher than that of the poly-crystals. Simultaneously, the memory fatigue property is improved obviously. However, the plastic deformation yield strength of the alloy is very low due to no strengthening phases in the matrix of the equatomic TiNi single crystal.
引文
【1】Olander A. An electrochemical investigation of solid cadmium-gold alloys [J]. Journal of the American Chemistry Society, 1932, (54):3819~3833
    【2】Greninger A B, Mooradian V G. Strain transformation in metastable beta copper_zinc and beta copper-tin alloys [J]. Trans. AIME., 1938, 128: 337~368
    【3】Krudjumor G V. Diffusionless (martensitic) transformation in alloys [J]. Zhur. Tekn. Fiz., 1948, 818: 999~1003
    【4】Buehler W J, Gilfrich J V, Wiler R C. Effect of low -temperature phase changes on the mechanical properties of alloys near composition NiTi [J]. ApplPhys, l963, 34(5): 1475~1477
    【5】舟久保,熙康.形状记忆合金[M].北京:机械工业出版社,1992
    【6】徐祖耀,马氏体相变与马氏体[M].北京:科学出版社,1999
    【7】司乃潮,郭海英.晶粒细化在铜基形状记忆合金中的作用[J].机械工程材料,1997.21(5):40~43
    【8】富莉,铁基形状记忆合金的开发与应用[J].国外金属材料,1991,(3):4~10
    【9】熊克,陶宝祺,何存富.钛镍形状记忆合金丝的性能测试分析[J].南京航空航天大学学报,1999,31(4):464~468
    【10】Otsuka K,Shimizu K.Pseudoelasticity and shape memory effects in alloy[J]. Inter. Met. Rev. 1986,31:93~114
    【11】MiyazaKi S, Otsuka K. Development of shape memory alloy. ISIJ International. 1989, 29: 353~377
    【12】Chumlyakov Y, Kireeva I V. Superelasticity during the elastic twinning,slip and Martensitic transformation .Second international conference on shape memory and superelasticity technologies,CA,USA,1997:29~34
    【13】Eisenwasser J D, Brown L C. Pseudoelasticity and the strain-memory effect in Cu-Zn-Sn alloys [J]. Met. Trans., 1972, 3: 1359~1363
    【14】Duerig T W, Zadno G R. An engineering’s perspective of pseudoelasticity engineering aspects of shape memory alloys. Engineering aspects of shape memory alloy, CA, USA, 1990: 369~393
    【15】徐祖耀.马氏体相变研究的进展和瞻望[J].金属学报,1991,27:A161
    【16】徐祖耀.马氏体相变的定义[J].金属热处理学报,1996,17(增刊):27
    【17】Hsu T Y.Carbon diffusion and kinetics during the lath martensite formation[J]. J de Phys.Ⅳ.,1995,5:C8~351
    【18】赵连城,蔡伟,郑玉峰.合金的形状记忆效应和超弹性[M].哈尔滨:国防工业出版社,2002
    【19】Saburi T. Ti-Ni shape memory alloys. Shape memory materials[M]. Cambridge university press,1998: 77
    【20】Husain S W, Clapp P C. The effect of nickel content on the fracture behavior of Cu-Al-Niβ–phase alloy[J]. J. Mater. Sci. 1987, 22: 509~516
    【21】Otsuka K, Ren Xiaobing. Recent developments in the research of shape memory alloys[J].Intermetallics,1999,7:511~528
    【22】贺志荣,刘琛.Ni含量对NiTi形状记忆合金组织的影响[J].上海有色金属,1997,18(2):56~59
    【23】贺志荣,周敬恩,宫崎修一.固溶时效态Ti-Ni合金相变行为与Ni含量的关系[J].金属学报,2003,39(6):617~622
    【24】Nagarajan R, Chattopadhyay K. Ti2Ni/TiNi nanocomposite by rapid solidification[J] Intermetallic. Acta Metall Mater, 1994, 42: 947~958
    【25】Liang Y N, Li S Z, Jin Y B, Jin W, Li S. Wear behavior of a TiNi alloy[J]. Wear, 1996, 198: 236~241
    【26】Jiang X Y, Xu H B, Gong S K. The crystallization kinetics of an amorphous Ti-rich NiTi film[J]. Acta Metall Sin, 2000, 13: 1131~1135
