用户名: 密码: 验证码:
碳纳米管/碳纤维多尺度增强体及其复合材料界面研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNTs)具有独特的一维管状结构和优异的力学性能,是纤维/晶须类复合材料增强相的终极形式。本文采用化学修饰方法将碳纳米管以化学键连接的形式引入到碳纤维表面,制备出碳纳米管/碳纤维多尺度增强体,并通过实验和分子模拟技术研究了其复合材料的界面性能
     首先研究了多壁碳纳米管的胺基功能化修饰工艺。采用不同的酸体系和处理条件对碳纳米管进行处理,研究了不同酸处理体系及处理条件下的处理效果。结果表明,采用浓硝酸与浓硫酸体积比为3:1的混酸作为酸氧化体系,在100℃水浴加热条件下处理8 h,可以在不损伤碳纳米管基本性能的基础上,在其表面产生大量羧基。羧基功能化的多壁碳纳米管在N,N-二甲基甲酰胺(DMF)溶液中,70℃恒温磁力搅拌作用下,与过量氯化亚砜反应72 h,可将多壁碳纳米管表面的羧基转化为反应活性更高的酰氯基团。并通过取代反应将1,6-己二胺接枝到碳纳米管端部。XPS及IR分析结果表明,碳元素中以C-NHx键形式结合的占碳元素全部结合方式中的6.60%,获得了较好的胺功能化处理效果。
     其次,对碳纤维进行了酰氯功能化处理。研究了T300、T800和国产碳纤维(GCF)的酰氯化反应活性。XPS分析结果表明,三种碳纤维酰氯化反应活性大小次序为T300>T800>GCF。浓硝酸氧化后T300表面—COOH含量最高,为14.50%,酰氯化处理后表面Cl元素含量为3.88%;Cl元素与T300样品表面以酰氯共价键形式(O=C-C1)结合。处理后的碳纤维表面微晶尺寸变小,碳纤维棱角和边缘位置的不饱和的碳原子增多,表面活性增大。
     再次,通过胺基与酰氯官能团间的取代反应,将碳纳米管接枝到碳纤维表面,制备出新型碳纳米管/碳纤维多尺度增强体,其中碳纳米管含量为1.2wt%。SEM结果表明,碳纳米管以两种方式接枝到碳纤维表面,一种为碳纳米管一端胺基官能团与碳纤维表面酰氯官能团发生亲核取代反应,与纤维轴向以一定角度枝接到碳纤维表面;另一种为碳纳米管两端的胺基官能团分别与两根碳纤维表面的酰氯官能团发生反应,将两根碳纤维连接起来。单纤维树脂微滴复合材料界面评价试验表明,由于在纤维表面引入了碳纳米管,复合材料界面剪切强度较T300提高了150%。探讨了碳纳米管/碳纤维多尺度增强体复合材料界面增效机制,主要为化学键增效机制、范德华力增效机制、浸润作用增效机制和机械啮合作用增效机制。
     最后,利用分子模拟方法分别建立了碳纳米管/碳纤维多尺度增强体复合材料界面模型(model 1)和碳纤维复合材料模型(model 2),对其界面结构进行详细分析,从界面结合能的角度研究了碳纳米管/碳纤维多尺度增强体复合材料界面增效机制。模拟计算结果表明,model 1界面作用能较model 2提高了118.28%。其中主要贡献来自于界面间化学键能。非键作用能部分model 1较model 2提高了5.76%。即在不存在化学键合的情况下,影响碳纤维/环氧树脂复合材料界面结合强度的主要因素为范德华力,其次是界面相间的静电作用。结构分析表明,Model 1的接触层厚度大于model 2(分别为0.25 nm、0.10 nm); model 1中碳纤维表面第一、第二和第三层结构发生了不同程度的变化,而第四层结构基本没有发生变化;Model 2中界面作用只是导致碳纤维表面第一和第二层结构发生了变化。model 1中,环氧树脂浓度最大值出现在更靠近接触层附近处,且碳纤维表面沿Z方向0.9172 nm区域内的环氧树脂浓度高于model 2。界面处环氧树脂的浓度分布说明,model 1的界面作用能高于model 2。
Carbon nanotubes (CNTs) with tubular structures and excellent mechanical properties offer a kind of nanosized reinforcement for composite materials. Chemical method was employed to graft CNTs onto the carbon fiber surface to prepare a carbon nanotube/carbon fiber multi-scale reinforcement, and the interfacial properties of its composite were investigated by experiments and molecular simulation.
