用户名: 密码: 验证码:
基于纳米氟碳涂层材料的过冷水动态制冰理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冰浆的应用在节能方面存在巨大的潜力,减少了对环境有破坏作用的制冷剂的使用量,而且提高了供冷系统的性能。在能源短缺和环境保护要求日益迫切的当今,发展以冰浆为载冷剂的空调系统和冷却系统有着重要的意义和广阔的应用前景。冰浆的制取的方法有许多,其中过冷水法制冰技术因具有结构简单、换热效率高、冰晶制作效率高等特点,成为目前最受关注的动态制冰方式之一。然而,过冷水法制冰的主要缺陷在于过冷却器内结冰存在随机性,冰堵的发生过于频繁,导致系统制冰的断断续续,降低了系统的效率。
     论文总结分析了当前国内外有关过冷水动态制冰的研究成果,在分析引起冰堵的各种原因基础之上,首次在过冷水动态制冰中引入纳米氟碳涂层材料,并对纳米氟碳涂层性能对过冷却器壁面的影响进行了研究,表明纳米氟碳涂层材料显著改善了水在壁面上的润湿性,有效延迟了水冻结的时间。分别采用纳米氟碳涂层和扰动装置对过冷却器进行了改进,并在理论分析的基础上进行了一系列的过冷水动态制冰实验研究。
     涂到固体壁面的氟碳膜的平均厚度仅有9.7纳米,这层极薄的膜使得固体表面呈超疏水性,水在纳米氟碳氟碳涂层表面的接触角可高达163.01°。研究表明具有超疏水性的纳米氟碳涂层表面不但能有效抑制结冰也具有防结垢特性。
     通过对过冷水动态制冰的实验研究发现,采用纳米氟碳涂层过冷却器制冰时,可在过冷却器出口得到较大的过冷度,过冷状态持续时间较长,推迟了过冷却器冰堵发生的时间,冰浆的制取量增加,系统的制冰效率得到提高。在过冷却器内部增加扰动装置进行制冰时,虽然换热系数可得到提高,但却增加了更利用过冷水结晶的条件,使过冷却器发生冰堵的频率更高。
     本文还基于最小熵增原理和最小耗散原理,对过冷却器的换热性能进行了综合评价。经分析可知,与无涂层过冷却器相比,纳米氟碳涂层优化了过冷却器的换热状态,冷却器的性能提高,相应地也提高了整个制冰系统的效率,达到了节能的目的。
There is a vast potential for the application of ice slurry in the energy saving due toreducing usage of the refrigerant with destruction of environment and improving theperformance of the refrigeration system. At present, the energy becoming less and less andthe requirement of environmental protection is daily increasing urgency. Therefore, as anenvironment-friendly medium of ice thermal storage, ice slurry can improve energyefficiency and reduce building energy consumption thanks to the latent heat of ice crystalsand its good fluidity. Supercooling water is used as a superior method to generate iceslurry for its high efficiency and energy conservation. However, the ice blockage occurredin the supercooling heat exchanger is a prominent problem that reduces the efficiency ofthe ice generation system. In this study, in order to avoid or retard ice blockage, afluorocarbon coating with super-hydrophobicity was applied onto the surface of thesupercooling heat exchanger to continuously make ice slurry without any additive.
     In this paper, n the basis of summarizing the research fruits of dynamic ice-makingusing supercooled water worldwide, a nano-fluorocarbon coating was first applied inice-making system. The surface characteristics of the nano-fluorocarbon coating wereinvestigated, the results showed that the surface wettability of water was significantlyimproved by this nano-fluorocarbon coating material, and the freezing time was delayedeffectively. A nano-fluorocarbon coating and a disturbing device were respectively usedfor the improvement of the supercooling heat exchanger, and a series experiments werecarried out accordingly.
     The average thickness of the nano-fluorocarbon coated on the solid surface was only9.7nm. It was the very thin film made the solid surface superhydrophobicity with thecontact angle of163.01°. This film not only has a good property in anti-icing but alsoanti-scale. Compared with the uncoated surface, the process of water freezing on thecoated surface with nano-fluorocarbon was slower which demonstrated that the icing onthe coated surface was restrained in the experiment.
