用户名: 密码: 验证码:
武夷菌素作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
武夷菌素是从不吸水链霉菌武夷变种(Streptomyces ahygroscopicus var.wuyiensis)的发酵液中分离出的活性成分,主要成分武夷菌素A是具有胞苷骨架的新型核苷类抗生素。本研究测定了武夷菌素的抗菌谱及其对番茄灰霉菌菌丝生长和分生孢子萌发的影响,探讨了武夷菌素抑制灰霉菌的作用机制,最后测定了武夷菌素对番茄幼苗体内四种抗病相关酶活性的影响。研究结果如下:
     1.武夷菌素对供试的14种病原真菌和3种细菌具有不同程度的抑制作用。
     2.武夷菌素纯品对番茄灰霉菌分生孢子萌发和菌丝生长的有效中浓度(EC_(50))分别为14.1μg/ml和18.0μg/ml。当武夷菌素的浓度达到100μg/ml时,完全抑制灰霉菌分生孢子的萌发。经武夷菌素(浓度≥10μg/ml)处理后的灰霉菌菌丝和刚萌发的分生孢子的致病性明显下降。光镜和电镜观察表明,武夷菌素(浓度≥25μg/ml)处理的灰霉菌菌丝和分生孢子的芽管出现形态结构的异常变化。灰霉菌菌丝生长的异常表现为分枝增多、膨大缢缩和液泡数目增多及合并等。武夷菌素(100μg/ml)处理灰霉菌后,菌丝顶端出现原生质渗漏的现象。灰霉菌分生孢子萌发的异常表现为芽管膨大及缢缩等。
     3.灰霉菌菌丝被武夷菌素处理后,菌丝细胞膜的透性发生变化,具体表现为培养液的电导率随着武夷菌素浓度(浓度>25μg/ml)的增加而增大。武夷菌素对灰霉菌菌丝麦角甾醇的合成影响不大。同位素标记掺入试验表明武夷菌素能抑制~(14)C-谷氨酸(蛋白质的前体物)的掺入,而不能阻止~3H-葡萄糖胺(几丁质的前体物)和~3H-腺嘌呤(核酸的前体物)的掺入,这表明武夷菌素可抑制菌丝蛋白质的合成,而对几丁质和核酸的合成没有影响。
     4.武夷菌素能诱导番茄幼苗体内的抗病性相关酶如超氧化物岐化酶、过氧化物酶、多酚氧化酶和苯丙氨酸解氨酶活性的增加。这表明在番茄上施用武夷菌素可能提高番茄幼苗的抗病性。
     根据上述结果可以看出武夷菌素既能抑制番茄灰霉病菌,同时又能诱导番茄幼苗产生抗病反应,因而存在着较大的开发应用潜力。
Wuyiencin is a nucleotide antibiotic produced by Streptomyces ahygroscopicus var. wuyiensis. In this research, the inhibition and the mode of action of wuyiencin against Botrytis cinerea as well as other pathogens were characterized. The effect of this antibiotic on the activity of four resistance-related enzymes in tomato seedlings were also studied. The results include:
    1. Wuyiencin exhibited an inhibitory ability to 14 species of phytopathogenic fungi and 3 species of bacteria (1 pathogen and 2 non-pathogens). Botrytis cinerea was more sensitive to the antibiotic than the other microorganisms.
    2. Wuyiencin inhibited the growth of hyphae and the germination of conidia of B. cinerea and the value of 50% effective concentration (EC50) was 18.0 g/ml and 14.1 g/ml, respectively. It could completely inhibit the germination of conidia of B. cinerea when the concentration of wuyiencin reached 100 g/ml. The pathogenicity of hyphae and conidia of B. cinerea treated with wuyiencin ( 10 g/ml) was significantly attenuated. Microscopic observation showed that wuyiencin could interfer the normal development of hyphae of B. cinerea by the increased formation of branches and hyphal vacuoles. Leakage of cytoplasm from hyphal tips of B. cinerea treated with wuyiencin at 100 g/ml was also observed. Germ tubes of B. cinerea treated with wuyiencin at 75 g/ml were constricted in shape.
