用户名: 密码: 验证码:
妊娠早期母胎界面IDO表达对蜕膜NK细胞和树突状细胞的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
妊娠的成功恰恰依赖于母胎免疫耐受状态,但其中的机制至今尚不十分清楚。妊娠早期母胎界面成分及其构成的特殊的免疫微环境对母胎免疫耐受的维持至关重要。位于母胎界面的蜕膜被认为是一个免疫特赦组织,妊娠早期大量白细胞在此选择性聚集,其中最主要的是蜕膜NK(decidual natural killer,dNK)细胞,约占淋巴细胞总量的70-80%,另外还有树突状细胞(dendritic cells,DCs)、单核巨噬细胞和T细胞。这些免疫活性细胞在局部组织微环境的调控下能够获得特异性的表型和功能,从而决定局部免疫反应的取向-免疫应答或免疫耐受形成。
     研究报道吲哚胺2,3-双加氧酶(indoleamine 2,3-dioxygenase,IDO)广泛表达于妊娠早期的母胎界面,它是肝脏以外唯一可催化色氨酸(L-tryptophan)分子中吲哚环氧化裂解,从而经犬尿氨酸(L-kynurenine)途径代谢的限速酶,调控色氨酸代谢。IDO的活性表达诱导形成“色氨酸耗竭微环境”,使细胞处于一种色氨酸饥饿状态,通过抑制T细胞及NK细胞增殖和诱导致耐受性DCs形成等多种机制在免疫反应调控中发挥着关键作用。研究表明妊娠时胎盘滋养细胞产生的IDO能够抑制母体T淋巴细胞反应,从而保护胎儿对抗母体的排斥反应,而体内试验加入IDO抑制剂1-甲基色氨酸(1-methyl-tryptophan,1-MT)可导致同种异基因胎儿排斥反应。可见正常的IDO表达和活性是维持妊娠所必需的,然而母胎界面IDO表达对蜕膜NK细胞及DCs的影响还不清楚。
     蜕膜NK细胞具有独特的表型和功能特点,是妊娠早期一道独特的风景。对其表型分析结果显示:90%的uNK细胞为CD56~(bright)CD16~-,而90%的外周血NK(peripheral-blood NK,pNK)细胞为CD56~(dim)CD16~+。dNK细胞是妊娠早期母胎界面数量最多的淋巴细胞,主要分布于母体与胚胎接触的底蜕膜并与侵入的滋养层细胞密切接触,它可能是母体直接识别胎儿抗原的免疫细胞,在维持母胎免疫平衡和促进早期胎盘生长发育中发挥着重要作用。dNK细胞功能状态是影响母胎界面免疫调控的关键因素,而NK细胞表面活化性受体或抑制性受体激活后发出的活化性信号或抑制性信号的平衡调节决定着dNK细胞的功能状态。研究发现dNK细胞高表达能够介导dNK细胞杀伤功能的自然杀伤活性受体(naturalcytotoxicity receptors,NCRs),如NKp46、NKp44、NKp30和NKG2D,另外还高表达穿孔素和颗粒酶。这些研究提示dNK细胞具有潜在的杀伤活性。值得注意的是正常妊娠时dNK杀伤活性较低。但在某些病理妊娠如复发性自然流产(recurrent spontaneous abortion,RSA)时,这些活化性受体的表达和功能发生了变化,从而使dNK细胞杀伤功能增强进而导致妊娠排斥。可见,正常妊娠时dNK细胞可能受到母胎界面免疫微环境的调控而维持低杀伤活性,但其机制还不清楚。最近有报道IDO的代谢产物犬尿氨酸能够特异性抑制人外周血来源的NK细胞表面自然杀伤活性受体NKG2D和NKp46的表达,从而抑制NK细胞的杀伤活性,并且还能够减少NK细胞IFN-γ和TNF-α等细胞因子的分泌。另有研究报道犬尿氨酸还能够抑制NK细胞增殖。然而母胎界面活性表达的IDO对dNK细胞和pNK细胞表型和功能的影响还不清楚。推测IDO可以调控dNK细胞表面活化性受体的表达并影响其杀伤活性功能,从而诱导免疫耐受。
     新近,蜕膜DCs亚群被认为在维持母胎免疫调控中发挥着关键作用。DCs是功能最强的抗原提呈细胞,不同的DCs亚群和表型特点可能控制免疫反应的强度和性质,从而能够决定局部免疫反应的取向-免疫应答或免疫耐受形成。DCs功能受局部组织微环境的调控并与其表面抗原表达谱有关。大量研究证实DCs可以通过上调IDO表达而诱导免疫耐受。有研究报道蜕膜Lin~-HLA-DR~+DCs能够表达IDO。这些研究提示母胎界面IDO表达参与蜕膜DCs功能的调控。但是由于缺乏特异性标志物以及数量较少,以往对对蜕膜DCs的研究受到极大的限制,目前蜕膜DC亚群的分布及其表型特点还不十分清楚。而研究妊娠早期蜕膜组织中DCs亚群及其表型特点,将为进一步研究IDO对蜕膜DCs功能的影响提供理论基础。
     本研究分为三部分,第一部分主要探讨妊娠早期母胎界面IDO表达情况以及与复发性自然流产的关系;第二部分探讨IDO是否调控dNK细胞表面杀伤活性受体表达和杀伤活性等功能;第三部分是利用新近发现的BDCA标志来检测早孕期蜕膜组织中DCs亚群及其表型特点,并进一步分析DCs亚群的数量随孕周变化的特点。本研究有助于深入理解母胎免疫耐受调节机制,以期为母胎免疫失衡相关妊娠并发症的诊治提供新的策略。
     第一部分妊娠早期母胎界面及滋养细胞株HTR-8/SVneo中IDO表达与复发性自然流产的关系
     目的:探讨人妊娠早期母胎界面及人绒毛外细胞滋养细胞株HTR-8/SVneo中IDO的表达与RSA的关系。
     方法:(1)免疫组化法检测正常妊娠早期和RSA患者绒毛和蜕膜组织中IDO蛋白质表达;定量RT-PCR法检测两组绒毛和蜕膜组织中IDO mRNA的表达。(2)绒毛组织块培养法培养人妊娠早期绒毛组织,高效液相色谱(HPLC)法检测培养上清中有无犬尿氨酸,并分析IFN-γ对IDO功能活性的影响。(3)免疫细胞化学法检测HTR-8/SVneo细胞中IDO蛋白质表达;定量RT-PCR法检测IDOmRNA表达水平;HPLC法检测培养上清中有无犬尿氨酸,并分析IFN-γ对IDO表达水平及功能活性的影响。
     结果:(1)免疫组化法发现IDO主要表达于绒毛合体滋养细胞、绒毛外细胞滋养细胞以及蜕膜腺上皮细胞,少数病例可见IDO主要表达于细胞滋养细胞和绒毛外细胞滋养细胞,而绒毛合体滋养细胞未见有表达;IDO mRNA在绒毛组织和蜕膜组织中均有表达,(2)绒毛组织块培养法培养人妊娠早期绒毛,方法简单,成功率高,培养48小时后发现绒毛组织表达的IDO具有功能活性,并且IFN-γ刺激组IDO活性显著高于单纯加DMEM/F12培养组(P<0.05)。(3)HTR-8/SVneo细胞有蛋白质及IDO mRNA表达;细胞培养上清中可检测到犬尿氨酸;IFN-γ可以上调IDO蛋白质及mRNA表达,呈药物浓度的依赖性(P<0.05)。(4)RSA组绒毛和蜕膜组织中IDO蛋白质及mRNA表达水平均显著低于正常妊娠组(P<0.05)。
     结论:绒毛及蜕膜组织IDO正常表达是维持妊娠所必需;HTR-8/SVneo细胞表达有活性的IDO。
     第二部分HTR-8/SVneo细胞IDO表达对dNK细胞和pNK细胞表面NKG2D和NKp46表达及杀伤活性功能的影响
     目的:探讨HTR-8/SVneo细胞IDO表达对dNK细胞和pNK细胞表面活化性受体NKp46和NKG2D表达及杀伤活性等功能的影响。
     方法:(1)体外分离正常孕5-9周蜕膜组织单个核细胞和外周血单个核细胞,免疫磁珠分选法纯化CD56~+dNK细胞和pNK细胞。(2)FCM法检测分离纯化的CD56~+dNK细胞和pNK细胞的纯度和表型。(3)将分离纯化的CD56~+dNK细胞和pNK细胞体外培养48小时,根据条件培养基(CM)类型将试验分为3组:正常培养基组(阴性培养基对照组);HTR-8/SVneo细胞48h获得的条件培养基组(IDO CM组);HTR-8/SVneo细胞+色氨酸阻断剂1-MT 48 h获得的条件培养基组(IDO+1-MT CM组)。培养48小时后收集细胞,采用定量RT-PCR法分别检测CD56~+dNK细胞和pNK细胞表面受体NKp46 mRNA及NKG2D mRNA表达水平,FCM法分析NKp46及NKG2D蛋白质表达水平。(4)进一步采用LDH法检测CD56~+dNK细胞和pNK细胞对靶细胞的杀伤活性。(5)ELISA法检测培养上清中的TNF-α水平。
     结果:(1)机械法体外分离正常5-9孕周蜕膜组织单个核细胞,Ficoll-Hypaque法分离蜕膜单个核细胞和外周血单个核细胞,免疫磁珠分选法进一步纯化CD56~+dNK细胞和pNK细胞。(2)FCM法分析免疫磁珠分选法纯化的CD56~+CD3~-NK细胞纯度,结果显示:占dNK细胞的90%以上,其中CD56~(bright)CD16~(dim)占97%以上;占pNK细胞的55%以上,其中CD56~(dim)CD16~-NK细胞占40%左右,CD56~(dim)CD16~+NK细胞占60%左右。(3)dNK细胞分组试验结果显示,阴性培养基对照组、IDO CM组和IDO+1-MT CM组组间比较,NKG2D和NKp46 mRNA和蛋白质表达水平没有显著差异;pNK细胞分组试验结果显示,NKG2D和NKp46 mRNA和蛋白质表达水平在IDO CM组显著高于阴性培养基对照组和IDO+1-MT CM组(P<0.05)。(4)dNK细胞杀伤活性在阴性培养基对照组、IDO CM组和IDO+1-MT CM组各组间比较无显著差异(P>0.05);pNK细胞杀伤活性在IDO CM组显著低于阴性对培养基照组和IDO+1-MTCM组(P<0.05)。(5)dNK细胞培养上清中的TNF-α水平各组间比较无显著差异(P>0.05);pNK细胞培养上清中TNF-α水平在IDO CM组显著低于阴性培养基对照组和IDO+1-MT CM组(P<0.05)。
     结论:HTR-8/SVneo表达的IDO能够下调pNK细胞表面NKp46及NKG2D受体表达,并降低pNK杀伤活性和分泌TNF-α的能力,而不降低dNK细胞杀伤活性等功能。
     第三部分妊娠早期蜕膜组织中BDCA-1(+),BDCA-2(+)和BDCA-3(+)树突状细胞的分布和表型特点
     目的:利用新近发现的BDCA标志来检测妊娠早期蜕膜组织中DC亚群及其表型特点,并进一步分析DC亚群数量随孕周变化的特点。
     方法:(1)机械法分离6-9孕周(n=44,每孕周11例)蜕膜组织中的单个核细胞,FCM法检测蜕膜单个核细胞中BDCA-1~+ MDC1,BDCA-3~+ MDC2和BDCA-2~+ PDC亚群。(2)FCM法进一步检测BDCA-1~+ MDC1和BDCA-3~+ MDC2亚群的表型特点,分析HLA-DR、CD86、CD80和ILT3的表达水平。(3)免疫组织化学法检测妊娠早期蜕膜组织(n=12)中BDCA-1~+和BDCA-3~+细胞。
     结果:(1)发现正常妊娠早期蜕膜组织中存在3个DC亚群,分别是:BDCA-1~+CD19~-CD14~-MDC1.BDCA-3~+CD14~-MDC2和BDCA-2~+CD123~+PDC亚群。蜕膜组织中MDC1占分离的蜕膜单个核细胞的百分率与外周血相似,两组比较无统计学差异(P=0.055)。蜕膜组织中MDC2显著高于外周血,而PDC显著低于外周血(P<0.001)。(2)MDC1与MDC2均表达低水平的HLA-DR,CD86和CD80,提示它们具有未成熟DCs的表型特点;MDC1与MDC2均表达ILT3。(3)随着孕周增加(6-9周),蜕膜单个核细胞中MDC1比例显著降低,而MDC2的比例显著增加(P<0.05)。(4)免疫组化法发现妊娠早期蜕膜组织中存在BDCA-1~+和BDCA-3~+细胞,BDCA-3~+细胞分布于近血管和近腺体周围。
     结论:我们首次描述了妊娠早期蜕膜组织中存在BDCA-1~+CD19~-CD14~-MDC1,BDCA-3~+CD14~-MDC2和BDCA-2~+CD123~+PDC亚群。它们的分布和表型特点提示其可能参与母胎免疫耐受的诱导。本研究为进一步了解DCs在母胎界面免疫调节中的作用提供了理论依据。
In human pregnancy,the implanted embryo constitutes a hemiallograft but remains spared from attack by the maternal immune system,suggesting a tolerance of its fetus at the site of contact between mother and child.Serving as an immunologically privileged tissue,the decidua and its components,especially decidual leucocytes,play essential functions in pregnancy maintenance.The decidual leucocyte population has been a centre of interest for the understandingof the mechanism that might control maternal immune responses in successful pregnancy. During the first trimester of pregnancy,the human decidua is rich in leucocytes which make up 10-15%of all decidual cells.This leucocyte population is composed of 70% decidual natural killer(dNK)cells,10%T cells and 20%major histocompatibility complex(MHC)classⅡ-positive antigen-presenting cells(APCs)which are thought to be mainly macrophages and dendritic cells(DCs)