     Firstly, amino functional technics of CNTs were studied. Different acid systems and treatment conditions were used in the modification of CNTs and their functional efficiencies were evaluated. Results shows that sufficient carboxyl could be generated on the surfaces of CNTs without any damage to their properties in the system of nitric and sulphuric acid with a volume ratio of 3:1 in water bath (100℃) for 8 h. The carboxyl could be transformed into carbonyl chloride groups when multi-walled carbon nanotubes (MWCNTs) were put into the solution of DMF and excessive of thionyl chloride at 70℃with magnetic stirring for 72 h. Then hexamethylene diamine were grafted onto the end caps of CNTs. XPS and IR results indicate that there is 6.60% of C-NHx in the surface of CNTs, which suggests that preferable amino functional effect was obtained.
     Secondly, acylation functionalization treatment was carried out on carbon fiber surfaces. Surface reactivity of three kinds of carbon fiber, T300, T800 and home-made carbon fiber, were examined by acid treatment followed by acylation reaction with SOCl2. XPS was employed to analyze the surface chemical properties of specimens of acid treatment and acylation reaction. Results indicates that the content of–COOH group, 14.50%, after acid treatment on T300 surface is the maximal, as well as the content of Cl element which is up to 3.88% after acylation reaction, and Cl elements link to the fiber surface by acyl chlorine covalent bond. The crystallite size on treated carbon fiber surfaces decreased and unsaturated carbon atoms of carbon fiber edges and borders increased, leading to more reactive carbon fiber surfaces.
     In succession, to prepare a carbon nanotube/carbon fiber multi-scale reinforcement (MSR), MWCNTs functionalized at the end caps with hexamethylene diamine (HMD) are grafted onto the surfaces of carbon fibers treated with acylchloride. It was found that the grafting increases the weight of carbon fiber by 1.2%. SEM shows that MWCNTs were grafted onto carbon fiber surface by two means, one was sticking to the carbon fiber surface at different angles, and the other was that the amino groups at MWCNTs end caps reacted with the acyl chlorides of two carbon fibers respectively and joined them up.
     Single fiber polymer matrix droplet composite interfacial evaluation test indicate that the interfacial shearing strength (IFSS) was improved by 150% that that of the as received T300 composite. The mechanisms of the improved IFSS were discussed. It was found that the improved IFSS primarily relies in interfacial chemical bonding, vanderwaals effect, better soakage and mechanical joggling. Finally, interfacial structure models of carbon nanotube/carbon fiber multi-scale reinforcement (Model 1) and carbon fiber composites (Model 2) were established and analyzed respectively by molecular simulation, from which the mechanism of the improved IFSS was examined in view of the interfacial bonding energy. Simulation results indicate that the interfacial bonding energy of model 1 was improved by 118.28% than that of model 2, which was mainly contributed by chemical bond energy. The non-bond interaction of model 1was increased by 5.76% than that of the model 2. It is to say that the primary factor which affects the interfacial bonding strength of carbon fiber/epoxy composite is vanderwaals when there are no chemical bonds exist, and the other is the interfacial static interaction. Structure analyses show that the contact layer thickness of bigger that that of the model 2 (2.5 ?、1.0 ? respectively). The structure of first three layers of the carbon fiber changed in different degree, while the fourth layer remains unchanged. In model 2, only the first and the second layer structures changed at the interfacial interaction. In model 1, the maximum concentration of epoxy presented closer at contact layer and the concentration was higher in the 9.172 ? areas along Z direction than that in model 2. It can be concluded from the concentration distribution of epoxy that the interfacial bonding energy is higher that model 2.