    3. Wuyiencin was detected to influence on the permeability of the cell membrane of B. cinerea as shown by the increased electric conductivity in the cultural filtrates of the pathogen. However, it had no effect on sterol biosynthesis of this fungus. With 3H-glucosamine, 3H-adenine and 14C-glutamate as the precursors, incorporation experiments showed that wuyiencin significantly inhibited the protein synthesis, but had no significant effect on the synthesis of nucleic acid and chitin of B. cinerea.
    4. The increased activities of superoxide dismutase, peroxidase, polyphenol oxidase and phenylalanine ammoniam-lyase in tomato seedlings upon the treatment by wuyiencin at 100 g/ml were detected. This suggests that wuyiencin could trigger the defense reactions of tomato plants.
    A conclusion can be made that wuyiencin is a potential biofungicide for the control of B. cinerea as it not only can inhibit the pathogen directly, but also induce the resistance of tomato.
引文
1.陈代杰.微生物药物学.上海,华东理工大学出版社,1999.377-433
    2.陈茹梅,李金玉,康振生,邵映田.戊唑醇对小麦纹枯菌超微结构的影响.菌物系统,2000,19(3):389-395
    3.方中达.植病研究方法(第三版).北京,中国农业出版社,1998,pp.84-88
    4.甘亚,吕丁.抗真菌药物的作用机制.国外医药抗生素分册,1998,19(6):460-465
    5.龚国淑,张浩,曾国强.长柄木霉对灰霉菌的拮抗机制研究.云南农业大学报,1998,13(1):93-96
    6.顾觉奋.抗生素.上海,上海科学技术出版,2000,13-20
    7.郭振飞,卢少云,李金盛,李明启.三唑酮对绿豆幼苗叶片衰老的延缓作用.植物学报,1998,40(5):442-447
    8.韩巨才,刘慧平,高计青,马利平,武辉民.农抗120对西瓜枯萎病作用方式的研究.陕西农业大学学报,1995,15(2):122-125
    9.胡海峰,朱宝泉,龚炳永.生物活性物质的筛选与新药研究.国外医药抗生素分册,1998,19(6):401-406
    10.黄青春,周明国.分子遗传学方法在杀菌剂作用机制研究中的应用.见:马占鸿,周学平主编,植物病理学研究进展.中国植物病理学会第五届青年学术研讨会,北京,2001.北京,中国农业科技出版社,2001,238-242
    11.黄青春,周明国,叶钟音.拌种灵对柑桔溃疡病菌体细胞活性的影响.南京农业大学学报,2001,24(30):23-26
    12.黄仲生,杨玉茹.生物农药Bo-10防治黄瓜白粉病.生物防治通报,1985,1(4):47
    13.纪明山,程根武,张益先.灰霉病菌对多菌灵和乙霉威抗性研究.沈阳农业大学学报,1998,29(3):213-216
    14.蒋细良,谢德龄.农用抗生素的作用机理.生物防治通报,1994,10(2):76-81
    15.蒋细良,谢德龄,倪楚芳,朱昌雄,宋培国.中生菌素的抗生作用.植物病理学报,1997,27(2):133-138
    16.康振生,商鸿生,井金学,魏国荣,李振岐.内吸杀菌剂烯唑醇对小麦条锈菌和白粉菌发育影响的研究.植物病理学报,1996,26(2):111-116
    17.李宝聚,朱国仁.番茄喷蘸植物生长调节剂与灰霉病发生的关系.园艺学报,1999,26(5):337-338
    18.李风云,李保聚,苗泽彦,许淑艳,董宝英,刘新邦,耿人生,刘风荣,王毅.番茄灰霉病的药剂防治研究.辽宁农业科学,1993,5:18-22
    19.李阜棣,喻子牛,何绍江.农业微生物学实验技术.北京,中国农业出版社,1996.209-212
    20.李红叶,朱国念,朱金文,谢青云.丝状真菌对甾醇生物合成抑制剂的抗性分子机制.
    
    菌物系统,2002,21(2):293-300
    21.李树正,张素华.杀菌剂筛选方法的研究.农药,1997,36(9):20-24
    22.林德忻,徐容,石义萍,张克诚.武夷菌素田间应用效果综述.见:叶正楚,张芝利主编,全国生物防治学术讨论会论文摘要集,北京,1995.