     The experiments were conducted by the self-established ice-making system, and theexperimental results were analyzed. It was found that the supercooling degree in thecoated supercooling heat exchanger was higher, the supercooling state was longer, and thetime of ice blockage was delayed. Thus, more ice production can be obtained accordinglyand the efficiency of the whole ice-making system was enhanced. Though the heat transfercoefficient was increased using the supercooling heat exchanger with a disturbing device,it was more often blocked in the supercooling heat exchanger due to a more favorablecondition for icing offering by the added disturbing device.
     In this paper, based on the principles of minium entropy production and miniumentansy dissipation with the experimental data and the results, the heat exchangingperformance supercooling heat exchanger was evaluated comprehensively providing aground-work for the improvement and perfection in ice-making test system. The analyticalresults revealed that, the heat exchanging conditions were optimized in the coatedsupercooling heat exchanger with nano-fluorocarbon coating compared with the uncoatedone, the performance of heat exchanger was increased as well, as a result, the efficiency ofthe whole ice-making system was higher and the purpose of energy saving is also attained.
引文
[1] Egolf P. W., Kauffeld M.. From physical properties of ice slurries to industrial iceslurry applications. International Journal of Refrigeration,2005,28(1):4~12.
    [2] Sari O., Vuarnoz D., Meili F., et al. Visualization of ice slurries and ice slurry flows.Proceeding of the Second Workshop on Ice Slurries of International Institute ofRefrigeration. Paris, France, May2000:68~81.
    [3] Meewisse J. W.. Fluidized Bed Ice Slurry Generator for Enhanced SecondaryCooling Systems.Delft: Delft University of Technology,2004.
    [4]稲葉英男.機能性二次冷媒の動向と展望.冷凍,2005,80(2):79~87.
    [5]大平昭義.ダイナミック式氷蓄熱システム.日本冷冻协仝论文集.2004,21(4):285~297.
    [6] Stamatioua E., Meewisses J. W., Kawaji M.. Ice slurry generation involving movingparts. International Journal of Refrigeration,2005,28(1):60~72.
    [7] Doron P.,Barnea D.. Flow patern maps for solid-liquid flow in pipes. InternationalJournal of Multiphase Flow,1996,22(2):273~283.
    [8] Egolfa P. W., Kitanovski A., Ata-Caesar D., et al. Thermodynamics and heat transferof ice slurries. International Journal of Refrigeration,2005,28(1):51~59.
    [9]杨帆,方贵银,张曼等.动态冰浆流动特性分析.低温与超导,2007,36(3):49~53.
    [10]简夕忠,宋保银.定热流状态下圆管内层流冰浆流体传热特性的数值模拟.制冷与空调,2008,8(2):33~36.
    [11]青春耀,肖睿,宋文吉等.冰浆在蓄冰槽内的蓄冰特性及其均匀度研究.低温与超导,2009,37(5):41~46.
    [12]魏娟,章学来.冰浆传热与压降的研究进展.能源技术,2005,26(2):52~54.
    [13]张学军,田新建,郑克晴等.气体直接接触式制取冰浆实验研究.工程热物理学报,2010,31(12):1997~2000.
    [14]郑克晴,张学军,田新建等.直接接触式冰浆生成器的单气泡传热特性.化工学报,2010,61(S2):58~61
    [15]何国庚,吴锐,柳飞.冰浆生成技术研究进展及使用初探.建筑热能通风空调,2006,25(4):22~27.
    [16]章学来,李瑞阳,束鹏程.直接接触式蓄冷循环的热力研究.制冷,2004,23(1):1~6.
    [17]刘剑宁,章学来,葛轶群等.直接接触式喷射式冰浆制备装置.能源技术,2007,28(3):157~159.
    [18]高清华,肖睿,何世辉.直接蒸发内融冰式冰蓄冷空调冰机理研究.流体机械,2008,36(3):4953.
    [19]杜艳丽,何世辉,肖睿.直接蒸发内融冰式蓄冷空调的蓄冷和释冷特性.制冷学报,2007,28(3):31~35.
    [20]谢应明,刘道平,刘妮.小型气体水合物蓄冷装置的实验研究.西安交通大学学报,2008,42(5):573~576.
    [21]鲁涛,张郁,李小森. CO2-N2-TBAB和CO2-N2-THF体系的水合物平衡生成条件.过程工程学报,2009,9(3):541~544.
