用户名: 密码: 验证码:
固相反应型复相陶瓷涂层制备工艺、反应机理及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以Al-TiO_2-B_2O_3为反应体系,经机械球磨制成超细粉体,采用固相反应法,在金属(Q235钢、AZ31B镁合金)基体表面,制备了Al_2O_3-TiB_2复相陶瓷涂层。采用EET理论对涂层体系进行了理论设计与性能预测;采用SEM、激光粒度分布仪、XRD、DTA等设备和手段研究了Al-TiO_2-B_2O_3体系的机械力化学和热化学行为;采用热力学、动力学方法研究了涂层的形成机理,并对涂层的物相组成、界面特征进行了分析,对涂层的硬度、结合强度、热震、耐磨、耐蚀等性能进行了测试。
     EET理论计算结果表明:在Q235钢和AZ31B镁合金基底上制备Al_2O_3-TiB_2复相陶瓷涂层具有科学性和合理性,涂层与基底之间可形成较强的界面结合,涂层本身强度和韧性可得到适当的配合。热力学计算结果表明:Al-TiO_2-B_2O_3体系在实际条件下,反应可以发生,生成的最终产物为Al_2O_3和TiB_2。机械球磨可使Al-TiO_2-B_2O_3复合粉体得到充分细化,颗粒度呈正态分布,粉体加入PCA球磨20h后,颗粒中位径可达到4.35μm,晶粒度可达到纳米级,形状近乎球形,并有少量Al_2O_3、TiB_2等新相生成。机械力化学作用可使反应体系的活性显著增强,球磨20h粉体在400℃左右就可发生缓慢的固相反应,670℃反应最为剧烈,粉体经700℃热处理,产物大部分为Al_2O_3、TiB_2,经1000℃热处理,产物基本全部为Al_2O_3和TiB_2。动力学分析表明,Al-TiO_2-B_2O_3体系反应激活能E_a随着粉体球磨时间的延长而降低,其动力学机制属于反应-扩散模型。
     采用固相反应涂覆法在Q235钢表面制备的Al_2O_3-TiB_2复相陶瓷涂层,其综合性能随热固化温度的提高而提高,随骨料和粘结剂之比的增大先提高后降低,当骨料:粘结剂=1.5:1时,涂层综合性能最佳。700℃热固化涂层界面结合方式主要为化学、冶金和扩散结合,最高显微硬度值可达HV_(0.1)1000,结合强度可达13.4MPa,热震次数可达45次,耐磨性提高为基底的3.21倍,润滑和封孔后可使耐磨性分别提高为基底的4.00和3.38倍。700℃热固化涂层耐蚀性能优异,在15wt.%H_2SO_4溶液中的平均腐蚀速率为1.06,耐蚀性提高为Q235钢基体的19.52倍,封孔后提高为基体的36.48倍。
     采用固相反应涂覆法在AZ31B镁合金表面于400℃热固化制备的Al_2O_3-TiB_2复相陶瓷涂层,其综合性能随骨料和粘结剂之比和纳米Al_2O_3加入量的增大先提高后降低,当骨料:粘结剂=1.35:1,纳米Al_2O_3加入量为50%时,涂层综合性能最佳,其界面结合方式主要为化学、冶金和扩散结合,结合强度可达11.28MP,热震次数可达35次,显微硬度最大值可达HV_(0.1)750,封孔处理后,涂层的抗磨粒磨损和抗粘着磨损性能分别提高为基体的6.27和6.41倍。涂层耐蚀性能优异,在3.5wt%醋酸溶液中的平均腐蚀速率为0.2254g·m~(-2)·h~(-1),提高为基体的40.12倍,封孔后平均腐蚀速率仅为0.1488 g·m~(-2)·h~(-1),提高为基体的60.79倍。
     采用固相反应热喷涂法在AZ31B镁合金表面制备的Al_2O_3-TiB_2复相陶瓷涂层综合性能优于固相反应涂覆法,涂层主要的结合方式除了机械结合外,还有化学冶金结合,热震次数可达到49次,显微硬度可达到,重熔处理后可达到HV_(0.1)1400;涂层粘着干磨损和粘着油磨损的耐磨性分别比AZ31B基体提高了10.07和11.48倍,磨粒磨损的耐磨性比AZ31B基体提高了9.3倍,明显优于普通热喷涂陶瓷涂层,重熔处理可进一步提高涂层的耐磨性。涂层在5wt.%的醋酸腐蚀溶液中的平均腐蚀速率为26.10909 g·m~(-2)·h~(-1)耐蚀性提高为基体的42.25倍,涂层封孔后,平均腐蚀速率为15.96028g·m~(-2)·h~(-1)提高为基体的67.48倍,并表现出较好的抗氧化性。
The ultra-fine powders of Al-TiO_2-B_2O_3 system were prepared by ball milling.The multiphase ceramic coating of Al_2O_3-TiB_2 on the surface of Q235 and AZ31B bases were made by solid-phase reaction method.The reaction systems of coatings were designed and properties of the coating were predicted through the Empirical Electronic Theory(EET) in solid and molecules.Behaviors of mechanochemistry and thermal chemistry of Al-TiO_2-B_2O_3 system were investigated by scanning electron microscopy(SEM), differential thermal analysis(DTA),X-rays diffraction(XRD) and laser granularity distributing apparatus.The forming mechanisms of coatings were studied through kinetics and thermodynamics.The phase composition and the characteristic of interface between coating and base were analyzed.The properties of coatings,such as hardness,bonding strength,thermal shock,wear resistance,corrosion resistance,etc.,were test too.