    【27】Mehrabi K, Bahmanpourb H, Shokuhfar A, Kneissl A. Influence of chemical composition and manufacturing conditions on properties of NiTi shape memory alloys[J]. Materials Science and Engineering, 2008, A 481–482: 693~696
    【28】Gao F, Wang H M. Effect of TiNi in dry sliding wear of laser melt deposited Ti2Ni/TiNi alloys[J]. Materials Characterization, 2008, 59: 1349~1354
    【29】郑玉峰,赵连城.生物医用镍钛合金[M].北京:科技出版社,2004
    【30】Jackson C M, Wagner H J, Wasilewski R J. 55-Nitinol-The alloy with a memory: its physical metallurgy, properties and application. NASA-SP 5110, 1972
    【31】施文英.添加元素对CuA1Ni形状记忆合金性能影响[J].宁夏工业学院报,1998,10(1):82~85
    【32】胡飞,朱胜利,杨贤金.用粉末冶金法制备医用多孔Ti-Ni合金的研究[J].金属热处理,2002,27(7):6~9
    【33】李在先,郭士文,段发来.快速凝固Cu-A1-Ni合金的记忆性能及时效稳定性[J].1993,14(3):261~264
    【34】金嘉陵.快速凝固形状记忆合金[J].上海钢研,1994,2:5~9
    【35】黎沃光,陈先朝,余业球,王德芳.热型连铸法制取CuAlNi形状记忆合金丝[J].功能材料,2000,6:605~607
    【36】孟祥龙,王中,赵连城.NiTiHf高温记忆合金的研究进展[J].宇航材料工艺,1996.6
    【37】Cheng F T, Shi P, Man H C. Nature of oxide layer formed on NiTi by anodic oxidation in methanol[J]. Materials Letters. 2005, 59: 1516~1520
    【38】Guo jinfang,Cheng yuying,Zhu ming,Mi xujun and Liu Rundong The Effect of Thermomechanical Treatment on The Properties of TiNi Shape Memory Alloy Shape Memory Materials’94 P159-163
    【39】高智勇,王中,郑玉峰.磁性形状记忆材料NiMnGa研究现状[J].功能材料,2001,32(1):22~26
    【40】李建忱,吕小霞,蒋青.形状记忆合金研究的回顾与前瞻[J].吉林工业大学学报,1995,25(2):116~124
    【41】赵连城,郑玉峰.形状记忆与超弹性镍钛合金的发展和应用[J].中国有色金属学报,2004:14(1):323~326
    【42】周守理.Ni-Ti形状记忆合金接头的研究[J].稀有金属材料与工程,1995,(D):19~24
    【43】潘钮娴,樊琳.形状记忆合金的研究与医学应用[J].苏州大学学报(工科版), 2002,22(2):65~68
    【44】赵连城.形状记忆合金与超弹性合金的研究与应用[J].稀有金属材料与工程,2001(30):81~86
    【45】孟南.定向凝固及单晶高温合金的发展与研究[J] .金属材料研究,2005,31(3)
    【46】胡汉起.金属凝固原理[M].北京:机械工业出版社,2000
    【47】刘金来,金涛,张静华,胡壮麒.晶体取向对镍基单晶高温合金铸态组织和偏析的影响[J].中国有色金属学报,2002,12(4):764~768
    【48】余业球,黎沃光,陈先朝.CuAlNi形状记忆合金的热型连铸[J].特种铸造及有色合金.2000,(1):20~21
    【49】许广济,杨少峰,丁田雨等.定向凝固制备CuAlNi形状记忆合金的研究[J].特种铸造及有色合金.2005,25(4):249~251
    【50】Frenzel J, Zhang Z H, Somsen Ch, Neuking K, Eggeler G. Influence of carbon on martensitic phase transformations in NiTi shape memory alloys[J].Acta Materialia, 2007, 55: 1331~1341
    【51】Zhang Z H, Frenzel J, Neuking K, Eggeler G. On the reaction between NiTi melts and crucible graphite during vacuum induction melting of NiTi shape memory alloys[J]. Acta Materialia, 2005, 53: 3971~3985
    【52】Frenzel J, Zhang Z H, Neuking K, Eggeler G. High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles[J]. Journal of Alloys and Compounds, 2004, 385(1-2): 214~223
    【53】Lexcellent C, Tamai H, Kitagawa Y. Pseudoelastic behavior of shape memory alloy wire and its application to seismic resistance member for building[J]. Computational Materials Science, 2002, 25: 218~227
    【54】Orgéas L, Favier D. Stress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compression[J]. Acta Materialia, 1998, 46(15): 5579~5591
    【55】Gall K, Sehitoglu H, Chumlyakov Y I et al. Tension-compression asymmetry of the stress-strain response in aged single crystal and polycrystalline NiTi[J]. Acta Materialia, 1999, 47(4): 1203~1217