引文
1郝元恺,肖加余著.高性能复合材料学.北京:化学工业出版社, 2004.1
    2贺福著.碳纤维及其应用技术.北京:化学工业出版社, 2004.9
    3 H.Gleiter. Nanostructured Materials. Acta Metallurgica Sinica. 1999, 33(2):165~174
    4 S. Iijima. Helical Microtubes of Graphitic Carbon. Nature. 1991, 354:56~68
    5陈卫祥,陈文录,徐铸德等.碳纳米管的特性及其高性能的复合材料.复合材料学报, 2001, 18(4):1~3
    6孙晓刚.碳纳米管的特性及应用.中国粉体技术, 2001, 7:29~33
    7 K.T. Lau, D. Hui. The Revolutionary Creation of New Advanced Materials: Carbon Nanotube Composites. Composites: part B. 2002 33:263~277
    8 M.P. Shaffer, A.H. Windle. Analogies Between Polymer Solutions and Carbon Nanotube Dispersion. Macromolecular. 1999, 32(20): 6864~6866
    9 B. I. Yakobson, R. E. Smalley, Fullerene Nanotubes: C1000000 and beyond, American Scientist, 1997, 85(4): 324~337
    10 H.D. Wagner, O. Lourie, Y. Feldman, R. Tenne. Stressinduced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix. Appl Phys Lett, 1998, 72(2):188~190
    11 S. Das, D.C. Prevorsek. Fibers Made From Cyanato Group Containing Phenolic Resins and Phenouc Triazines Resins. US Pat, 5 194 33111993
    12 G. Gabriel, G. Sauthier, J. Fraxedas, M. Moreno-Maňas, M.T. Martinez, et al. Preparation and Characterization of Single-walled Carbon Nanotubes Functionalized with Amines. Carbon 2006, 44: 1891~1897
    13曾汉民.树脂基复合材料界面工程:材料表面与界面.北京:清华大学出版社, 1990. 271
    14 Z.H. Wu, U. Charles, J.R. Pittman, et al. Grafting Isocyanate-terminated Elastomers onto the Surfaces of Carbon Fibers: Reaction of Isocyanate with Acidic Surface Functions. Carbon, 1996, 34 (1):59~67
    15 A.A. Buniyat-Zade, N.T. Kakhramanov, Y.A. Shcharinskii. The Selective Effect of the Grafted Chain Length on the Isothermal Crystallization of Immiscible Two-component Systems Based on High-density Polyethyleneand Polyacrylonitrile. Polym Sci, 1981, 19:1132~1138
    16 Jiang Li, M.J. Vergne, E.D. Mowles, W.H. Zhong, D.M. Hercules, C.M. Lukehart. Surface Functionalization and Characterization of Graphitic Carbon Nanofibers (GCNFs). Carbon, 2005,43(14): 2883~2893
    17 F.S. Verini, L. Formaro, M. Pegoraro, L. Posca. Chemical Modification of Carbon Fiber Surfaces. Carbon, 2002, 40(5): 735~741
    18 C.U. Pittman. Chemical Modification of Carbon Fiber Surfaces by Nitric Acid Oxidation Followed by Reaction with Tetraethylenepentamine. Carbon, 1997, 35 (3):317~31
    19 C.U. Pittman. Reactivities of Amine Functions Grafted to Carbon Fiber Surfaces by Tetraethylenepentamine. Designing Interfacial Bonding. Carbon, 1997,35 (7): 929~934
    20 G. Wei, S. Saitoh, H. Saitoh, K. Fujiki, T. Yamauchi, N. Tsubokawa.. Grafting of Vinyl Polymers onto VGCF Surface and the Electric Properties of the Polymer-grafted VGCF. Carbon, 2004, 42(10):1923~1929
    21 G. Wei, S. Saitoh, H. Saitoh, K. Fujiki, T. Yamauchi, N. Tsubokawa. Grafting of Polymers onto Vapor Grown Carbon Fiber Surface by Ligand-Exchange Reaction of Ferrocene Moieties of Polymer with Polycondensed Aromatic Rings of the Wall-surface. Polymer, 2004, 45(26): 8723~8730