     The calculation of EET showed that the multiphase ceramic coating of Al_2O_3-TiB_2 on the bases of Q235 and AZ31B are scientific and reasonable.A higher interface bonding can be obtained between the coating and the base,the strength and toughen of coating itself could be adjustable for the base.The calculation of thermodynamic showed that the reaction of Al-TiO_2-B_2O_3 system will happen in practice and the ultimate products are Al_2O_3 and TiB_2.The composite powders of Al-TiO_2-B_2O_3 were refined enough by ball milling and the granularity appeared in normal distribution.The medium particle diameter of powders with 4.35μm in diameter added by process control agent(PCA) could be obtained after 20h ball milling and the grain size was in nanometer degree.The shapes of particles were close to spherical and a few of new phases,such as Al_2O_3,TiB_2,etc., appeared.The system could be activated obviously by the mechanochemistry reaction. The solid reaction would happen slowly at 400℃in powders with 20h ball milling and severely at 670℃.The final products are mostly Al_2O_3 and TiB_2 after heat treatment at 700℃and completely Al_2O_3 and TiB_2 at 1000℃.The kinetics analysis showed that the activation energy E_a in Al-TiO_2-B_2O_3 system decreased with the increased ball milling time and the kinetics mechanism belonged to the reaction-diffusion model.
     The comprehensive properties of Al_2O_3-TiB_2 multiphase ceramic coatings on the surface of Q235 bases prepared with coated solid-state reaction method improved with the increasing of thermal curing temperature.The properties increased firstly with the ratio of aggregates and binders and then decreased.The comprehensive properties of coatings were best when the ratio of aggregates and binders is 1.5:1. The mode of interface bonding was mainly in chemical,metallurgical and diffusional bonding.The highest microhardness of coating was HV_(0.1)1000 and the bonding strength of coatings on Q235 bases was 13.4MPa;the thermal shock times of them was 45 and the wear-resistance improved 3.21 times than the bases. The wear-resistance of coating improved 4.00 times than the bases after lubricated and 3.38 times after sealed.The corrosion resistance was best after thermal curing at 700℃.The average corrosion ratio was 1.06 g·m~(-2)·h~(-1) in aqueous solution with 15wt.%H_2SO_4.The corrosion resistance improved 19.52 times than Q235 bases and 36.48 times after sealed.
     The Al_2O_3-TiB_2 multiphase ceramic coatings on the surface of AZ31B bases were prepared with coated solid-state reaction method at 400℃thermal curing temperature.The comprehensive properties increased firstly with the ratio of aggregates and binders and the added amount of Al_2O_3 in nanometer and then decreased.When the ratio of aggregates and binders is 1.35:1 and the added amount of Al_2O_3 in nanometer is 50%,the comprehensive properties of coatings were best.The mode of interface bonding was mainly in chemical,metallurgical and diffusional bonding.The bonding strength of coatings on AZ31B bases was 11.28MPa and the thermal shock times of them was 45.The highest microhardness of coating was HV_(0.1)750.The abrasive wear-resistance and the adhesive wear-resistance improved 6.27,6.41 times than the bases,respectively.The corrosion resistance was superior to the bases.The average corrosion ratio was 0.2254 g·m~(-2)·h~(-1) in aqueous solution with 3.5wt.%acetic acid.The corrosion resistance improved 40.12 times than AZ31B bases.The average corrosion ratio was 0.1488 g·m~(-2)·h~(-1) and the corrosion resistance improved 60.79 times after sealed.