    [22] Andrej K.. Concentration distribution and Vicosity of ice-slurry in heterogeneousflow. International Journal of Refrigeration,2002,25:827~835.
    [23] Jeffrey D. J.. Conduction through a random suspension of spheres. Proceeding ofthe Royal Society, London A,1973,335:355~367.
    [24] Christensen K. G., Kauffeld M.. Heat transfer measurements with ice slurry.International Conference on Heat Transfer Issues on NaturalRefrigerants,1997,48~59.
    [25]刘传聚,陆琼文,李伟业等.区域供冷系统经济运行研究及实践—浦东国际机场区域供冷系统经济运行研究总结.能源技术,2005,2:81~83.
    [26]范庆,叶水泉,陈永林.蓄能中央空调系统在区域供热供冷(DHC)中的应用.制冷空调与电力机械,2012,23(1):38~45.
    [27] Davies T.W.. Slurry ice as a heat transfer fluid with a large number ofapplication domains. International Journal of Refrigeration2005,28(1):108~114.
    [28]関光雄.ブラインダイナミックアイス冷蔵システムによる氷スラリ直接搬送冷却.冷凍,2005,80(2):104~109.
    [29] Losada V., Barros-Velazquez J., Aubourg S.P.. Rancidity development in frozenpelagic fish:Influence of slurry ice as preliminary chilling treatment. LWT-FoodScience and Technology,2007,40(6):991~999.
    [30] Rodriguez O., Barros-Velazquez J., Pineiro C., et al. Effects of storage in slurry iceon the microbial chemical and sensory quality and on the shelf life of farmedturbot(Psetta maxima). Food Chemistry,2006,95(1):270~278.
    [31] Bellas I., Tassou S.A.. Present and future applications of ice slurries. InternationalJournal of Refrigeration,2005,28(1):115~121.
    [32] Brooker R.F., Zvara D.A., Velvis H., et al. Topical ice slurry prevents brainrewarming during deep hypothermic circulatory arrest in newborn sheep. Journal ofCardiothoracic and vascular Anesthesia,1997,11(5):591~594.
    [33] Becker L.B., Kasza K.E., Jayaykar D., et al. Rapid induction of hypothermia usingphase-change ice slurry: Targeted cooling of the heart and brain during cardiac arrest.Circulation,2000,102:571~621.
    [34] Vanden Heok T.L., Kasza K.E. Abella B.S. et al. Rapid brain and chest coolingduring CPR using intravenous and intrapulmonary phase-change ice slurry.Circulation,2002,106(Supply Ⅱ):497~537.
    [35] Quarini J.. Ice-pigging to reduce and remove fouling and to achieveclean-in-place. Applied Thermal Engineering,2002,22(7):747~753.
    [36] Lowes A.R.. Fire-fighting apparatus and a method of fighting fire[P].UK PatentApplication02068138,2002.
    [37]栗兴华,沈春明,轩大洋,江丙友.冰浆降温系统在解决矿井热害中的应用.采矿技术,2009,9(1):92~93.
    [38]杜卫新,郑光相.冰浆制冷降温系统在平煤六矿的应.煤炭工程,2009(4):63~65.
    [39] Wijeysundera N.E., Hawlader M.N.A., Chan Wee Boon Andy, et al. Ice-slurryproduction using direct contact heat transfer. International Journal of Refrigeration2004,27(5):511~519.
    [40] Kiatsiriroat T., Thalang K.N., Dabbhasuta S.. Ice formation around a jet stream ofrefrigerant. Energy Conversion and Management,2000,41(3):213~221.
    [41] Meewisse J.W., Infante Ferreira C.A.. Validation of the use of heat transfer modelsin liquid/solid fluidized beds for ice slurry generation. International Journal of Heatand Mass Transfer,2003,46(19):3683~3695.
    [42] Kim B.S., Shin H.T., Lee Y.P., et al. Study on ice slurry production by water spray.International Journal of Refrigeration,2001,24(2):176~184.
    [43] Li Y.T., Yundt A.P, Ho I.C., et al. Orbital type freeing apparatus and method. USPatent:5363660.
    [44]守屋充,谷野正幸,菊池栄.過冷却水を利用した氷蓄熱システム第1報:過冷却の安全制御と製氷,日本冷冻协会论文集,1995,12(3):253~262.