    【56】Gall K, Sehitoglu H, Anderson R et al. On the mechanical behavior of single crystal NiTi shape memory alloys and related polycrystalline phenomenon [J]. Materials Science and Engineering, 2001, A317: 85~92
    【57】Gadaj S P, Nowacki W K, Tobushi H. Temperature evolution during tensile test of TiNi shape memory alloy[J]. Arch. Mech., 1999 , 51, 649~663
    【58】Shaw J A, Kyriakides S. On the nucleation and propagation of phase transformation fronts in a NiTi alloy[J]. Acta Mater, 1997, 45, 683~700
    【59】Li Z Q, Sun Q P. The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension[J]. International Journal of Plasticity, 2002, 18: 1481~1498
    【60】Lexcellent C, Bourbon G. Thermodynamical model of cyclic behaviour of Ti-Ni and Cu-Zn-Al shape memory alloys under isothermal undulated tensile tests[J]. Mechanics of Materials, 24: 59~73, 1996
    【61】Sehitoglu H, Anderson R, Karaman I et al. Cyclic deformation behavior of single crystal NiTi[J]. Materials Science and Engineering A, 2001, 314: 67~74
    【62】Gall K, Maier H J. Cyclic deformation mechanisms in precipitated NiTi shape memory alloys[J]. Acta Materialia, 2002, 50(18): 4643~4657
    【63】Creuziger A, Bartol L J, Gall K et al. Fracture in single crystal NiTi[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(9): 2896~2905
    【64】Saburi T, Yoshida M, Nenno S. Deformation behavior of shape memory Ti-Ni alloy crystals[J]. Scripta Metallurgica, 1984, 18(4): 363~366
    【65】朱明,王乐酉,宋高峰,毛协民,翟启杰,李重河,徐华苹,吴益文,Cu-Al-Ni-Be形状记忆合金单晶制备及其性能特性研究[J].功能材料,2007,38(9):1474~1477
    【66】Saburi T. Ti-Ni Shape Memory Alloys[M]. Cambridge University Press, 1998: 77
    【67】Gao F., Wang H. M. Effect of TiNi in Dry Sliding Wear of Laser Melt Deposited Ti2Ni/TiNi Alloys[J]. Materials Characterization, 2008, 59: 1349-1354
    【68】方建峰,田志凌,燕平等. Ni基单晶高温合金取向测定方法的研究[J].材料工程, 2008, 3: 49-53
    【69】Tang W., Sundmann B., Sandstrom R., et al. New Modelling of the B2 Phase and its Associated Martensitic Transformation in the Ti-Ni System[J]. Acta Materialia, 1999, 47: 3457-3468
    【70】Khalil–Allafi J., Dlouhy A., Eggeler G. Ni4Ti3-Precipitation During Aging of NiTi Shape Memory Alloys and its Influence on Martensitic Phase Transformations[J]. Acta Materialia, 2002, 50: 4255-4274
    【71】徐祖耀. Ni-Ti形状记忆合金中的相变[J].上海有色金属, 1989, 2: 1-6
    【72】Miyazaki S., Wayman C. M. The R-phase Transition and associated Shape Memory Mechanism in Ti-Ni Single Crystals[J]. Acta Metallurgica, 1988, 36(1): 181-192
    【73】Miyazaki S., Igo Y., Otsuka K. Effect of Thermal Cycling on the Transformation Temperatures of Ti-Ni Aloys[J]. Acta Metallurgica, 1986, 34(10): 2045-2051
    【74】冯端.金属物理学(第三卷金属力学性能)[M].北京:科学出版社, 1999: 67-69
    【75】Saburi T., Nenno S. Proc. Intern. Conf. on Solid-Solid Phase Transformations[C]. Pittsburgh. 1981, 1455
    【76】Wayman C. M.,The Growth of Martensite since E.C.Bain (1924)-Some Milestones Proceedings of the International Conference on Martensite Transformations [A]. ICOMAT-89[C]. Sydney, Australia, 1989: 1-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700