     The comprehensive properties of Al_2O_3-TiB_2 multiphase ceramic coatings on the surface of AZ31B bases prepared with thermal spraying were superior to that prepared with coated solid-state reaction method.The mainly mode of interface bonding included mechanical,chemical and metallurgical bonding.The thermal shock times was 49.The highest microhardness is HV_(0.1)1200 and it was HV_(0.1)1400 after remelted;the dry adhesive wear-resistance and the oil adhesive wear-resistance improved 10.07,11.48 times than the AZ31B bases,respectively; the abrasive wear-resistance improved 9.3 times than the AZ31B bases,which were superior to the common ceramic coating made by thermal spraying method. The remelted treatment could further improve the wear-resistance of coatings.The average corrosion ratio was 26.10909 g·m~(-2)·h~(-1) in aqueous solution with 5wt.% acetic acid.The corrosion resistance improved 42.25 times than AZ31B bases.The average corrosion ratio was 15.96028 g·m~(-2)·h~(-1) and the corrosion resistance improved 67.48 times after sealed.A better oxidation resistance appeared in the coatings too.
引文
[1]李世普.特种陶瓷工艺学[M].武汉:武汉工业出版社,1990.
    [2]张家生.高温耐磨防腐抗氧化陶瓷涂层的研究[D].唐山:河北理工学院硕士论文.2004.
    [3]Jung-SooHa,C-S.Kim.Processing and Properties of Al_2O_3/SiC Nano-composite Coated Alumina by Slurry ipcoating[J].Materials Science Letters,1998,17(9):747-749.
    [4]万怡灶,罗红林,周贤良.用热化学反应法制备金属陶瓷涂层工艺的研究[J].材料工程,1997(10):25-28.
    [5]陈建康,屠平亮,周建初.用热化学反应法制备金属陶瓷涂层--涂层技术值得重视的新发展[J].材料工程,1991(4):17-20.
    [6]穆柏春,张丽娟,谷志刚.耐热防腐蚀复相陶瓷涂层的研究[J].材料保护,1997,30(6):24-26.
    [7]李浩群,邵天敏,杨政等.铝合金基体上Al_2O_3基陶瓷涂层形成机理[J].清华大学学报,2000,40(4):92-95.
    [8]Yah D.The corrosion behavior of plasma spray Al_2O_3 ceromics coating in dilute HCl solution[J].Surface and Coating Technology,1997,8(9):191-195.
    [9]Zhang Jian-xin,He Ji-ning,Dong Yan-chun,et al.Microstructure and properties of Al_2O_3-13wt%TiO_2coatings sprayed using nanostructured powders[J].Rare Metals,2007,26(4):391-397.
    [10]陆佩文.无机材料科学基础[M].武汉:武汉工业大学出版社,1999.
    [11]郭大刚,徐可为,憨勇.固相反应合成磷酸四钙的物相演变[J].无机材料学报,2005,20(2):317-322.
    [12]姜红义,龙海山,张联盟.用低温固相反应制备P型Mg_2Si基热电材料[J].硅酸盐学报,2004,32(9):1094-1097.
    [13]陈玉风,彭绍琴,徐鹏等.低温固相法制备CdS_(1-x)Se_x颜料的研究[J].硅酸盐通报,2005,1:4-43.
    [14]李桂芳,曹全喜,李智敏等周相反应法制备硼酸铝钇微粉[J].硅酸盐学报,2007,35(3):381-384.
    [15]汤文明,郑治祥,丁厚福等.SiC/金属界面固相反应与控制的研究发展[J].硅酸盐学报,2003,31(3):283-291.
    [16]George Mathew,John Asha Mary,Nalr Swapnas,etal.Finite size effects on the structural and magnetic properties of sol-gel synthesized NiFe_2O_4 powders[J].Magnetic Materials,2006,30(2):190-195.
    [17]Liu Y L,Wang H,Yang Y,etal.Hydrogen sulfide sensing properties ofNiFe_2O_4 nanopowder doped with noble metals[J].Sensors and Actuators B.2004.102(1):148-154.