    [45]稲葉英男,武谷健吾.静止水の过冷却现象に及ぼす诸因子の影响.日本机械学会论文集,1993,59(567):3557~3564.
    [46]斎藤彬夫,大河誠司,小金沢新治.水の過冷却凝固に関する研究.日本冷冻协会论文集,1990,17(3):213~223.
    [47]寺岡喜和,斎藤彬夫,大河誠司.過冷却水中を成長する氷結晶の形状と成長速度の異方性,日本冷冻协会论文集,2003,20(2):193~198.
    [48] Teraoka Y., Saito A., Okawa S.. Ice crystal growth in supercooled solution.International Journal of Refrigeration.2002,25(2):218~225.
    [49] Inaba H., Lee D.W., Horibe A.. Studay on the critical conditions of ice formationfor a continuous ice making system in a cooling pipe. Heat Transfer JapaneseResearch,1998,27(1):74~83.
    [50] Inada T., Zhang X., Yabe A., et al. Active control of phase change from supercooledwater to ice by ultrasonic vibration1. control of freezing temperature. InternationalJournal of Mass Transfer,2001,44(23):4523~4531.
    [51] Okawa S., Saito A., Fukao T.. Research on the effect of electric charge oninitiation of freezing of supercooled water. Transactions of the Japan Society ofRefrigerating and Air Conditioning Engineers,2011,15(3):221~228.
    [52] Debenedetti P.G. Stenley H.E.. Supercooled and glassy water. Journal ofPhysics: Condensed Matter,2003,15(45):1669~1726.
    [53]梁云峰.水的结构与物性的分子动力学模拟研究.中国科学院固体物理研究所,2002:27~31.
    [54]樊栓狮,梁德青,杨向阳.储能材料与技术.北京:化学工业出版社,2004.
    [55]陶乐仁.水溶液冻结过程的显微实验研究[博士学位论文].上海:上海理工大学.2000.
    [56] Dennison D.M.. The crystal structure of ice. Physics Review,1921,17(1):20~22.
    [57]梁云峰.水的结构与物性的分子动力学模拟研究[博士学位论文].合肥:中国科学院固体物理研究所,2002.
    [58]张寅平,胡汉平.相变贮能—理论和应用.合肥:中国科技大学出版社,1996.
    [59]张元仁.相变材料与相变蓄能技术.北京:科学出版社,2009.
    [60]徐祖耀,李麟.材料热力学.北京:科学出版社,2005.
    [61]常辉,周廉,张廷杰.钛合金固态相变的研究进展.稀有金属材料与工程.2007,36(9):1505~1510.
    [62] Chibana K., Kang C, Okada M., et al. Continuous formation of slurry ice by coolingwater-oil emulsion in a tube. International Journal of Rerigeration,2002,25(2):259~266.
    [63] Young T.. An essay on the cohesion of fluids. Philosophical Transactions of theRoyal Society of London,1805,95(1):65~87.
    [64] Fletcher N.H.. Size effect in heterogeneous nucleation. The Journal ofChemical Physics,1958,9(3):572~576.
    [65] Van Oss C. J., Chaudhury M.K., Good R.J.. Monopolar surfaces. Advance inColloid and Interface Science,1987,28(1):35-64.
    [66]胡赓祥,蔡珣,戎咏华.材料科学基础.上海:上海交通大学出版社.2006.
    [67]潘云仙.喷雾制取天然气水合物的诱导时间研究[硕士学位论文].上海:上海理工大学,2005.
    [68]姚连增.晶体生长基础.合肥:中国科技大学出版社,1994.
    [69] Ma D., Cao H., Chang Y.A.. Identifying bulk metallic glass-formers frommulti-component eutectics. Intermetallics,2007,15(8):1122~1126.
    [70]稲葉英男,武谷健吾.流动过冷却水および水溶液の管内冻结生限界に及ぼす诸因子の影响.日本机械仝论文集,1994,60(578):3440~3447.
    [71]稻叶英男,武谷健吾,野津滋.流动过冷却水によろ连に阌する基础研究.日本:日本机械仝论文集,1992.
    [72]稻叶英男,武谷健吾,野津滋.静止状态におけるバルク状水および水溶液の过冷却现象に影响を及ぼす诸因子の果.日本机械仝论文集(B),1993.