     Indoleamine 2,3-dioxygenase(IDO)has been found in placenta,decidual dendritic cells,monocytes and glandular epithelium.IDO is a heme-containing rate-limiting enzyme,which catalyzes the conversion of tryptophan to kynurenine,the main tryptophan metabolite.Tryptophan is the least available essential amino acid and is required by all forms of life for protein synthesis and other important metabolic functions.IDO-generated low tryptophan environment may inhibit T cell and NK cells proliferation and induce tolerogenic DCs,and play a key role in pregnancy maintance.In 1998,Munn et al.showed that murine placenta is protected from immune rejection by maternal T cells by means of localized IDO dependent depletion of tryptophan.Following work from the same group suggested that rejection of the allogeneic fetus is accompanied by a unique form of inflammation that is characterised by T cell dependent and antibody independent activation of complement. IDO synthesis is necessary to maintain effective immunological protection during gestation.While the mechanisms of IDO-dependent inhibition of T-cell function have been elucidated,less is known on the possible role of IDO in regulating natural killer (NK)-cell activity and DCs functions.
     Decidual NK cells has unique phenotypical and functional characteristcs,and the phenocyte of 90%Decidual NK cells is CD56~(birght)CD16~- and less than 10%of dNK is CD56~(dim)CD16~+.Human CD56~(birght)NK cells accumulate in the maternal decidua during first trimester of pregnancy and are found in direct contact with fetal trophoblasts.It is currently believed that in the early stages of gestation,dNK cells may play an important role in the control of immune tolerance at the fetal-maternal interface and trophoblastic growth,differentiation,and invasion.NK-cell function is regulated by a balance between activating and inhibitory signals.Decidual NK cells can express natural cytotoxicity receptors(NCRs),such as NKp46、NKp44、NKp30 and NKG2D.Transcriptional geneexpression profiling has shown that dNK cells express both perforin and granzymes at a similar or even higher level than CD56~(dim) CD 16~+ pNK cells.These observations suggested that dNK cells might have cytotoxic potential.During normal pregnancy,dNK cells remain cytotoxicity at a low level. However,abnormal expression and function of activating recepors may lead to pregnancy loss.It has recently been shown that the tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46-and NKG2D-activating receptors and regulates NK-cell function.Also IDO-generated L-kynurenine,in addition to T-cell proliferation,is also able to inhibit the IL-2-induced proliferation of NK cells.The effect of IDO expressed at the fetal-maternal interface is still largely unknown.We formulated the hypothesis that IDO expression at the fetal-maternal interface may inhibit the surface expression of NKp46-and NKG2D-activating receptors and regulate NK-cell function.To study the mechanism that control the cytotoxicity of dNK cells may help to understand the mechanism of immune tolerance at the fetal-maternal ineraction.
     Interestingly,the human decidua was described recently to harbour DCs,which has pointed to a critical role of DCs at the fetal-maternal interface.DCs can acquire unique features or phenotypes in different tissue microenvironments,and different DC subsets may play a prominent role in dictating the quantity and quality of immune responses and decide whether immunity or tolerance develops.Accumulating evidence suggests that DCs in situ can induce antigenspecific unresponsiveness or tolerance in central lymphoid organs and in the periphery.DCs can induce maternal tolerance by up-regulating IDO expression.It was reported that IDO expression in decidual monocytes and DCs by CTLA-4/Fc or IFN-γtreatment were increased in therapeutic abortion decidua but were decreased in spontaneous abortion,suggesting the key role of IDO expression on DCs.In the past,the investigation of DC subsets in the human decidua has been hampered by the lack of specific markers identifying DCs directly and by the scarcity of DCs.Several groups have reported the presence of certain DC subsets at the fetal-maternal interface;however,the precise distributional and phenotypic characteristics of DC subsets in the human decidua are still poorly understood.
     The study to the effect of IDO expression on the function of dNK Cells and the distribution and phenotypes of decidual DCs will provide new clue for understanding of physical and pathological reproduction and new thread for diagnosis and therapy of reproductive immune disease.
     PARTⅠRELATIONSHIP OF RECURRENT SPONTANEOUS ABORTION AND THE INDOLEAMINE 2,3-DIOXYGENASE EXPRESSION AT THE FETAL -MATERNAL INTERFACE AND HTR-8/SVNEO CELLS
     Objective:To study the relationship of recurrent spontaneous abortion(RSA) and the expression of IDO in villi,decidua and HTR-8/SVneo cells in vitro.
     Methods:(1)Immunohistochemistry was applied to analyze the expression of IDO protein in villus and decidua from normal pregnancy and RSA.Quantitative RT-PCR was applied to analyze the mRNA transcription of IDO.(2)Human trophoblast villous explant was cultured,and highperformance liquid chromatography (HPLC)was applied to determinate whether there was kynurenine in culture medium of trophoblast villous explant and the effect of IFN-γon the mRNA expression and activity of IDO.(3)Immunohistochemistry was applied to analyze the expression of IDO protein in HTR-8/SVneo cells.Quantitative RT-PCR was applied to analyze the mRNA transcription of IDO.HPLC was applied to determinate whether there was kynurenine in culture medium of cells and the effect of IFN-γon the mRNA expression and activity of IDO.