    [18]李志文,刘长松,黄继华等.基于自蔓延高温合成(SHS)的涂层技术[J].粉末冶金技术,2007,25(2):135-138.
    [19]李小龙,王引真,石建稳等.热喷涂技术的最新发展-反应热喷涂[J].新技术新工艺,2004,10:64-66.
    [20]Z.Liu,H.Fredriksson.On the reaction between Fe-Ti and Fe-C liquids under microgravity[J].Metallurgical and Materials Transactions A,1996,27(2):407-414.
    [21]王建江.Al对反应火焰喷涂TiC-TiB2复相陶瓷涂层的影响[J].无机材料学报,2007,22(3):550-554.
    [22]刘宏伟,张龙,王建江等.Al对反应火焰喷涂Al_2O_3基复相涂层性能的影响[J].稀有金属材料与工程,2007,36(A02):564-567.
    [23]刘长松,黄继华,殷声.反应火焰喷涂TiC-Fe-Al复相涂层的耐磨性能[J].北京科技大学学报,2001,23(3):240-242.
    [24]姚战军,王建江,赵忠民等.SHS反应喷涂技术进展[J].复合材料,2002,12:693-696.
    [25]I.Ozdemir,I.Hamanaka,Y.Tsunekawa,et al.In-process exothermic reaction in high-velocity oxyfuel and plasma spraying with SiO2/Ni/Al-Si-Mg composite powder[J].Journal of Thermal Spray Technology,2005,14(3):321-329
    Du Xinkang,Wang Jianjiang.Study of synthesis of lined ceramic layer in pipes produced by thermit SHS process[J].International Journal of SHS,2000,9(2):223-230.
    [26]谢艳春.SHS法制备Al_2O_3+TiB_2+FeAl(NiAl)复合材料的研究[D].泰安:山东科技大学,2007.
    [27]Schmid H K,Asian M,Assmann S,et al.Microstructural characterization of Al_2O_3-SiC nanocomposites[J].Journal of the European Ceramic Society,1998,18:39-49.
    [28]宋贵宏,杜昊,贺春林.硬质与超硬涂层[M].北京:化学工业出版社,2007.
    [29]TEE K L,LU L,LAI M O.In-situ stir cast Al-TiB_2 composite:processing and mechanical properties[J].Materials Science and Technology,2001,17(2):201-206.
    [30]Lakshmi S,Lu L,Gupta M.In situ preparation of TiB_2 reinforced Al based composites[J].Journal of Material Processing Technology,1998,73(1):160-166.
    [31]张文静.燃烧合成法制备TiB_2/Al_2O_3复相陶瓷的研究[D].泰安:山东科技大学,2005.
    [32]Y.Li,N.Li and G.Ruan.Synthesis of Al_2O_3-TiB_2.Ceramic Composites[J].American Ceramic Society Bulletin,2005,8:9201-9204.
    [33]A.G.Gary,J.W.Adams.Processing and ballistic performance of Al_2O_3/TiB_2composites.US Army Research Lab Aberdeen Proving Ground Md 2005 ARL-TR-3658.
    [34]Pabst G E.Porous ceramics prepared using poppy seed as a pore-forming agent[J].Ceramics International,2006,19(5):19-23.
    [35]A.M.Locci,R.Orru,G.Cao,Z.A.Munir.Simultaneous Spark Plasma Synthesis and Densification of TiC-TiB_2 Composites[J].Journal of American Ceramic Society,2006,89(3):848-855.
    [36]Wang Xibao,Liang Yong,Yang Songlan.Formation of TiB_2 whiskers in laserclad Fe_2Ti_2B coatings [J].Surface and Coatings Technology,2001,137:209-216.
    [37]栗卓新,方建筠,史耀武等.高速电弧喷涂Fe-TiB_2/Al_2O_3复合涂层的组织及性能[J].中国有色金属学报,2005,15(11):1800-1804.
    [38]程汉池,栗卓新,李其连等.轴向送粉等离子喷涂制备TiB_2/Al_2O_3复合陶瓷涂层[J].硅酸盐学报,2007,35(8:1097-1102.
    [39]李庆余,赖延清,李劫等.一种铝电解用硼化钛/氧化铝阴极涂层及制备方法[z].2004.
    [40]郑水林,祖占,良超.微粉体的应用与加工技术[C].第八届全国非金属矿加工利用技术交流会论文专辑,2004.