    22笪有仙,淳海江,孙慕瑾.芳纶纤维吸湿行为的研究.复合材料学报,1996, 4(13): 12~19
    23 R.Y. Qin, J.B. Donnet. Study of Carbon Fiber Surfaces by Scanning Tunneling Microscopy, Part III. Carbon Fibers After Surface Treatments. Carbon, 1994,32(2):323~328
    24 R.Z. Li, L. Ye, Y.W. Mai. Application of Plasma Technologies in Fibre Reinforced Polymer Composites: a Review of Recent Developments Composites Part A,1997, (28A): 73~86
    25 J.H. Chen, G. Wei, M. Yasunari, et al. Grafting of Poly(ethylene-block-ethylene oxide) onto a Vapor Grown Carbon Fiber Surface byγ-ray Radiation Grafting. Polymer, 2003, 44(11):3201~3207
    26李峻青,黄玉东,王卓,徐志伟.γ-射线辐照对碳纤维表面结构以及强度的影响.航空材料学报. 2005, 25(6):52~56
    27曹海琳,黄玉东,张志谦等.碳纤维阳极氧化处理对复合材料界面性能的影响.材料工程,2000 ,4: 16~20
    28刘杰,郭云霞,梁节英.碳纤维表面电化学氧化的研究.化工进展, 2004 ,23 (3): 282~286
    29杜慧玲,齐锦刚,庞洪涛等.表面处理对碳纤维增强聚乳酸材料界面性能的影响.材料保护,2003, 36 (2): 16~21
    30杨永岗,贺福等.碳纤维表面处理的新方法2气液双效法.材料研究学报,1998 ,12 (2): 207~211
    31 I.C. Finegan, G.G. Tibbetts. Surface Treatments for Improving the Mechanical Properties of Carbon Nanofiber/ Thermoplastic Composites. J Mater Sci, 2003, 38: 3485~3489
    32冀克俭,邓卫华等.臭氧处理对碳纤维表面及其复合材料性能的影响.工程塑料应用, 2003, 31(5): 34~39
    33张学忠,黄玉东等. CF表面低聚倍半硅氧烷涂层对复合材料界面性能影响.复合材料学报,2006, 23 (1): 105~109
    34 P.C. Varelidis, R.L. McCullough, C.D. Papaspyrides. The Effect on the Mechanical Properties of Carbon/ Epoxy Composites of Polyamide Coatings on the Fibers. Comp Sci Res,1999, 59 (12): 1813~1819
    35 B. Lin, R. Sureshkumar, J.L. Kardos. Electropolymerization of Pyrrole on PAN Based Carbon Fibers: Experimental Observations and a Multiscale Modeling Approach. Chem Eng Sci, 2001, 56: 6563~6569
    36刘丽,傅宏俊,黄玉东等.碳纤维表面处理及其对碳纤维/聚芳基乙炔复合材料力学性能的影响.航空材料学报, 2005, 25(2): 59~64
    37钱春香,陈世欣.纤维表面处理对复合材料力学性能的影响.高科技纤维与应用, 2003, 28(3): 36~41
    38 M.G. Harwell, D.E. Hirt, D.D. Edie, et al. Investigation of Bond Strength and Failure Mode Between SiC Coated Mesophase Ribbon Fiber and an Epoxy Matrix. Carbon, 2000, 38:1111~1117
    39李连清.高模碳纤维表面冷等离子体处理技术.宇航材料工艺, 2005, 5: 31~35
    40贾玲,周丽绘,薛志云等.碳纤维表面等离子接枝及对碳纤维/PAA复合材料ILSS的影响.复合材料学报, 2004, 21(4): 45~49
    41刘新宇,秦伟,王福平.冷等离子体接枝处理对碳纤维织物/环氧复合材料界面性能的影响.航空材料学报, 2003, 23(4): 40~44
    42 S.C. Tsang, Y.K. Chen, M.L. Green, et al. A Simple Chemical Method of Opening and Filling Carbon Nanotubes. Nature, 1994, 372: 159~162
    43 R.M. Lago, S.C. Tsang, M.L. Green, et al. Filling Carbon Nanotubes with Small Palladium Metal Crystallites: The Effect of Surface Acid Groups. Chem Commu, 1995, 1355~1356
    44 H. Hiura, T.W. Ebbesen, K. Tanigaki. Opening and Purification of Carbon Nanotubes in High Yields. Adv Mater, 1995, 7: 275~276
    45 S. Niyogi. Chemistry of Single-walled Carbon Nanotubes. Acc Chem Ress. 2002, 35(12): 1105
    46 J. Liu, A.G. Rinzler, R.E. Smalley. Fullerene Pipes. Science, 1998, 280: 1253~1256
    47 J. Chen, Hanonma, R.C. Haddon. Solution Properties of Single-walled Carbon Nanotubes. Science. 1998, 282: 95-98
    48 J. Hamon. Solution Properties of Single-Walled Carbon Nanotubes. Science. 1998, 282: 95~98