    [73]稻叶英男,武谷健吾.流动过冷却水および水溶液の管内冻结生限界に及ぼす诸因子の影响.日本机械仝论文集,1994.
    [74]斋藤彬夫,大河诚司,宇根浩.过冷却水の凝固に影响を及ぼす外的要因に阌する研究,日本冷冻协仝论文集,1991,8(2):141~150.
    [75] Satio A., Okewa Tojiki A.. Fundamental research on external factors affecting thefreezing of supercooled water. International Journal of Heat Mass Transfer,1992,35(10):2527~2536.
    [76] Wakamoto S., Nakao K., Tanaka N. et al. Study of the stability of supercooledwater in an ice generator. ASHRAE Transactions,1996,102(2):142~150.
    [77]]曲凯阳,江亿.具有较低最低不结冰温度的结冰基体的选择.水利电力施工机械,2000(1):23~26.
    [78] Okawa S., Saito A., Suto H.. The experimental study on freezing of supercooledwater using metallic surface. International Journal Refrigeration,2002,25(5):514~520.
    [79]李宗兴,陈进龙.水在圆柱容器内成核特性之研究.冷冻空调(中国台湾),1997,5(4):43~57.
    [80] Saito A., Utaka Y., Okawa S., etal. Fundamental research on the supercoolingphenomenon on heat transfer surfaces-investigation of an effect of supercooledwater. International Journal of Heat and Mass Transfer,1990,33(8):1697~1709.
    [81] Okawa S., Saito A., Minami R.. The solidification phenomenon of the supercooledwater containing solid particles. International Journal of Refrigeration,2001,24(1)108~117.
    [82]王葳,张绍志,陈光明.超声波对水的过冷度影响的实验研究.制冷学报,2003,24(1):6~8.
    [83]郁庆庆.过冷水动态制冰系统过冷却器的仿真与优化研究[硕士学位论文].上海:上海海事大学,2006.
    [84] Inaba h., Inada T., Horibe A., et al. Preventing agglomeration and growth of iceparticles in water with suitable additives. International Journal of Refrigeration,2005,28(1):20~26.
    [85] Inada T., Yabe A., Grandum S., et al. Control of molecular-level ice crystallizationusing antifreeze protein and silane coupling agent. Materials Science andEngineering: A,2000,292(2):149~154.
    [86] Chibana K., Kang C., Okada M., et al. Continuous formation of slurry ice bycooling water-oil emulsion in a tube. International Journal of Refrigeration,2002,25(2):259~266.
    [87] Oda Y., Nakagawa S., Okada M., et al. Continuous ice formation in a tube byusing water-oil emulsion for dynamic-type ice-making cold thermal energy storagesystem. Transactions of the Japan Society of Refrigerating and Air ConditioningEngineers,2012,19(4):357~365.
    [88]张鹏.溶液动作制冰的理论和实验研究[硕士学位论文].杭州:浙江大学,2006.
    [89]陈坤.低过冷度冰蓄冷溶液的实验研究及理论分析[硕士学位论文].杭州:浙江大学,2005.
    [90] Teraoka Y., Saito A., Okawa S.. Ice crystal growth in supercooled solution.International Journal of Refrigeration,2002,25(2):218~225.
    [91]鈴木洋.界面活性剤添加による氷スラリーの凝集防止抵抗低減効果.冷凍,2005,80(2):34~39.
    [92] Inada T., Zhang X., Yabe A., et al. Active control of phase change fromsupercooled water to ice by ultrasonic vibration1.Control of freezing temperature.International Journal of Heat and Mass Transfer,2001,44(23):4523~4531.
    [93] Zhang X.J., Qiu L.M., Zhang P., et al. Performance improvement of vertical iceslurry generator by using bubbling device. Energy Conversion and Management,2008,49(1):83~88.
    [94] Matsumoto K., Kobayashi T.. Fundamental study on adhesion of ice to coolingsolid surface. International Journal of Refrigeration,2007,30(5):851~860.
    [95]吴鹏.动态制冰溶液成核特性研究[硕士学位论文].杭州:浙江大学,2008.
    [96] Tsuchida D., Kang C., Okada M., et al. Ice formation process by cooling water–oilemulsion with stirring in a vessel. International Journal ofRefrigeration,2002,25(2):250~258.