    23.刘波,苗容,刘经芬,叶钟音.灰霉病菌对二甲酰亚胺类药剂的田间抗药性检测.莱阳农学院学报,1997,14(1):47-51
    24.刘德荣,谢丙炎,朱国仁,顾宝根,吴新平,刘乃炽.灰霉菌(Botrytis cinerea)对杀菌剂抗药性研究进展.见:程登发主编,植物保护21世纪展望.植物保护21世纪展望暨第三届全国青年植物保护科技工作者学术研讨会,北京,2000,北京,中国农业出版社,2000,pp.172-178
    25.刘西莉,李健强,刘鹏飞,王锋,张龙,罗军,李小林,朱建军,浦恩堂,张松.浸种专用型水稻种衣剂对水稻秧苗生长及抗病性相关酶活性的影响.农药学学报,2000,2:41-46
    26.马辉刚,李瑞明,胡水秀.木霉素防治番茄灰霉病田间药效实验.植物保护,1998,24(2):38-39
    27.马忠华,周明国,叶钟音.噻枯唑对水稻白叶枯病菌作用机制研究初报.植物病理学报,1997,27(3):237-241
    28.齐素芳,王宏,马宗超.保护地番茄灰霉病的发生与防治.微生物学杂志,1994,14(2):76-79
    29.单慰曾,陆斌.紫外光谱检测香菇液体和固体菌丝麦角甾醇.植物生理通讯,1989,2:67-70
    30.深见顺一,上杉康彦,石冢皓造,富迟长次郎.农药实验法-杀菌剂篇.北京,农业出版社,1991.119-214
    31.沈寅初.农用抗生素研究开发的新进展.国外医药抗生素分册,1998,19(2):155-161
    32.史建荣,王裕中,方中达.三唑酮、三唑醇对小麦纹枯病菌形态和生理的影响.植物病理学报,1992,22(3):205-209
    33.是栋梁,张贵林,王风英.保护地番茄灰霉病生态防治配套技术.南京农业大学学报,2000,23(1):39-42
    34.王敬之.植物苯丙氨酸解氨酶(PAL)的研究.植物生理学报,1982,8(1):35-43
    35.王志,鲍秀芬.应用梧宁霉素防治番茄灰霉病的研究初报.微生物学杂志,1995,12(5):53-60
    36.韦日清,林德忻,陈志和.农用抗生素Bo-10产生菌的鉴定.微生物学报,1984,24(4):401-402
    37.徐铮,曹永兵,姜远英.麦角甾醇生物合成途径中的抗真菌药物作用靶酶.国外医药抗生素分册,2001,22(5):193-197
    38.杨毓芬,宋庆钧,戚天庆.新农用抗生素M331作用机制的研究.中国抗生素杂志,1988,
    
    13(5):351-356
    39.张宏印,李电东.博莱霉素作用机制研究进展.国外医药抗生素分册,1999,20(6):266-269
    40.张克诚,林德忻,石义萍,曾洪梅.武夷菌素对真菌的作用机制初步研究.见:朱昌雄,宋陪国,蒋细良,李兴道主编,农用抗生素关键技术研究论文集.农用抗生素关键技术研究讨论会,北京,1995.北京,中国农业科学院生物防治研究所,1995,123-125
    41.张龙翔,张庭芳,李令媛.生化试验方法和技术(第二版).北京,高等教育出版社,1997,188-192
    42.张穗.井冈霉素A诱导水稻防御纹枯病反应机理研究.[博士学位论文].北京,中国农业大学图书馆,2001
    43.张穗.杀菌剂生物测定技术.植物保护,1999,25(3):35-37
    44.赵世杰,许长成,邹琦,孟庆伟.植物组织中丙二醛测定方法的改进.植物生理学通讯,1994,30(3):207-210
    45.周明国,刘经芬,叶钟音.关于杀菌剂抗性研究方法的综述.南京农业大学学报,1987,4(增):128-134
    46.周明国.抑制麦角甾醇生物合成的杀菌剂抗性研究.农药,1987,1:27-29
    47.朱广廉,钟海文,张爱琴.植物生理学试验指导.北京,北京大学出版社,1990.37-39
    48.朱建兰.番茄灰霉菌的生物学特性研究.甘肃农业大学学报,1995,30(1):73-78
    49. Ahl-Goy P, Felix G, Metraux J, Meins-Jr F. Resistance to disease in the hybrid Nicotiana glutinosa is associated with high constitutive levels of β-1,3-glucanase, chitinase, peroxidase and polyphenoloxidase. Physiol. Mol. Plant Pathol. 1992,41:11-21
    50. Banic S, Lunder M. Additive effect of the combination of griseofulvin and ketoconazole against Microsporum canis in vitro. Mycoses, 1989, 32(9): 487-489
    51. Barathova H. Antibiotic-induced changes of mycelial growth of Botrytis cinerea. Folia Microbiol, 1976, 21(5): 355-361
    52. Bowyer J, Trumpower B. Rapid reduction of cytochrome c_1 in the presence of antimycin and its implication for the mechanism of electron transfer in the cytochrome b_1 segment of the mitochondrial respiratory chain. J Biol Chem, 1981,256(5):2245-2251
    53. Brenneman T B, Murphy A P, CSINOS A S. Activity of Tebuconazole on Sclerotium rolfsii and Rhizoctonia solani, Two soilborne Pathogens of Peanut. Plant Diseae, 1991, 75(7): 744-747
    54. Cabib E. Differential inhibition of chitin synthetases 1 and 2 from Saccharomyces cerevisiae by polyoxin D and nikkomycins. Antimicrobiol Agents Chemother, 1991, 35(1): 170-173