    49 O. Lourie, H.D Wagner. Stress-induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix. Applied Physics Letters. 1998, 73(24): 3527~3535
    50 S.A. Curran, P.M. Ajayan, W.J. Blau, et al. A Composite From Poly(m-Phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics. Adv Mater, 1998, 10(14): 1091~1093
    51 J.N. Coleman, A.B. Dalton, S. Curran, et al. Phase Separation of Carbon Nanotubes and Turbostratic Graphite Using a Functional Organic Polymer. Adv Mater, 2000, 12(3): 213~215
    52 A. Star, J.F. Stoddart, D. Steuerman, et al. Preparation and Properties of Polymer-wrapped Single-walled Carbon Nanotubes. Angew Chem Int Ed, 2001, 40(9): 1721~1725
    53 B.Z. Tang, H.Y. Xu. Preparation, Alignment, and Optical Properties of Soluble Poly(phenylacetylene)-wrapped Carbon Nanotubes. Macromolecules, 1999, 32: 2569~2576
    54 J.H. Fan, M.X. Wan, D.B. Zhu, et al. Synthesis, Characterizations, and Physical Properties of Carbon Nanotubes Coated by Conducting Polypyrrole.J Appl Poly Sci, 1999, 74(11): 2605~2610
    55 J.H. Fan, M.X. Wan, D.B. Zhu. et al. Synthesis and Properties of Carbon Nanotube-polypyrrole Composites. Synthetic Metals, 1999, 102: 1266~1267
    56 S.M. Huang, A.W. Mau H, L.M. Dai, et al. Patterned Growth of Well-aligned Carbon Nanotubes: A Soft-lithographic Approach. J Phys Chem B, 2000, 104: 2193~2196
    57 M. Gao, S.M. Huang, L.M. Dai, et al. Aligned Coaxial Nanowires of Carbon Nanotube Sheathed with Conducting Polymers. Angew Chem Int Ed, 2000, 39(20): 3664~3667
    58 Q.D. Chen, L.M. Dai, M. Gao, et al. Plasma Activation of Carbon Nanotubes for Chemical Modification. J Phys Chem B, 2001, 105: 618~622
    59曹茂盛,邱成军,朱静.碳纳米管表面修饰的研究进展.航空材料学报. 2003, 23(4): 59~62
    60 Z. Jia, Z. Wang, C. Xu, J. Liang, B. Wei, D. Wu, S. Zhu. Study on Poly(methyl methacrylate)/Carbon Nanotube Composites. Mater Sci Engng A. 1999, 271:395-400
    61 H.D. Wagner, O. Lourie, Y. Feldman, R. Tenne. Stress-induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix. Applied Physics Letters. 1998, 72(2): 188~90
    62 H.D. Wagner. Nanotube-polymer Adhesion: A Mechanics Approach. Chemistry Physics Letters. 2002, 361: 57~61
    63 C.A. Cooper, S.R. Cohen, A.H. Barber, H.D. Wagner. Detachment of Nanotubes From a Polymer Matrix. Applied Physics Letters. 2002, 81(20): 3873~5
    64 H. Florian, J. Bae, J. Jang, S.H. Yoon. Cure Behavior of the Liquid Crystalline Epoxy/Carbon Nanotube System and the Effect of Surface Treatment of Carbon Fillers on Cure Reaction. Macromol Chem Phys. 2002, 203(15): 2196~2204
    65 S.L. Ruan, P. Gao, X.G. Yang, T.X. Yu. Toughening High Performance Ultrahigh Molecular Weight Polyethylene Using Multi-walled Carbon Nanotubes. Polymer. 2003, 44(19): 5643~54
    66 J. Aihara. Lack of Superaromaticity in Carbon Nanotubes. The Journal of Physical Chemistry. 1994, 98: 9773~9776
    67李博,廉永福,施祖进等.单层碳纳米管的化学修饰.高等学校化学学报. 2000, 21(5): 1633~1635
    68 E.T. Mickelson. Solvation of Fluorinated Single-Wall Carbon Nanotubes in Alcohol Solvents. Phys. Chem B. 1999, 103: 4318~4322