    [41]铁生年,李星,李昀琚.超细粉体材料的制备技术及应用[J].中国粉体技术,2009,15(3):68-71.
    [42]张长森.粉体技术及设备[M].第1版.上海:华东理工大学出版社,2007.
    [43]J.S.Benjamin.DisPersion strengthened superalloys by mechanical alloying[J].Metallurgical and Materails Transaction B,1970,1(10):2943-2951.
    [44]W.T.Jeong,K.S.Lee.Electrochemical Cycling Behavior of LiCoO_2 Cathode Prepared By Mechanical Alloying of Hydroxides[J].Journal of Power Sources,2002,104:195-200.
    [45]蔡艳华,彭汝芳,马冬梅等.机械力化学应用研究进展[J].无机盐工业.2008,(8):96-100.
    [46]N.V.Kosova,N.F.Uvarov,E.T.Devyatkina,et al.Mechanochemical synthesis of LiMn_2O_4cathode material for lithium batteries[J].Solid State Ionics,2000,135(1-4):107-114.
    [47]李凡,吴炳尧.机械合金化-新型的固态合金化方法[J].机械工程材料,1999,23(4):22-25.
    [48]梁国宪,王尔德,王永前等.球磨条件对机械合金化粉末粒度的影响[J].粉末冶金技术,1993,11(1):28-32.
    [49]席歧生,屈晓燕,刘心宽等.高能球磨固态扩散反应研究[J].材料科学与工艺,2000,8(3):88-91.
    [50]马乃恒,方小汉,梁工英等.机械活化对Al-Ti粉料合成反应激活能的影响[J].金属学报,2000,36(11):22-26.
    [51]王谦,张寿柏.富Al的Al-Ti系的机械合金化[J].上海有色金属,1998,19(1):1-7.
    [52]E.N'Dah,M.P.Hierro,K.Borrero et al.Study of the cyclic oxidation resistance of superalloy IN-625:Lifetime predicted by COSP-modelling program[J].Oxidation Metals,2007,68(1/2):9-21.
    [53]范润华,尹衍升,孙家涛等.铁铝化合物/碳化钛复合材料的界面电子结构[J].自然科学进展,2004,14(3):307-309.
    [54]余瑞璜.固体与分子经验电子理论[J].科学通报,1978,23(4):217-224.
    [55]张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993.
    [56]苏文勇,张瑞林.TiB_2等C_(32)型化合物价电子结构分析[J].北京理工大学学报,2000,20(5):550-554.
    [57]纪嘉明,周飞,李忠华等.TiB_2和ZrB_2晶体结构与性能的电子理论研究[J].中国有色金属学报,2000,10(3):358-340.
    [58]章桥新.TiB_2的价电子结构及其性能研究[J].陶瓷学报,2000,21(3):159-161.
    [59]刘志林,李志林,刘伟东.界面电子结构与界面性能[M].北京:科学出版社,2002.
    [60]Y.Wang,W.Tian,Y.Yang.Thermal shock behavior of nanostructured and conventional Al2O3/13wt%TiO2 coatings fabricated by plasma spraying[J].Surface & Coatings Technology,2007,201:7746-7754.
    [61]Du Xinkang,Wang Jianjiang.Study of synthesis of lined ceramic layer in pipes produced by thermit SHS process[J].International Journal of SHS,2000,9(2):223-230.
    [62]邓世均等.高性能陶瓷涂层[M].第一版.北京:化学工业出版社,2004.
    [63]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.
    [64]李凤生,杨毅等.纳米/微米复合技术及应用[M].北京:国防工业出版社,2002.
    [65]张长森.粉体技术及设备[M].上海:华东理工大学出版社,2007.
    [66]N.Sbirrazzuoli,L.Vinenet,S.Vyazovkin.ComParison of several computational Procedures for evaluating the kinetics of thermally stimulated condensed phase reactions[J].Chemometrics Intelligent Laboratory System,2000,54(1):53-60.
    [67]H.J.Flammersheim,J.Opfermann.Kinetic evaluation of DSC curves for reacting systems with variable stoichiometric compositions[J].Thermochimica Acta,2002,388:389-400.
    [68]S.Vyazovkin,C.A.Wight Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data[J].Thermochimica Acta,1999,340-341(14):53-68.
    [69]V.C.S.Reynoso,K.Yukimitu,T.Nagami,et al.Crystallization kinetics in phosphate sodium-based glass studied by DSC technique[J].Journal of Physics and Chemistry of Solids,2003,64(1):27-30.