     Results:(1)IDO protein was expressed in villous syncytiotrophoblast,EVT cell columns and decidual gland.In minor patients,IDO protein was expressed in cytotrophoblast and EVT cell column,but syncytiotrophoblast.IDO mRNA was detected in villus and decidua.(2)Human trophoblast villous explant ultured for 48 h was used to determine IDO activity by HPLC.The level of IDO activity treated with IFN-γwas significantly higher than that of control(P<0.05).(3)IDO protein and mRNA were found to be expressed in HTR-8/SVneo cells,and there was kynurenine in the cell culture medium.(4)The expression of IDO protein and mRNA in villus and decidua from RSA were lower than that from normal pregnancy.
     Conclusion:Appropriate expression of IDO at the fetal-maternal interface is necessary for maintenance of normal pregnancy,and an active IDO protein was expresseed in HTR-8/SVneo cells.
     PARTⅡTHE EFFECT OF INDOLEAMINE 2,3-DIOXYGENASE EXPRESSED IN HTR-8/SVNEO CELLS ON THE SURFACE EXPRESSION OF NATURAL CYTOTOXICITY RECEPTORS AND THE FUNCTION OF DECIDUAL NK CELLS
     Objective:To study the effect of IDO expressed in HTR-g/SVneo cells on the surface expression of NKG2D and NKp46 and the cytotoxicity of dNK cells and dNK cells.
     Methods:(1)Decidual mononuclear cells were isolated from 5-9 weeks' decidua obtained from clinically normal pregnancies in vitro.CD56~+ dNK cells were purified by use of human CD56 MicroBeads.(2)Purity and phenotype of CD56~+ NK cells were then analyzed by flow cytometry(FCM).(3)CD56~+dNK cells were cultured for 48 hours with complete RPMI 1640 medium,IDO conditioned medium(CM)which were obtained from HTR-8/SVneo cells,and IDO + 1-MT CM which were obtained from HTR-8/SVneo cells.Then qRT-PCR and FCM were applied to analyze the mRNA transcription and protein expression of NKG2D and NKp46 on dNK cells and pNK cells.(4)The cytotoxicity of dNK cells and pNK cells obtained were assessed by LDH assays.(5)The culture supernatants were then collected and analyzed for the presence of TNF-αby using ELISA.
     Results:(1)CD56~+ dNK cells were purified by use of human CD56 MicroBeads. (2)The purity of dNK cells was all over 95%.The phenotype of dNK cells was CD56~(bright).(3)The expression of IDO mRNA and protein on CD56~+ pNK cells cultured with IDO CM were significantly lower than the other two groups(P<0.05). (4)The pNK cells cultured with IDO showed a redudced ability to kill K562 cells than the other two groups(P<0.05).(5)The level of TNF-αin IDO group was significantly lower than that in the other two groups(P<0.05).
     Conclusion:IDO expressed in HTR-8/SVneo cells was found to prevent the cytokine-mediated up-regulation of the expression and function of NKG2D and NKp46 responsible for the induction of NK-cell-mediated killing.
     PARTⅢBDCA-1(+),BDCA-2(+)AND BDCA-3(+) DENDRITIC CELLS IN EARLY HUMAN PREGNANCY DECIDUA
     Objective:The aim of this study was to identify and characterize DCs in the cell isolates obtained from normal human first-trimester decidua with the recently developed BDCA markers.Whether the number of these DC subsets changes with gestational age was also investigated.
     Methods:(1)A non-enzymatic method was used to isolate decidual mononuclear cells from 6-9 weeks' decidua(n = 44)obtained from clinically normal pregnancies. Flow cytometry was used to analyse the cell preparations in terms of staining for BDCA-1,CD14,CD19,BDCA-3,CD14,BDCA-2 and CD123.(2)To characterize further the phenotypes of fresh decidual MDC1 and MDC2,flow cytometric analysis was performed with a panel of MoAbs including HLA-DR,CD80,CD86 and Immunoglobulin-like transcript 3(ILT3).(3)Immunohistochemical staining was used to analyze the distribution of BDCA-1~+ and BDCA-3~+ cells in the decidua(n = 12).
     Results:(1)Using flow cytometry,we identified three DC subsets in normal human first-trimester decidua:BDCA-1~+ CD19~- CD14~- myeloid DC type 1(MDC1), BDCA-3~+ CD14~- myeloid DC type 2(MDC2)and BDCA-2~+ CD123~+ plasmacytoid DC(PDC).The percentage of MDC1 to mononuclear cells in the decidua was similar to that in the peripheral blood controls.The percentage of MDC2 in the decidua was significantly higher than that in the peripheral blood controls,whereas the percentage of PDC was significantly lower.(2)Both MDC1 and MDC2 subsets expressed HLA-DR,CD86 and CD80 at low levels,suggesting a characteristic of immature myeloid DCs.ILT3,suggested to be involved in immune tolerance induction,was also expressed on decidual MDC1 and MDC2 subsets.(3)In addition,as gestational age increased from 6 to 9 weeks,the numbers of MDC1 decreased but MDC2 increased significantly.(3)BDCA-1~+ cells are present in the decidual stroma,BDCA-3~+ cells are present in the decidual stroma near maternal vesses and glands.
     Conclusions:we have demonstrated the presence of the three previously unidentified BDCA+ DC subsets in normal human first-trimester decidua: BDCA-I~+CD19~-CD14~-MDC1,BDCA-3~+ CD14~- MDC2 and BDCA-2~+ CD123~+ PDC. The distributional and phenotypic characteristics of these decidual DC subsets may be relevant to the immune tolerance necessary for the maintenance of pregnancy. Therefore,this study provides a basis for further research of the roles of DCs in immunoregulation of human pregnancy at the fetal-maternal interface.
引文
1. Billingham RE,Brent L,Medawar PB. Activity acquired tolerance of foreign cells[J].Nature,1953,172(4379):603.
    