    55. Cabral S M J C S, Cabral J P S. The fungistatic and fungicidal activity of vinclozolin against Botrytis cinerea. Mycol Res, 1995, 99(9): 1041-1046
    56. Choi G J, Lee H J, Cho K Y. Lipid peroxidiation and membrane disruption by vinclozolin in dicarboximide susceptible and resistant isolates of Botrytis cinerea. Pesticide Biochemistry
    
    and Physiology, 1995,55:29-39
    57. Connor M D, Stasio E A, Dahlberg A E. Interaction between 16S ribosomal RNA and ribosomal protein S12: differential effects of paromomycin and streptomycin. Biochimie, 1991, 73(12): 1493-500
    58. Dock L L, Nielsen P V, Floros J D. Biological control of Botrytis cinerea growth on apples stored under modified atmospheres. J Food Prot. 1998, 61(12): 1661-1665
    59. Edwards S G, Seddon B. Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro. Journal of Applied Microbiology, 2001, 91:652-659
    60. Endo A, Misato T. Polyoxin D, a competitive inhibitor of UDP-N acetylflucosaine chitin acetylglucos aminyltransferase in Neurospora crassa. Biochem biophys Res Commu, 1969, 37(4): 718
    61. Frere J. The mechanism of action of penicillin and other beta lactam antibiotics. J Pharm Belg, 1988, 43(2): 107-115
    62. Hang K T, Misato T, Asuyama H. Effect of blasticidin S on protein synthesis of Piricularia oryzae. The Journal of Antibiotics Ser A, 1963, 17(2): 65-69
    63. Hecht S M. Bleomycin: new perspectives on the mechanism of action. J Nat Prod, 2000, 63(1): 158-168
    64. Hori M, Equchi J, Kakik K. Studies on the mode of action of polyoxins Ⅵ. Effect of polyoxin on chitin synthesis in polyoxin-sensitive and resistant strains of Alternria kikuchiana. J Antibiot, 1974, 27(4): 260-266
    65. Huang L L, Kang Z S, Yan Y G, Zhang G Q. Effects of ergosterol biosynthesis-inhibiting fungicide triadimefon on the development of venturia inaequalis on apple leaves. Mycosystema, 2001, 20(2): 250-257
    66. Lee H J, Choi G J, Cho K Y. Correlation of Lipid peroxidation in Botrytis cinerea caused by dicarboximide fungicides with their fungicidal activity. Journal of Agricultural Food Chemtry, 1998, 46:737-741
    67. Leroux P, Fritz R, Debieu D. Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Manag Sci, 2002, 58(9): 876-888
    68. Lewis J A, Papavizas G C. Permeability Changes in Hyphae of Rhizoctonia solani by Germling Preparations of Trichoderma and Gliocladium. Physiology and Biochemistry, 1987, 77(5): 699-703
    69. Mashi E I, Paul B. Secretion of beta-1, 3-glucanases by the yeast Pichia membranifaciens and its possible role in the biocontrol of Botrytis cinerea causing grey mold disease of the grapevine. Curr Microbiol, 2002, 44(6): 391-395
    70. Milling R J, Richardson C J. Mode of action the anilino-pyrimidine fungicide pyrimethanil. 2. Effects on enzyme secretion in Botrytis cinerea. Pestic sci, 1995, 45:43-45
    
    
    71. Nakashita H, Watanabe K, Hara O. Studies on the biosynthesis of bialaphos. Biochemical mechanism of C-P bond formation: discovery of phosphonopyruvate decarboxylase that catalyzes the formation of phosphonoacetaldehyde from phosphonopyruvate. J Antibiot, 1997, 50(3): 212-219