    69 M. Holzinger. Sidewall Functionalization of Carbon Nanotubes. Angew Chem Int. 2001, 40: 4002~4005
    70 M.J. Biercuk, M.C. Llaguno, M. Radosavljevic. Carbon Nanotube Composites for Thermal Management. Appl. Phys. Lett. 2002, 80(15): 2767~2769
    71 F.H. Gojny, S. Karl. Functionalisation Effect on the Thermo-mechanical Behaviour of Multi-wall Carbon Nanotube/Epoxy-composites. Composites Science and Technology. 2004, 64(13-14): 2303~2308
    72段春来,吴唯,薛扬,曹文渊.纳米碳管及其在聚合物中的应用.合成树脂及塑料. 2003, 20(6): 54~57
    73 E.T. Thostenson, W.Z. Li, Z.F. Ren, et al. Carbon Nanotube/Carbon Fiber Hybrid Multiscale Composites. J Appl Phys. 2002, 91: 6034~6037
    74 V. Veedu, A.Y. Cao, X.S. Li, et al. Multifunctional Composites Using Reinforced Lamina with Carbon-nanotube Forests. Nature. 2006, 5: 457~462
    75 L.J. Broutman. Glass-resin Joint Strengths and Their Effect on Failure Mechanisms in Reinforced Plastics. Polymer Eng and Sci .,1966, 7: 263~267
    76 G. Desarmot, J.P. Favre. Advance in Pull-out Testing and Data Analysis. Composite Science and Technology.1991, 42: 151~187
    77黄玉东,孙文训,张志谦,魏月贞.单纤维拔出法表征CFRP界面强度的研究.高技术通讯. 1995, 12: 34~37
    78 R.J. Gray. Analysis of the Effect of Embedded Fiber Length on Fiber Debonding and Pull-out From an Elastic Matrix I: Review of theories. Journal of Materials Science. 1984, 19: 861~870
    79 B. Fiedler, K. Schulte. Stress Distribution in Single-fiber Model Composite with Perfect Bonding. Composite Science and Technology. 1997, 57: 1331~1339
    80 J. Andersons, V. Tamuzs. Fiber and in Interface Strength Distribution Studies With the Single-fiber Composite test. Composite Science and Technology. 1993, 48: 57~63
    81 G. Costas, P. Alkis, M. Christian. Unification of Fiber/Matrix Interfacial Measurements With Raman Microscopy. J. Raman Spectrosc. 1999, 30: 899~912
    82王安强,万建松,苟文选,矫桂琼,岳珠峰.单纤维界面强度光弹性实验和理论研究.复合材料学报. 2003, 20(6): 147~150
    83 B. Fiedler, K. Schulte. Photo-elastic Analysis of Fiber-reinforced Model Composite Materials. Composites Science and Technology. 1997, 57: 859~867
    84 M.K. Tse, Effect of Interfacial Strength on Composite Properties. SAMPE Journal. 1985, 7(8): 11~15
    85 J.F. Mandell, D.H. Grande. Modifies Microdebonding Test for Direct Insitu Fiber/Matrix Bond Strength Determination in Fiber Composites. ASTM STP 893. 1986:87~108
    86黄玉东,魏月贞,张志谦,孔宪仁.复合材料界面强度微脱粘测定技术的研究.宇航学报. 1994, 3: 30~34
    87 D.罗伯编.项金钟,吴兴惠译.计算材料学.化学工业出版社. 2002:59~61
    88杨小震.分子模拟与高分子材料.科学出版社. 2002:17~27
    89 S.H. Kim, W.H. Jo. Monte Carlo Simulation of Polymer/polymer Interface in the Presence of Block Copolymer. I. Effects of the Chain Length of Block Copolymer and Interaction Energy. Journal of Chemical Physics. 1999,110(24):12193~12201
    90 S. Yao, Kamei. Chemical Structure Dependence of Interaction Strength Between Polymers and Mobility of Polymer Chains in the Polymer Interface. Computational and Theoretical Polymer Science. 1997,7(1) :25~33