    2. Mincheva-Nilsson L, Baranov V, Yeung MM, Hammarstrom S, Hammarstrom ML. Immunomorphologic studies of human decidua-associated lymphoid cells in normal early pregnancy. J Immunol 1994; 152:2020-32.
    
    3. Loke YW, King A. Human implantation: cell biology and immunology. Cambridge: Cambridge University Press, 1995.
    
    4. Stone TW, Darlington LG. Endogenous kynurenines as targets for drag discovery and development. Nat Rev Drug Discov. 2002 Aug;l(8):609-20.
    
    5. Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB, Marshall B, Chandler P, Antonia SJ, Burgess R, Slingluff. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science. 2002 Sep 13;297(5588): 1867-70.
    
    6. Mellor AL, Munn DH. Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol Today. 1999 Oct;20(10):469-73.
    
    7. Puccetti P, Grohmann U. IDO and regulatory T cells: a role for reverse signalling andnon-canonical NF-kappaB activation.Nat Rev Immunol. 2007;7(10):817-23.
    
    8. Saito S, Sasaki Y, Sakai M. CD4(+)CD25high regulatory T cells in human pregnancy.J Reprod Immunol. 2005 Apr;65(2):l 11-20.
    
    9. Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol. 2004 Oct;4( 10):762-74.
    
    10. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998 Aug 21;281(5380):1191-3.
    
    11. Mellor AL, Chandler P, Lee GK, Johnson T, Keskin DB, Lee J, Munn DH. Indoleamine 2,3-dioxygenase, immunosuppression and pregnancy. J Reprod Immunol. 2002; 57(1-2): 143-50
    12.Munn DH,Mellor AL.Indoleamine 2,3-dioxygenase and tumor-induced tolerance.J Clin Invest.2007 May;117(5):1147-54.
    13.Moretta L,Moretta A.Unravelling natural killer cell function:triggering and inhibitory human NK receptors.EMBO J.2004;23:255-9.
    14.Vacca P,Pietra G,Falco M,Romeo E,Bottino C,Bellora F,Prefumo F,Fulcheri E,Venturini PL,Costa M,Moretta A,Moretta L,Mingari MC.Analysis of natural killer cells isolated from human decidua:Evidence that 2B4(CD244)functions as an inhibitory receptor and blocks NK-cell function.Blood.2006Dec 15;108(13):4078-85.
    15.Hanna J,Goldman-Wohl D,Hamani Y,Avraham I,Greenfield C,Natansonoyaron S,Prus D,Cohen-Daniel L,Arnon TI,Manaster I,Gazit R,Yutkin V,Benharroch D,Porgador A,Keshet E,Yagel S,Mandelboim O.Decidual NK cells regulate key developmental processes at the human fetal-maternal interface.Nat Med.2006 Sep;12(9):1065-74.
    16.Hu Y,Dutz JP,MacCalman CD,Yong P,Tan R,von Dadelszen P.Decidual NK cells alter in vitro first trimester extravillous cytotrophoblast migration:a role for IFN-gamma.J Immunol.2006 Dec 15;177(12):8522-30.
    17.Koopman LA,Kopcow HD,Rybalov B,et al.Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential.J Exp Med.2003;198:1201-1212.
    18.Cooper MA,Fehniger TA,Caligiuri MA.The biology of human natural killer-cell subsets.Trends Immunol.2001;22:633-640.
    19.Kopcow HD,Allan DS,Chen X,Rybalov B,Andzelm MM,Ge B,Strominger JL.Human decidual NK cells form immature activating synapses and are not cytotoxic.Proc Natl Acad Sci U S A.2005 Oct 25;102(43):15563-8.
    20.张羽,林其德。不明原因自然流产与蜕膜NK细胞表面活化性受体表达的相关性研究。现代免疫学.2006;26(4).
    21.Della Chiesa M,Carlomagno S,Frumento G,Balsamo M,Cantoni C,Conte R,Moretta L,Moretta A,Vitale M.The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46-and NKG2D-activating receptors and regulates NK-cell function. Blood. 2006 Dec 15;108(13):4118-25.
    
    22. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase.J Exp Med. 2002 Aug 19;196(4):459-68.
    
    23. Hackstein H ,Thomson AW. Dendritic cells :emerging pharmacological targets of immunosuppressive drugs . Nat Rev Immunol, 2004 ,4(1) :24-34.
    
    24. Fallarino F, Vacca C, Orabona C, et al. Functional expression of indoIeamine2,3-dioxygenase by murine CD8 alpha (+) dendritic cells. Int Immunol, 2002,14(1): 65-68.
    
    25. Cook CH, Bickerstaff AA, Wang JJ, Nadasdy T, Delia Pelle P, Colvin RB, Orosz CG. Spontaneous Renal Allograft Acceptance Associated with "Regulatory" Dendritic Cells and IDO. J Immunol. 2008;180(5):3103-12.
    
    26. Miwa N, Hayakawa S, Miyazaki S, Myojo S, Sasaki Y, Sakai M, Takikawa O, Saito. IDO expression on decidual and peripheral blood dendritic cells and monocytes/macrophages after treatment with CTLA-4 or interferon-gamma increase in normal pregnancy but decrease in spontaneous abortion. Mol Hum Reprod. 2005 Dec;11(12):865-70.
    
    27. Sedlmayr P, Blaschitz A, Wintersteiger R, Semlitsch M, Hammer A, MacKenzie CR, Walcher W, Reich O, Takikawa. Localization of indoleamine 2,3-dioxygenase in human female reproductive organs and the placenta. Mol Hum Reprod. 2002 Apr;8(4):385-91.
    
    28. Kudo Y, Boyd CA, Spyropoulou I, Redman CW, Takikawa O, Katsuki T, Hara T, Ohama K, Sargent IL. Indoleamine 2,3-dioxygenase: distribution and function in the developing human placentaJ Reprod Immunol. 2004 Apr;61(2):87-98.
    
    29. Honig A, Rieger L, Kapp M, Siitterlin M, Dietl J, Kammerer U. Indoleamine 2,3-dioxygenase (IDO) expression in invasive extravillous trophoblast supports role of the enzyme for materno-fetal tolerance. J Reprod Immunol. 2004 Apr;61(2):79-86.
    