    [70]M.J.STARINK.A new method for the derivation of activation energies from experiments performed at constant heating rate[J].Thermochimica Acta,1996,288(1-2):97-104.
    [71]刘冰.Al-TiO_2系的机械力化学和固相反应动力学[D].济南:山东大学硕士论文,2005.
    [72]廖恒成,张春燕,孙国雄.铝原位合成复合材料的反应模式与机理[J].铸造,1999,1:43-47.
    [73]J.M.Howe.Bond Structure and properties of Metal/Ceramic Inerface:Patr 1.Chemical Bonding,Chemical Reaction and Interface Structure.International Mater.Review,1993,38(5):233-256.
    [74]Y.Gao,J.Jia.Microstucture and Composition of Al/Al_2O_3 Composites Made by Reactive Metal Penetration.J.Mater.Sci,1996,31(15):4025-4032.
    [75]M.C.Breslin,J.Ringnalda.Processing Microstructure and Properties of Co-cotinuous Alunina-Aluminum composites.Mater.Sci.Eng.1995.A 195(1-2):113-119.
    [76]刘佑铭,许伯藩.Mg在原位形成TiC/Al复合材料中的行为[J].金属热处理,2002,7(5):1-4.
    [77]刘海涛,杨娜,张树军等.无机材料合成[M].北京:化学工业出版社,2003.
    [78]W.Q.Wang,C.K.Sha,D.Q.Sun,et al.Microstructural feature,thermal shock resistance and isothermal oxidation resistance of nanostructured zirconia coating[J].Materials.Science and Engineering:A,2006,424(1-2):1-5.
    [79]S.Q.Wu,H.G.Zhu,S.C.Tjong.Wear behavior of in situ Al-based composites containing TiB_2,Al_2O_3 and Al_3Ti particles[J].Metallurgical and Materials Transactions A,1999,30A(1):243-248.
    [80]E.P.Song,J.Ahn,S.Lee,et al.Microstructure and wear resistance of nanostructured Al_2O_3-8wt.%TiO_2 coatings plasma-sprayed with nanopowders[J].Surface and CoatingTechnology,2006,201(3-4):1309-1305.
    [81]H.Chen,S.Lee,X.B.Zheng,et al.Evaluation of unlubricated wear properties of plasma-sprayed nanostructured and conventional zirconia coatings by SRV tester[J].Wear,2006,260(9-10):1053-1060.
    [82]G.Bolelli,V.Cannillo,L.Lusvarghi,et al.Wear behaviour of thermally sprayed ceramic oxide coatings[J].Wear.2006,261:1298-1315.
    [83]姜晓霞.金属的腐蚀磨损[M].北京:化学工业出版社,2003.
    [84]高濂,勒喜海,郑珊.纳米复相陶瓷[M].北京:化学工业出版社.2004.
    [85]吴玉程.纳米材料涂层[J].河北陶瓷,2001,29(1):31.
    [86]宋宏文,徐继光.纳米涂层的应用及进展[J].机械,2002,29(4):69-70.
    [87]罗成,张红霞,杨明等.Al-ZnO反应球磨制备Zn/Al_2O_3复合粉末研究[J].粉末冶金技术,2006,3:209-212.
    [88]张玉军,张伟儒等.结构陶瓷材料及其应用[M].北京:化学工业出版社,2005.
    [89]刘润,赵剑锋,黄因慧等纳米复合陶瓷涂层激光熔覆的组织与耐磨性能[J].中国表面工程,2003,16(5):39-42.
    [90]陆佩文.无机材料科学基础[M].武汉:武汉工业大学出版社,1999.
    [91]徐滨士,刘世参.表面工程[M].北京:机械工业出版社,2000.
    [92]吴人洁.复合材料[M].天津:天津大学出版社,2000.12.
    [93]张其土,无机材料科学基础[M].上海:华东理工大学出版社,2007.
    [94]王零森.特种陶瓷[M].长沙:中南工业大学出版社.1996.
    [95]蔡作乾,王琏,杨根.陶瓷材料辞典[M].北京:化学工业出版社,2002.4.
    [96]翟海潮,李印柏,林新松.粘接与表面粘涂技术[M].第二版.北京:化学工业出版社,1997
    [97]张清纯.陶瓷材料力学性能[M].北京:科学出版社,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700