    91 S.J.V. Frankland., A. Caglar, D.W. Brenner. Molecular Simulation of the Influence of Chemical cCoss-links on the Shear Strength of Carbon Nanotube-polymer Interfaces. Journal of Physical Chemistry. 2002,106(12):3046~3048
    92 S. Mahajan, G. Subbarayan., .B.G. Sammakia. Molecular Dynamics Simulations of Nanotube-polymer Composites for Use as Thermal InterfaceMaterial. American Society of Mechanical Engineers. 2003,(3):381~385
    93 Ramos, M.D. Marta, Almeida, P.P. Judite. Atomistic Modeling of Interfacial Bonding at Metal/Polymer Interface. Journal of Materials Processing Technology. 1999,(92-93):147~150
    94 U. Natarajan, S. Misra, L.M. Wayne. Atomistic Simulation of a Polymer-Polymer Interface: Interfacial Energy and Work of Adhesion. Computational and Theoretical Polymer Science. 1998,8(3-4): 323~329
    95 O.O. K. S.K. Okaa. Molecular Simulation of an Amorphous Poly(methyl methacrylate)–Poly(tetrafluoroethylene) Interface. Computational and Theoretical Polymer Science. 2000, (10):371~381
    96高军,吴宏武.玻纤增强聚乙烯界面行为的分子模拟研究.计算机与应用化学. 2007, 24(4): 493~497
    97薛颖.分子动力学模拟与自由能计算在药物分子设计中的应用.北京工业大学. 2003:1~5
    98 B.I. Yakobson, R.E. Smalley. Fullerene Nanotubes: C1,000,000 and Beyond. Am Sci. 1997, 85:324
    99杨全红.纳米碳管的表面、孔隙及其与储氢性能关系:[博士后研究报告].沈阳:中国科学院金属研究所,2001
    100 X. Song, Y. Fang. A Technique of Purification Process of Single-walled Carbon Nanotubes With Air Spectrochimica Acta Part A. Molecular and Biomolecular Spectroscopy. 2007, 67(3): 1131~1134
    101 Y.Q. Liu, L. Gao. A Multi-step Strategy for Cutting and Purification of Single-walled Carbon Nanotubes. Carbon, 2007, 45(10): 1972~1978
    102 M.W. Marshall, P.N. Simina, J.G.. Shapter. Measurement of Functionalized Carbon Nanotube Carboxylic Acid Groups Using a Simple Chemical Process. Carbon, 2005, 44:1137~1141.
    103 S.R. Wang, Z.Y. Liang, T.N. Liu, B. Wang, C. Zhang. Effective Amino Functionalization of Carbon Nanotubes for Reinforcing Epoxy Polymer Composites. Nanotechnology. 2006, 17(6):1551~1557
    104 D.D. Edie. The Effect of Processing on the Structure and Properties of Carbon Fibers. Carbon, 2001, 36(4):345~362
    105 H.J. FU, C.Q. MA, N.H Kuang, et al. Interfacial Properties Modification of Carbon Fiber/Polyarylacetylene Composites. Chinese Journal ofAeronautics. 2007, 20(2): 124~128
    106 B. Xu, X.S. Wang, Y. Lu. Surface Modification of Polyacrylonitrile Based Carbon Fiber and its Interaction with Imide. Applied Surface Science. 2006, 253(5): 2695-2701
    107 X.Z. Zhang, Y.D. Huang, T.Y. Wang. Surface Analysis of Plasma Grafted Carbon Fiber. Applied Surface Science. 2006, 253(5): 2885~2892
    108 S.J. Park, M.K. Seo, Y.S. Lee. Surface Characteristics of Fluorine-modified PAN-based Carbon Fibers. Carbon, 2003, 41(4): 723~730
    109 A.F. Jeklly, Tolsen. Influnce of the Fiber Surface Treatment and Hot-wet Environment on the Mechanical Behavior of Carbon/Epoxy Composites. Composites Part A: applied science and manufacturing. 2001, 32:373~378.