    30. Ligam P, Manuelpillai U, Wallace EM, Walker D. Localisation of indoleamine 2,3-dioxygenase and kynurenine hydroxylase in the human placenta anti decidua:implications for role of the kynurenine pathway in pregnancy.Placenta.2005Jul;26(6):498-504.
    31.Kamimura S,Eguchi K,Yonezawa M,Sekiba K.Localization and developmental change of indoleamine 2,3-dioxygenase activity in the human placenta.Acta Med Okayama.1991 Jun;45(3):135-9.
    32.李雪莲,归绥琪,王海燕。绒毛及合体滋养层细胞吲哚胺2,3-二氧化酶表达与流产的关系。生殖与避孕,26(1):16-20.
    33.Entrican G,Wattegedera S,Chui M,Oemar L,Rocchi M,McInnes C.Gamma interferon fails to induce expression of indoleamine 2,3-dioxygenase and does not control the growth of Chlamydophila abortus in BeWo trophoblast cells.Infect Immun.2002 May;70(5):2690-3.
    34.Heikkinen J,Mottonen M,Komi J,Alanen A,Lassila O.Phenotypic characterization of human decidual macrophages.Clin Exp Immunol.2003Mar;131(3):498-505.
    35.Mellor AL & Munn DH.Extinguishing maternal immune responses during pregnancy:implications for immunosuppression.Semin Immunol,2001,13(4):213-8.
    36.Santoso DI,Rogers P,Wallace EM,Manuelpillai U,Walker D,Subakir SB.Localization of indoleamine 2,3-dioxygenase and 4-hydroxynonenal in normal and pre-eclamptic placentae.Placenta.2002 May;23(5):373-9.
    37.Xu G,Guimond MJ,Chakraborty C,Lala PK.Control of proliferation,migration,and invasiveness of human extravillous trophoblast by decorin,a decidual product.Biol Reprod.2002 Aug;67(2):681-9.
    38.Graham CH,Hawley TS,Hawley RG,MacDougall JR,Kerbel RS,Khoo N,Lala PK.Establishment and characterization of first trimester human trophoblast cells with extended life span.Exp Cell Res 1993;206:204-211.
    39.Graham CH,Lysiak JJ,McCrae KR,Lala PK.Localization of transforming growth factor-b at the human fetal-maternal interface:role in trophoblast growth and differentiation.Biol Reprod 1992;46:561-572.
    40. Irving JA, Lysiak JJ, Graham CH, Han VKM, Hearn S, Lala PK. Characteristics of trophoblast cells migrating from first trimester chorionic villus explants and propagated in culture. Placenta 1995; 16: 413-433.
    
    41. Zdravkovic M, Aboagye-Mathiesen G, Guimond M-J Hager H, Ebbesen P, Lala PK. Susceptibility of MHC class 1 expressing human extravillous trophoblast cells to killing by natural killer cells. Placenta 1999; 20:431-440.
    
    42. Gleeson LM, Chakraborty C, McKinnon T, Lala PK. Insulin-like growth factor binding protein-1 stimulates human trophoblast migration by signalling through a5bl integrin via mitogen-activated protein kinase pathway. J Clin Endocrinol Metab 2001; 86:2484-2493.
    
    43. McKinnon T, Chakraborty C, Gleeson LM, Chidiac P, Lala PK. Stimulation of human extravillous trophoblast migration by IGF-II is mediated by IGF type 2 receptor involving inhibitory G protein(s) and phosphorylation of MAPK. J Clin Endocrinol Metab 2001; 86:3665-3674.
    
    44. Kilburn BA, Wang J, Duniec-Dmuchowski ZM, Leach RE, Romero R, Armant DR, Duniec-Dmuchkowski ZM. Extracellular matrix composition and hypoxia regulate the expression of HLA-G and integrins in a human trophoblast cell line. Biol Reprod 2000; 62:739-747.
    
    45. Takikawa, O.,Kuroiwa, T.,Yamazaki, R, Kido, R. Mechanism of interferon-gamma action. Characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. J. Biol. Chem. 1988, 263,2041-2048.
    
    46. Kudo Y, Boyd CA, Sargent IL, Redman CW. J Physiol. Tryptophan degradation by human placental indoleamine 2,3-dioxygenase regulates lymphocyte proliferation. 2001 Aug 15;535(Pt 1):207-15.
    
    47. Schrocksnadel H, Baier-Bitterlich G, Dapunt O, Wachter H, Fuchs D. Decreased plasma tryptophan in pregnancy. Obstet Gynecol. 1996 Jul;88(1):47-50.
    
    48. Genbacev O, Schubach SA, Miller RK. Villous culture of first trimester human placenta: model to study extravillous trophoblast (EVT) differentiation. Placenta. 1992,13:439-461.
    
    49. Caniggia, I., Taylor, C.V., Ritchie, J.W.K., Lye, S.J., and Letarte, M. 1997. Endoglin regulates trophoblast differentiation along the invasive pathway in human placental villous explants. Endocrinology. 138:4977-4988.
    
    50. Miller RK, Genbacev O, Turner MA, Aplin JD, Caniggia I, Huppertz B.Human placental explants in culture: approaches and assessments. Placenta. 2005 Jul;26(6):439-48.
    
    51. Laird, S.M. et al. (2003) A review of immune cells and molecules in women with recurrent miscarriage. Hum. Reprod. Update 9,163-174.
    
    52. Hogge, W.A. et al. (2003). The clinical use of karyotyping spontaneous abortions. Am. J. Obstet. Gynecol. 189, 397-400.
    
    53. Parham P. NK cells and trophoblasts: partners in pregnancy. J Exp Med. 2004 Oct 18;200(8):951-5.
    
    54. Moretta A, Bottino C, Vitale M, et al. Activating receptors and co-receptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol. 2001;19:197-223.
    
    55. Moretta L, Bottino C, Pende D, Vitale M, MingariMC, Moretta A. Different checkpoints in human NK-cell activation. Trends Immunol. 2004;25:670-676.
    
    56. Vitale M, Bottino C, Sivori S, et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells is involved in non-MHC restricted tumor cell lysis. J Exp Med. 1998; 187:2065-72.
    
    57. Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol. 2003 Oct;3(10):781-90.
    
    58. Hue S, Mention JJ, Monteiro RC, Zhang S, Cellier C, Schmitz J, Verkarre V, Fodil N, Bahram S, Cerf-Bensussan N, Caillat-Zucman S. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity. 2004 Sep;21(3):367-77.
    
    59. Petrovic O,Gudelj L,Rubesa G, et al. Decidual-trophoblast interactions:decidual lymphoid cell function in normal, anem-bryonic, missed abortion and ectopic human pregnancy[J]. J Reprod Immunol. 1994 May; 26(3):217-31..
    60. Moffett-King A. Natural killer cells and pregnancy. Nat Rev Immunol. 2002;2:656-663.
    
    61. Fukui A, Ntrivalas E, Gilman-Sachs A, Kwak-Kim J, Lee SK, Levine R, Beaman K. Expression of natural cytotoxicity receptors and a2V-ATPase on peripheral blood NK cell subsets in women with recurrent spontaneous abortions and implantation failures. Am J Reprod Immunol. 2006 Nov-Dec;56(5-6):312-20.
    
    62. Chao KH, Yang YS, Ho HN, Chen SU, Chen HF, Dai HJ, Huang SC, Gill TJ 3rd. Decidual natural killer cytotoxicity decreased in normal pregnancy but not in anembryonic pregnancy and recurrent spontaneous abortion. Am J Reprod Immunol. 1995 Nov;34(5):274-80.
    