    [97] Cassie A.B.D., Baxter S.. Wettability of porous surfaces. Transactions of FaradaySociety,1944,40:546~551.
    [98]张雪花,胡钧.固液界面纳米气泡的研究进展.化学进展,2004,16(5):673~681.
    [99] Lauga E., Brenner M.P, Stone H.A.. Microfluidics: the No-slip BoundaryCondition. In Handbook of Experimental Fluid Dynamics,2005,Chapter19.
    [100]沙庆云.传递原理.大连:大连理工大学出版社,2003.
    [101] Kim C.J., Choi C.H.. Nano-engineered low-friction surfaces for liquid flow. The6th KSME-JSME Thermal and Fluids Engineering Conference, Korea,2005.
    [102] Ou J., Perot B., Rothstein J.P.. Laminar drag reduction in microchannels usingultrohydrophobic surfaces. Physics of Fluids,2004,16(12):4635~4643.
    [103] Watanabe K., Udagawa Y., Hiroshi U.. Drag Reduction of Newtonian Fluid in acircular pipe with a highly water-repellent wall. Journal of FluidMechanics,2002,381(1):225~238.
    [104] Antonini C., Innocenti M., Horn T., et al. Understanding the effect ofsuperhydrophobic coatings on energy reduction in anti-icing systems. Cold RegionsScience and Technology,2011,67(1):58~67.
    [105] Henoch C., Krupenkin T.N., Kolodner P., et al. Turbulent drag reduction usingsuperhydrophobic surfaces.3rd AIAA Flow Control Conference,2006,SanFrancisco,California.
    [106]邓旭辉,张平,许福,等.具有滑移边界圆管层流减阻的CFD模拟.湘潭大学自然科学学报,2005,27(1):85~89.
    [107]吕田.超疏水表面润湿性与流动减阻机理研究[硕士学位论文].上海:上海交通大学,2009.
    [108]宋善鹏.超疏水微通道内水流动与传热特性的研究[硕士学位论文].大连:大连理工大学,2008.
    [109] Wang H., He G.G., Tian Q.Q.. Effects of nano-fluorocarbon coating on icing.Applied Surface Science,2012,258(18):7219~7224.
    [110] Wang H., Tang L.M., Wu X.M., et al. Fabrication and anti-frosting performance ofsuper hydrophobic coating based on modified nano-sized calcium carbonate andordinary polyacrylate. Applied Surface Science,2007253(22):8818~8824.
    [111] Farhadi S., Farzaneh M., Kulinich S.A.. Anti-icing performance ofsuperhydrophobic surfaces. Applied Surface Science,2011,257(14):6264~6269.
    [112] He M., Wang J.J., Li H.L., et al. Super-hydrophobic surfaces to condensedmicro-droplets at temperatures below the freezing point retard ice/frost formation.Soft Matter,2011,7(8):3393~4000.
    [113] Manoudis P.N., Tsakalof A., I. Karapanagiotis, I., et al. Fabrication ofsuper-hydrophobic surfaces for enhanced stone protection. Surface and CoatingTechnology,2009,203(10-11):1322~1328.
    [114]季曙明.超疏水表面及其微通道滑移流动的研究[硕士学位论文].上海:上海交通大学,2010.
    [115] Ferrick M.G., Mulherin N.D., Haehnel R.B., et al. Evaluation of ice releasecoatings at cryogenic temperature for the space shuttle. Cold Regions Science andTechnology,2008,52(2):224~243.
    [116] Farhadi S., Farzaneh M., Kulinich S.A.. Anti-icing performance ofsuperhydrophobic surfaces. Applied Surface Science,2011,257(14):6264~6269.
    [117] Liu Z.L., Gou Y.J., Wang J.T., et al. Frost formation on a super-hydrophobicsurface under natural convection conditions. International Journal of Heat andMass Transfer,2008,51(25-26):5975~5982.
    [118]勾昱君,刘中良,王皆等.自然对流条件下仿生超疏水表面的抑霜研究.工程热物理学报,2007,28(4):631~633.
    [119] Yin L., Xia Q., Xue J., et al. In situ investigation of ice formation on surfaces withrepresentative wetttability. Applied Surface Science,2010256:6764~6769.