    110 H. Florian, J. Bae, J. Jang, S.H. Yoon. Cure Behavior of the Liquid-Crystalline Epoxy/Carbon Nanotube System and the Effect of Surface Treatment of Carbon Fillers on Cure Reaction. Macromol Chem Phys. 2002, 203(15): 2196-204
    111 S.L. Ruan, P. Gao, X.G. Yang, T.X. Yu. Toughening High Performance Ultrahigh Molecular Weight Polyethylene Using Multi-walled Carbon Nanotubes. Polymer. 2003, 44(19): 5643~5654
    112 J. Aihara. Lack of Superaromaticity in Carbon Nanotubes. The Journal of Physical Chemistry. 1994, 98: 9773~9776
    113郭云霞,刘杰,梁节英,电化学改性对PAN基碳纤维表面状态的影响,复合材料学报,2005, 22(3):49~54
    114 H.J. FU, C.Q. MA, N.H. Kuang, et al. Interfacial Properties Modification of Carbon Fiber/Polyarylacetylene Composites. Chinese Journal of Aeronautics. 2007, 20(2): 124~128
    115 R. Tucknott, S.N.Yaliraki. Aggregation Properties of carbon nanotubes at interfaces. Chemical Physics, 2002, 281: 455~463
    116 C. Park, Z. Ounaies, K.A. Watson, et al. Dispersion of Singlewall Carbon Nanotubes by Insitu Polymerization Under Sonication. Chemical Physics Letters, 2002, 364: 303~308
    117邵友林,王伯羲.碳纤维的表面除胶及表征.复合材料学报,2002, 19(4): 29~32
    118 H. Sun, P. Ren, J.R. Fried, et al. The COMPASS Forcefield: Parameterizationand Validation for Polyphosphazenes. Cpmputational and Theoretical Polymer Science, 1998, 8: 229~236
    119 J.H. Fan, M. Wan, D.B. Zhu, B.H. Chang, Z.W. Pan, et al. Synthesis, Characterizations, and Physical Properties of Carbon Nanotubes Coated by Conducting Polypyrrole. Journal of Applied Polymer Science 1999, 74(11): 2605~2610
    120 Z.X. Jin, K.P. Pramoda, S.H. Goh, G.Q. Xu. Poly(vinylidene fluoride)-Assisted Melt-blending of Multi-walled Carbon Nanotub Epoly(methyl methacrylate) Composites. Materials Research Bulletin 2002, 37: 271~278
    121 H. Bubert, S.B. Haiber, G. Marginean, M. Heintze, et al. Characterization of the Uppermost Layer of Plasma-treated Carbon Nanotubes. Diamond and related materials 2003, 12(3-7): 811~815
    122陈舜麟.计算材料科学.化学工业出版社. 2005:76~77
    123 S. Nosé. A Molecular Dynamics Method for Simulations in the Canonical Ensemble. Molec, Phys. 1984,(52): 255~268
    124 S. Nosé. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984,(81):511~519
    125 J.G. Lavin, S. Shekhar, R.S. Ruoff, B. Savas, T. David. Scrolls and Nested Tubes in Multiwall Carbon Nanotubes. Carbon, 2002, 40(7): 1123~1130
    126 J.L. Tack, D.M. Ford. Thermodynamic and Mechanical Properties of Epoxy Resin DGEB Crosslinked With DETDA by Molecular Dynamics. J. Mol. Graph. Model. 2008, 26: 1269~1275
    127 C.F. Wu, W.J. Xu. Atomistic Molecular Modeling of Crosslinked Epoxy Resin.Polymer. 2006, 47: 6004~6009
    128 V.V. Mokashi, D. Qian, Y.J Liu. A Study on the Tensile Response and Fracture in Carbon Nanotube-based Composites Using Molecular Mechanics. Compos Sci Technol, 2007, 67: 530~540
    129 J. Tersoff. Modeling Solid-state Chemistry: Interatomic Potentials for Ulticomponent System. Physics Review, 1989, B39: 5566~5568
    130 V. Lordi, N. Yao. Molecular Mechanics of Binding in Carbon-nanotube-Polymer Composites. J. Mater. Res. 2000, 15(12): 2270~2279

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700