    63. Ponte M, Cantoni C, Biassoni R, Tradori-Cappai A, Bentivoglio G, Vitale C, Bertone S, Moretta A, Moretta Inhibitory receptors sensing HLA-G1 molecules in pregnancy: decidua-associated natural killer cells express LIR-1 and CD94/NKG2A and acquire p49, an HLA-G1-specific receptor. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5674-9.
    
    64. Hunt JS, Langat DK, Mclntire RH, Morales PJ. The role of HLA-G in human pregnancy. Reprod Biol Endocrinol. 2006;4 Suppl 1:S10.
    
    65. Schrocksnadel K, Widner B, Bergant A, Neurauter G, Schennach H, Schrocksnadel H, Fuchs D. Longitudinal study of tryptophan degradation during and after pregnancy. Life Sci. 2003 Jan 3;72(7):785-93.
    
    66. Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC, Puccetti P.T cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002 Oct;9(10):1069-77.
    
    67. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 2002 Aug 19;196(4):459-68.
    
    68. Terness P, Bauer TM, Rose L, Dufter C, Watzlik A, Simon H, Opelz G. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites.J Exp Med. 2002 Aug 19;196(4):447-57.
    
    69. Weber WP, Feder-Mengus C, Chiarugi A, Rosenthal R, Reschner A, Schumacher R, Zajac P, Misteli H, Frey DM.Differential effects of the tryptophan metabolite 3-hydroxyanthranilic acid on the proliferation of human CD8+ T cells induced by TCR triggering or homeostatic cytokines. Eur J Immunol. 2006 Feb;36(2):296-304.
    
    70. Belladonna, M.L., et al. 2006. Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J. Immunol. 177:130-7.
    
    71. Bauer TM, Jiga LP, Chuang JJ, Randazzo M, Opelz G, Terness P. Studying the immunosuppressive role of indoleamine 2,3-dioxygenase: tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo. Transpl Int. 2005 Jan;18(1):95-100.
    
    72. Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM, Gupta R, Lee LY, Kidd BA, Robinson WH, Sobel Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science. 2005 Nov 4;310(5749):850-5. Erratum in: Science. 2006 Feb 17;311(5763):954.
    
    73. Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem. 2006 Aug 4;281(31):22021-8. Epub 2006 Jun 5.
    
    74. Loke YW, King A, Burrows TD. Decidua in human implantation. Hum Reprod 1995; 10 Suppl 2:14-21.
    
    75. Billingham RE. Transplantation immunity and the maternal-fetal relation. New Engl J Med 1964; 270:667-72.
    
    76. Mincheva-Nilsson L, Baranov V, Yeung MM, Hammarstrom S, Hammarstrom ML. Immunomorphologic studies of human decidua-associated lymphoid cells in normal early pregnancy. J Immunol 1994; 152:2020-32.
    
    77. Askelund K, Liddell HS, Zanderigo AM, Fernando NS, Khong TY, Stone PR, Chamley LW. CD83(+)dendritic cells in the decidua of women with recurrent miscarriage and normal pregnancy. Placenta 2004; 25:140-5.
    78. Kammerer U, Schoppet M, McLellan AD, Kapp M, Huppertz HI, Kampgen E, Dietl J. Human decidua contains potent immunostimulatory CD83(+) dendritic cells. Am J Pathol 2000; 157:159-69.
    
    79. Gardner L, Moffett A. Dendritic cells in the human decidua. Biol Reprod 2003; 69:1438-46.
    
    80. Miyazaki S, Tsuda H, Sakai M, Hori S, Sasaki Y, Futatani T, Miyawaki T, Saito S. Predominance of Th2-promoting dendritic cells in early human pregnancy decidua. J Leukoc Biol 2003; 74:514-22.
    
    81. Rieger L, Honig A, Sutterlin M, Kapp M, Dietl J, Ruck P, Kammerer U. Antigen-presenting cells in human endometrium during the menstrual cycle compared to early pregnancy. J Soc Gynecol Investig 2004; 11:488-93.
    
    82. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392:245-52.
    
    83. Hart DNJ. Dendritic cells: unique leucocyte populationswhich control the primary immune response. Blood 1997; 90:3245-87.
    
    84. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21:685-711.
    
    85. Langenkamp A, Messi M, Lanzavecchia A, Sallusto F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 2000; 1:311-6.
    
    86. Juretic K, Strbo N, Crncic TB, Laskarin G, Rukavina D. An insight into the dendritic cells at the fetal-maternal interface. Am J Reprod Immunol 2004; 52:350-5.
    
    87. Robinson SP, Patterson S, English N, Davies D, Knight SC, Reid CD. Human peripheral blood contains two distinct lineages of dendritic cells. Eur J Immunol. 1999; 29:2769-78.
    
    88. Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, Buck DW, Schmitz J. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 2000; 165:6037-46.
    
    89. Narbutt J, Lesiak A, Zak-Prelich M, Wozniacka A, Sysa-Jedrzejowska A, Tybura M, Robak T, Smolewski P. The distribution of peripheral blood dendritic cells assayed by a new panel of anti-BDCA monoclonal antibodies in healthy representatives of the polish population. Cell Mol Biol Lett 2004; 9:497-509.
    
    90. Coates PT, Barratt-Boyes SM, Zhang L et al. Dendritic cell subsets in blood and lymphoid tissue of rhesus monkeys and their mobilization with Flt3 ligand. Blood 2003; 102:2513-21.
    
    91. Blois SM, Kammerer U, Alba Soto C et al. Dendritic Cells: Key to Fetal Tolerance? Biol Reprod 2007; 77:590-8.
    
    92. McLellan AD, Starling GC, Williams LA, Hock BD, Hart DN. Activation of human peripheral blood dendritic cells induces the CD86 co-stimulatory molecule. Eur J Immunol1995; 25:2064-8.
    
    93. Nijman HW, Kleijmeer MJ, Ossevoort MA et al. Antigen capture and major histocompatibility class II compartments of freshly isolated and cultured human blood dendritic cells. J Exp Med 1995; 182:163-74.
    
    94. Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001; 193:233-8.
    
    95. Mahnke K, Qian Y, Knop J, Enk AH. Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood 2003; 101:4862-9.
    
    96. Cella M, Dohring C, Samaridis J, Dessing M, Brockhaus M, Lanzavecchia A, Colonna M. A novel inhibitory receptor (ILT3) expressed on monocytes, macrophages, and dendritic cells involved in antigen processing. J Exp Med 1997; 185:1743-51:
    
    97. Ravetch JV, Lanier LL. Immune inhibitory receptors. Science 2000; 290:84-9.
    
    98. Chang CC, Ciubotariu R, Manavalan JS et al. Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol 2002; 3:237-43.
    
    99. Manavalan JS, Rossi PC, Vlad G, Piazza F, Yarilina A, Cortesini R, Mancini D, Suciu-Foca N. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl Immunol 2003; 11:245-58.
    
    100. Kim-Schulze S, Scotto L, Vlad G, Piazza F, Lin H, Liu Z, Cortesini R, Suciu-Foca N. Recombinant Ig-like transcript 3-Fc modulates T cell responses via induction of Th anergy and differentiation of CD8+ T suppressor cells. J Immunol 2006; 176:2790-8.
    
    101. Demedts IK, Brusselle GG, Vermaelen KY, Pauwels RA. Identification and characterization of human pulmonary dendritic cells. Am J Respir Cell Mol Biol 2005;32:177-84.
    
    102. Tsoumakidou M, Tzanakis N, Papadaki HA, Koutala H, Siafakas NM. Isolation of myeloid and plasmacytoid dendritic cells from human bronchoalveolar lavage fluid. Immunol Cell Biol 2006; 84:267-73.
    
    103. Velten FW, Duperrier K, Bohlender J, Metharom P, Goerdt S. A gene signature of inhibitory MHC receptors identifies a BDCA3(+) subset of IL-10-induced dendritic cells with reduced allostimulatory capacity in vitro. Eur J Immunol 2004;34:2800-11.
    