    72. Orbach M J, Porro E B, Yanofsky C. Cloning and characterization of the gene for beta-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Mol Cell Biol, 1986, 6(7): 2452-2461
    73. Shirane N, Masuko M, Takeda R. Effects of SSf-126, a novel alkoxyiminoacetamide blasticide, on mycelial growth and oxygen consumption of Pyricularia oryzae. Plant Pathology, 1994, 44:636-640
    74. Slawecki R A, Ryan E P, Young D H. Novel fungitoxicity assays for inhibition of germination-associated adhesion of Botrytis cinerea and Puccinia recondita spores. Applied and Environmental Microbiology, 2002, 68(2): 597-601
    75. Stehmann C, Kaptteyn J C, Ward M A D. Development of a cell-free assay from Botrytis cinerea an biochemical screen for sterol biosyntesis inhibitors. Pestic Sci, 1994, 40:1-8
    76. Sugiyama M, Mochizuki H, Nimi O. Mechanism of protection of protein synthesis against streptomycin inhibition in a producing strain. J Antibiot, 1981, 34(9): 1183-1188
    77. Sugiyama M, Paik S, Nomi R. Mechanism of self-protection in a puromycin-producing microorganism. J Gen Microbiol, 1985, 131(8): 1999-2005
    78. Tanaka N. Studies on the mechanism of action of antibiotcs. Nippon Saikingaku Zasshi, 1987, 42(5): 707-716
    79. Tomasz A. Penicillin-bingding Proteins in bacteria. Ann Intern Med, 1982, 96(4): 502-506
    80. Walker R, Emslie K, Allan E. Bioassay methods for antifungal activity by Pseudomnas antimicrobica against the grey mould pathogen Botrylis cinerea. Journal of Applied Bacteriology, 1996, 81: 531-537
    81. Walker R, Innes C M J, Allan E J. The potential biocontrol agent Pseudomonas antimicrobica inhibits germination of conidia and outgrowth of Botrytis cinerea. Letters in Applied Microbiology, 2001, 32:346-348
    82. Walker R, Emslie K A, Allan E J. The symbiosis of bacillus subtilis L-forms with Chinese cabbage seedlings inhibits conidial germination of Botrytis cinerea. Letters in Applied Microbiology, 2002, 34(1): 42-47
    83. Wilde L G. Effect of fluoride on superoxide dismutase (SOD) activity in germinating mung bean seedlings. Fluoride, 1998, 31(2): 81-88
    84. Xu Z T, Li L, Li C S, Qi J S. Studies on chemical control of Botrytis cinerea in protected environment fields. The first Asian conference on plant pathology, Beijing, 2000. 334
    85.Yamaguchi H.微生物来源农药的最新进展.国外医药抗生素分册,1990,11(2):137-141
    
    
    86. Yee Y C, Kisslinger B, Yu V L, Jin D J. A mechanism of rifamycin inhibition and resistance in Pseudomonas aeruginosa. J Antimicrob Chemother, 1996, 38(1): 133-140
    87. Yocum R, Rasmussen J, trominger J. The mechanism of action of penicillin: Penicillin acylates the active site of Bacillus stearothermophilus D-alanine carboxypeptidase. J Biol Chem, 1980, 255(9): 3977-3986

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700