    [120] Crank J.. Free and moving boundary problems. Oxford: Clarendon Press,1984.
    [121]奥齐西克M N.热传导.俞昌铭译.北京:高等教育出版社,1983.
    [122]卿德藩,段小林,刘尹红.扭曲扁管冷凝器强化传热及污垢特性实验研究.制冷学报,2007,28(6):47~50.
    [123] Forster M., Augustin W., BohnetM.. Modification of molecular interactions at theinterface crystal/heat transfer surface to minimize heat exchanger fouling.International Journal of Thermal Sciences,2000,39(7):697~708.
    [124] Yang C. F.. Mechanisms of calcium carbonate scaling during and post of inductionperiod.Fouling Mitigation of Industrial Heat-Exchange Equipment.New York:Begell House Inc,1995.275~286.
    [125]杨传芳,徐敦颀,沈自求. CaCO3结垢诱导期的理论分析与实验研究.化工学报,1994,45(2):199~205.
    [126]邱振波,张精卫,徐志明.材料表面能影响污垢诱导期的实验研究与理论分析.东北电力大学学报,2008,28(1):45~48.
    [127]张仲彬,徐志明,邱振波.表面特性和流动特性对结垢诱导期影响的实验研究.工程热物理学报,2009,30(1):144~146.
    [128]刘义达,邹勇,赵亮等.表面粗糙度对析晶污垢附着的影响.工程热物理学报,2010,31(8):1355~1358.
    [129]顾业梅,李云,张兵强.颗粒污垢诱导期影响因素的实验研究.锅炉制造,2011,(2):19~25.
    [130] Melia T.P.. Crystal Nucleation from Aqueous Solution. Journal of AppliedChemistry,1965,15(8):345~357.
    [131]杨善让,徐志明,孙灵芳.换热设备污垢与对策.北京:科学出版社,2004.
    [132] Nielsem A. E.. Kinetics of Precipitation. Pergomon Press,1964.
    [133] Zhao Q., Muller-Steinhagen H.. Intermolecular and Adhesion Force of Deposits onModified Heat Transfer Surfaces. Procceding of Heat Exchanger Fouling:Fundamental Approaches and Technical Solutions. Davos,Switzerland,2001.
    [134] Forster M., Augustin W., Bohnet M.. Modification of the interface crystal/heattransfer surface to reduce heat exchanger Fouling. Proceeding of Heat ExchangerFouling: Foundation Approaches and Technical Solution. Davos,Switzerland.,2001.
    [135] Forster M., Augustin W., Bohnet M.. Influence of the adhesion force crystal heatexchanger surface on fouling mitigation. Chemical Engineering andProcessing,1999,38(4-6):449~461.
    [136]钱颂文.换热器设计手册.北京:化学工业出版社,2002.
    [137]杨世铭,陶文铨.传热学.北京:高等教育出版社,2006,8.
    [138]陈英梅,陈永学,王文成等.过冷度对冷冻浓缩过程冰晶生长的宏微观研究.西南大学学报,2010,32(5):140~145.
    [139] Wakamoto S., Tanaka N.. Study of the stability of supercooled water in an icegenerator, ASHRAE Transaction,1996,102(2):142~150.
    [140] Faucheux M., Muller G., Havet M., et al. Influence of surface roughness on thesupercooling degree: Case of selected water/ethanol solutions frozen on aluminiumsurfaces. International Journal of Refrigeration,2006,29(7):1218~1224.
    [141] Bejan A., Tsatsaronis G., Moran M.. Thermal design and optimization. NewYork:John Wiley and Sons,1995.
    [142] Guo Z. Y., Zhu H. Y., Liang X. G.. Entransy—a physical quantity describing heattransfer ability.International Journal of Heat and MassTransfer,2007,50(13-14):2545~2556.
    [143]柳雄斌,过增元.换热器性能新方法.物理学报,2009,58(7):4766~4771.
    [144]过增元,梁新刚,朱宏晔.-描述物体传递热量能力的物理量.自然科学进展,2006,16(10):1288~1296.
    [145]过增元.热学中的新物理量.工程热物理学报,2008,29(1):112~114.
    [146]程新广,李志信,过增元.热传导中的变分原理.工程热物理学报,2004,25(3):457~459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700