    104. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18:767-811.
    
    105. Kuwana M, Kaburaki J, Wright TM, Kawakami Y, Ikeda Y Induction of antigen-specific human CD4(+) T cell anergy by peripheral blood DC2 precursors. Eur J Immunol 2001; 31:2547-57.
    
    106. Gilliet M, Liu YJ. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med 2002; 195:695-704.
    
    107. Zarnani AH, Moazzeni SM, Shokri F, Salehnia M, Jeddi-Tehrani M. Kinetics of murine decidual dendritic cells. Reproduction 2007; 133:275-83.
    
    108. Blois SM, Alba Soto CD, Tometten M, Klapp BF, Margni RA, Arck PC. Lineage, maturity, and phenotype of uterine murine dendritic cells throughout gestation indicate a protective role in maintaining pregnancy. Biol Reprod 2004; 70:1018-23.
    
    109. Heikkinen J, Mottonen M, Alanen A, Lassila O. Phenotypic characterization of regulatory T cells in the human decidua. Clin Exp Immunol 2004; 136:373-8.
    
    110. Tilburgs T, Roelen DL, van der Mast BJ et al. Differential distribution of CD4(+)CD25(bright) and CD8(+)CD28(-) T-cells in decidua and maternal blood during human pregnancy. Placenta 2006; 27 Suppl A: S47-53.
    
    111. Ristich V, Liang S, Zhang W, Wu J, Horuzsko A. Tolerization of dendritic cells by HLA-G Eur J Immunol 2005; 35:1133-42.
    
    112. Zehnder D, Evans KN, Kilby MD, Bulmer JN, Innes BA, Stewart PM, Hewison M. The ontogeny of 25-hydroxyvitamin D(3) 1alpha-hydroxylase expression in human placenta and decidua. Am J Pathol 2002; 161:105-14.
    
    113. Evans KN, Nguyen L, Chan J, Innes BA, Bulmer JN, Kilby MD, Hewison M. Effects of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on cytokine production by human decidual cells. Biol Reprod 2006; 75:816-22.
    
    114. Penna G, Roncari A, Amuchastegui S, Daniel KC, Berti E, Colonna M, Adorini L. Expression of the inhibitory receptor ILT3 on dendritic cells is dispensable for induction of CD4+Foxp3+ regulatory T cells by 1,25-dihydroxyvitamin D3. Blood 2005; 106:3490-7.
    1. Loke YW, King A, Burrows TD. Decidua in human implantation. Hum Reprod 1995; 10 Suppl 2:14-21.
    
    2. Billingham RE. Transplantation immunity and the maternal-fetal relation. New Engl J Med 1964; 270:667-72.
    
    3. Mincheva-Nilsson L, Baranov V, Yeung MM, Hammarstrom S, Hammarstrom ML. Immunomorphologic studies of human decidua-associated lymphoid cells in normal early pregnancy. J Immunol 1994; 152:2020-32.
    
    4. Loke YW, King A. Human implantation: cell biology and immunology. Cambridge: Cambridge University Press, 1995.
    
    5. Askelund K, Liddell HS, Zanderigo AM, Fernando NS, Khong TY, Stone PR, Chamley LW. CD83(+)dendritic cells in the decidua of women with recurrent miscarriage and normal pregnancy. Placenta 2004; 25:140-5.
    
    6. Kammerer U, Schoppet M, McLellan AD, Kapp M, Huppertz HI, Kampgen E, Dietl J. Human decidua contains potent immunostimulatory CD83(+) dendritic cells. Am J Pathol 2000; 157:159-69.
    
    7. Gardner L, Moffett A. Dendritic cells in the human decidua. Biol Reprod 2003; 69:1438-46.
    
    8. Miyazaki S, Tsuda H, Sakai M, Hori S, Sasaki Y, Futatani T, Miyawaki T, Saito S. Predominance of Th2-promoting dendritic cells in early human pregnancy decidua. J Leukoc Biol 2003; 74:514-22.
    
    9. Rieger L, Honig A, Sutterlin M, Kapp M, Dietl J, Ruck P, Kammerer U. Antigen-presenting cells in human endometrium during the menstrual cycle compared to early pregnancy. J Soc Gynecol Investig 2004; 11:488-93.
    10. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392:245-52.
    
    11. Hart DNJ. Dendritic cells: unique leucocyte populationswhich control the primary immune response. Blood 1997; 90:3245-87.
    
    12. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21:685-711.
    
    13. Langenkamp A, Messi M, Lanzavecchia A, Sallusto F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 2000; 1:311-6.
    
    14. Juretic K, Strbo N, Crncic TB, Laskarin G, Rukavina D. An insight into the dendritic cells at the fetal-maternal interface. Am J Reprod Immunol 2004; 52:350-5.
    
    15. Robinson SP, Patterson S, English N, Davies D, Knight SC, Reid CD. Human peripheral blood contains two distinct lineages of dendritic cells. Eur J Immunol. 1999;29:2769-78.
    
    16. Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, Buck DW, Schmitz J. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 2000; 165:6037-46.
    
    17. Narbutt J, Lesiak A, Zak-Prelich M, Wozniacka A, Sysa-Jedrzejowska A, Tybura M, Robak T, Smolewski P. The distribution of peripheral blood dendritic cells assayed by a new panel of anti-BDCA monoclonal antibodies in healthy representatives of the polish population. Cell Mol Biol Lett 2004; 9:497-509.
    
    18. Coates PT, Barratt-Boyes SM, Zhang L et al. Dendritic cell subsets in blood and lymphoid tissue of rhesus monkeys and their mobilization with Flt3 ligand. Blood 2003; 102:2513-21.
    
    19. Blois SM, Kammerer U, Alba Soto C et al. Dendritic Cells: Key to Fetal Tolerance? Biol Reprod 2007; 77:590-8.
    20. McLellan AD, Starling GC, Williams LA, Hock BD, Hart DN. Activation of human peripheral blood dendritic cells induces the CD86 co-stimulatory molecule. Eur J Immunoll995; 25:2064-8.
    21.Nijman HW, Kleijmeer MJ, Ossevoort MA et al. Antigen capture and major histocompatibility class II compartments of freshly isolated and cultured human blood dendritic cells. J Exp Med 1995; 182:163-74.
    
    22. Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001; 193:233-8.
    
    23. Mahnke K, Qian Y, Knop J, Enk AH. Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood 2003; 101:4862-9.
    
    24. Cella M, Dohring C, Samaridis J, Dessing M, Brockhaus M, Lanzavecchia A, Colonna M. A novel inhibitory receptor (ILT3) expressed on monocytes, macrophages, and dendritic cells involved in antigen processing. J Exp Med 1997; 185:1743-51.
    
    25. Ravetch JV, Lanier LL. Immune inhibitory receptors. Science 2000; 290:84-9.
    
    26. Chang CC, Ciubotariu R, Manavalan JS et al. Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol 2002; 3:237-43.
    
    27. Manavalan JS, Rossi PC, Vlad G, Piazza F, Yarilina A, Cortesini R, Mancini D, Suciu-Foca N. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl Immunol 2003; 11:245-58.
    
    28. Kim-Schulze S, Scotto L, Vlad G, Piazza F, Lin H, Liu Z, Cortesini R, Suciu-Foca N. Recombinant Ig-like transcript 3-Fc modulates T cell responses via induction of Th anergy and differentiation of CD8+ T suppressor cells. J Immunol 2006; 176:2790-8.
    
    29. Demedts IK, Brusselle GG, Vermaelen KY, Pauwels RA. Identification and characterization of human pulmonary dendritic cells. Am J Respir Cell Mol Biol 2005;32:177-84.
    
    30. Tsoumakidou M, Tzanakis N, Papadaki HA, Koutala H, Siafakas NM. Isolation of myeloid and plasmacytoid dendritic cells from human bronchoalveolar lavage fluid. Immunol Cell Biol 2006; 84:267-73.
    
    31. Velten FW, Duperrier K, Bohlender J, Metharom P, Goerdt S. A gene signature of inhibitory MHC receptors identifies a BDCA3(+) subset of IL-10-induced dendritic cells with reduced allostimulatory capacity in vitro. Eur J Immunol 2004; 34:2800-11.
    
    32. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18:767-811.
    
    33. Kuwana M, Kaburaki J, Wright TM, Kawakami Y, Ikeda Y. Induction of antigen-specific human CD4(+) T cell anergy by peripheral blood DC2 precursors. Eur J Immunol 2001; 31:2547-57.
    
    34. Gilliet M, Liu YJ. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med 2002; 195:695-704.
    
    35. Zarnani AH, Moazzeni SM, Shokri F, Salehnia M, Jeddi-Tehrani M. Kinetics of murine decidual dendritic cells. Reproduction 2007; 133:275-83.
    
    36. Blois SM, Alba Soto CD, Tometten M, Klapp BF, Margni RA, Arck PC. Lineage, maturity, and phenotype of uterine murine dendritic cells throughout gestation indicate a protective role in maintaining pregnancy. Biol Reprod 2004; 70:1018-23.
    
    37. Heikkinen J, Mottonen M, Alanen A, Lassila O. Phenotypic characterization of regulatory T cells in the human decidua. Clin Exp Immunol 2004; 136:373-8.
    
    38. Tilburgs T, Roelen DL, van der Mast BJ et al. Differential distribution of CD4(+)CD25(bright) and CD8(+)CD28(-) T-cells in decidua and maternal blood during human pregnancy. Placenta 2006; 27 Suppl A: S47-53.
    
    39. Ristich V, Liang S, Zhang W, Wu J, Horuzsko A. Tolerization of dendritic cells by HLA-G. Eur J Immunol 2005; 35:1133-42.
    
    40. Zehnder D, Evans KN, Kilby MD, Bulmer JN, Innes BA, Stewart PM, Hewison M. The ontogeny of 25-hydroxyvitamin D(3) 1alpha-hydroxylase expression in human placenta and decidua. Am J Pathol 2002; 161:105-14.
    
    41. Evans KN, Nguyen L, Chan J, Innes BA, Bulmer JN, Kilby MD, Hewison M. Effects of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on cytokine production by human decidual cells. Biol Reprod 2006; 75:816-22.
    
    42. Penna G, Roncari A, Amuchastegui S, Daniel KC, Berti E, Colonna M, Adorini L. Expression of the inhibitory receptor ILT3 on dendritic cells is dispensable for induction of CD4+Foxp3+ regulatory T cells by 1,25-dihydroxyvitamin D3. Blood 2005; 106:3490-7.
    1. Laird SM, Tuckerman EM, Cork BA, Linjawi S, Blakemore AI, Li TC. A review of immune cells and molecules in women with recurrent miscarriage. Hum Reprod Update. 2003 Mar-Apr;9(2): 163-74.
    
    2. Hogge WA, Byrnes AL, Lanasa MC, Surti U. The clinical use of karyotyping spontaneous abortions. Am J Obstet Gynecol. 2003 Aug; 189(2):397-400; discussion 400-2.
    
    3. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998 Aug 21;281(5380):1191-3.
    
    4. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase.J Exp Med. 2002 Aug 19;196(4):459-68.
    
    5. Kudo Y, Boyd CA, Spyropoulou I, Redman CW, Takikawa O, Katsuki T, Hara T, Ohama K, Sargent IL. Indoleamine 2,3-dioxygenase: distribution and function in the developing human placentaJ Reprod Immunol. 2004 Apr;61(2):87-98.
    
    6. Ligam P, Manuelpillai U, Wallace EM, Walker D. Localisation of indoleamine 2,3-dioxygenase and kynurenine hydroxylase in the human placenta and decidua: implications for role of the kynurenine pathway in pregnancy. Placenta. 2005 Jul;26(6):498-504.
    
    7. Sedlmayr P, Blaschitz A, Wintersteiger R, Semlitsch M, Hammer A, MacKenzie CR, Walcher W, Reich O, Takikawa. Localization of indoleamine 2,3-dioxygenase in human female reproductive organs and the placenta. Mol Hum Reprod. 2002 Apr;8(4):385-91.
    
    8. Kamimura S, Eguchi K, Yonezawa M, Sekiba K. Localization and developmental change of indoleamine 2,3-dioxygenase activity in the human placenta. Acta Med Okayama. 1991 Jun;45(3): 135-9.
    
    9. Honig A, Rieger L, Kapp M, Sutterlin M, Dietl J, Kammerer U. Indoleamine 2,3-dioxygenase (IDO) expression in invasive extravillous trophoblast supports role of the enzyme for materno-fetal tolerance. J Reprod Immunol. 2004 Apr;61(2):79-86.
    
    10. Miwa N, Hayakawa S, Miyazaki S, Myojo S, Sasaki Y, Sakai M, Takikawa O, Saito. IDO expression on decidual and peripheral blood dendritic cells and monocytes/macrophages after treatment with CTLA-4 or interferon-gamma increase in normal pregnancy but decrease in spontaneous abortion. Mol Hum Reprod. 2005 Dec; 11(12):865-70.
    
    11. Heikkinen J, Mottonen M, Komi J, Alanen A, Lassila O. Phenotypic characterization of human decidual macrophages. Clin Exp Immunol. 2003 Mar;131(3):498-505.
    
    12. Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C, Werner ER,Werner-Felmayer G,Weiss HG,Gobel G,Margreiter R,Konigsrainer A,Fuchs D,Amberger A.Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer:effect on tumor-infiltrating T cells.Clin Cancer Res.2006 Feb 15;12(4):1144-51.
    13.Genbacev O,Schubach SA,Miller RK 1992 Villous culture of first trimester human placenta:model to study extravillous trophoblast(EVT)differentiation.Placenta 13:439-61.
    14.Caniggia,I.,Taylor,C.V.,Ritchie,J.W.K.,Lye,S.J.,and Letarte,M.1997.Endoglin regulates trophoblast differentiation along the invasive pathwayin human placental villous explants.Endocrinology.138:4977-88.
    15.Caniggia I,Lye SJ,Cross JC.Activin is a local regulator of human cytotrophoblast cell differentiation.Endocrinology.1997 Sep;138(9):3976-86.
    16.Fuchs D,Moller AA,Reibnegger G,Stockle E,Werner ER,Wachter H.Decreased serum tryptophan in patients with HIV-1 infection correlates with increased serum neopterin and with neurologic/psychiatric symptoms.J Acquir Immune Defic Syndr 1990;3:873-6.
    17.Takikawa,O.,Kuroiwa,T.,Yamazaki,F.,Kido,R.Mechanism of interferon-gamma action.Characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity.J.Biol.Chem.1988,263,2041-8.
    18.Munn DH,Sharma MD,Lee JR,Jhaver KG,Johnson TS,Keskin DB,Marshall B,Chandler P,Antonia SJ,Burgess R,Slingluff.Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase.Science.2002Sep 13;297(5588):1867-70.
    19.李雪莲,归绥琪,王海燕。绒毛及合体滋养层细胞吲哚胺2,3-二氧化酶表达与流产的关系。生殖与避孕,26(1):16-20.
    20.Moffett JR,Namboodiri MA.Tryptophan and the immune response.Immunol Cell Biol.2003 Aug;81(4):247-65.
    21.Santoso DI,Rogers P,Wallace EM,Manuelpillai U,Walker D,Subakir SB.Localization of indoleamine 2,3-dioxygenase and 4-hydroxynonenal in normal and pre-eclamptic placentae.Placenta.2002 May;23(5):373-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700