用户名: 密码: 验证码:
基于线结构光法的实验地貌观测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地形参数测量是实体模型试验研究中的重要内容,高性能的观测技术对提高模拟结果的准确性有重要意义。本文首先回顾了前人在地形测量技术方面的研究成果,结合光学技术、激光技术及计算机图像技术,提出了基于线结构光法的实验地貌观测技术,并设计了基于该测量技术原理的测量系统。然后,通过率定实验分析了测量系统的误差,讨论了图像数据处理、地形等值线和地形三维数据的建立方法及其过程。最后,将本测量技术应用于实体河工模型地形的测量中,通过与传统测量方法的观测结果对比,综合分析了基于线结构光法的地形测量技术性能。研究的主要成果如下:
     (1)设计并优化了基于线结构光法的应用于实验地貌观测的W型和G型地貌仪。W型地貌仪适合于实体河工模型的表面精确测量和精细建模,适用于静态目标地形参数的测量。G型地貌仪适合于沟坡地形的实时观测,特别适用于沟坡重力侵蚀的定量观测。这两种地貌仪都可快速地采集模型地形参数,形成地形等值线数据或等高线数据,建立地形三维模型,实现三维分析计算。
     (2)多线结构光法是一种观测精度和效率较高、非接触式的测量方法,在三维地形测量中具有一定的实用性,同时在地形精细测量、精确建模方面有更大应用潜力。在三维实体河工模型地形应用测量中,从断面测点的平面及高程测量值、地形等高线数据、三维建模以及图像数据处理效率几个方面,与传统的测针法进行对比分析发现,多线结构光法在实验地貌的测量中具有较好的测量效果。
     (3)多线结构光测量系统能满足实验地貌的高差测量精度要求,地形图像畸变经合理布置密度的网格校准点矫正后,畸变误差得到有效控制。以W型地貌仪为例,对激光源在平面测量量程范围内的高差测量误差进行分析发现,激光平面间距的满量程相对误差小于5‰,绝对误差小于1mm。对比经网格校准点矫正前后的图像畸变误差,结果表明,图像畸变矫正效果显著,矫正后的图像测点误差明显下降,有效地提高了地形的测量精度。
The measurement of the topography parameters is important in the physical model experiments. The high-performance techniques can improve the accuracy of the simulation results a lot. Firstly, this paper reviewed the results of previous researchers at topographic survey technical, proposed a method of line-structure light in experimental landform survey and designed the landform survey instrument based on the technology principle. Secondly, the article analyzed the measurement system error and discussed the process of the image dates. Finally, the landform survey technology based on line-structure light was used to measure the physical river model, and then analyzed the performance of the landform survey instrument by compared with traditional methods. The main research results are as fallows:
     (1) Work has been done to design the W and G Landform survey instrument based on the linear structured light vision measuring technology. The former is suitable for physical river model measurements with high precision and fine surface modeling. And the precision of the new technology is remarkable in static target terrain measurement and high observation efficiency. The G topographic meter is particularly suitable for observing the slope-gully erosion topography in real time, and can be easily calculate the erosion volume. Both of them can acquire the data quickly and accurately, and then be used to form the terrain isoline value maps, establish 3D surface model, and terrain 3D calculation.
     (2) The method of multi-line structured light is a non-contact survey method with high precision and efficiency, and has a good practicability on the survey in the 3D physical river model. Compared to the method of survey probe, the method of multi-line structured light would perform better on surveying and simulating the landform. From the analysis of linear regression and statistics, the measurement error of W topography meter was evaluated based on the section point value of the elevation and plane on the 3D physical river model, which were surveyed by W topography meter and the method of traditional survey probe. The studies have uncovered that the measurement accuracy of the W topographic meter is better than the method of traditional survey probe.
     (3) The accuracy of the multi-line structured light can be satisfied the requirements of general measurement in the small scope terrain. The topography survey is affected by the topography image distortion. However, the distortion error of the topography image can be effectively controlled if the calibration point density was reasonably arranged and adjusted. Taking the W topographic meter for example, it can be uncovered that the full scale of the of the multi-light structured planes is less than 5‰, and the absolute error is less than 1 mm. The error can be reduced evidently after the distortion adjusting.
引文
[1]陈诚,唐洪武,陈红,等.国内河工模型地形测量方法研究综述[J].水利水电科技进展.2009(2):76-79.
    [2]王军,倪晋仁,杨小毛.重力地貌过程研究的理论与方法[J].应用基础与工程科学学报.1999(3):240-251.
    [3]王洪乡.结构光三维测量系统误差分析与仿真研究[D].哈尔滨理工大学,2003.
    [4]Chandler J. Effective application of automated digital photogrammetry for geomorphological research[J]. Earth Surface Processes and Landforms.1999,24(1):51-63.
    [5]Rieke Zapp D H, Nearing M A. Digital close range photogrammetry for measurement of soil erosion[J]. The Photogrammetric Record.2005,20(109):69-87.
    [6]White D J, Take W A, Bolton M D, et al. A deformation measurement system for geotechnical testing based on digital imaging, close-range photogrammetry, and PIV image analysis[C]. AA BALKEMA PUBLISHERS,2001.
    [7]Ohnishi Y, Nishiyama S, Yano T, et al. A study of the application of digital photogrammetry to slope monitoring systems[J]. International journal of rock mechanics and mining sciences.2006, 43(5):756-766.
    [8]王建雄,张辅霞.数字近景摄影测量在河工模型试验中的应用[J].云南农业大学学报.2006(4):528-530.
    [9]陈建华,程栋,王伟,等.微尺度模型试验的数字近景摄影测量[J].河海大学学报(自然科学版).2008(1):88-92.
    [10]Butler J, Lane S, Chandler J, et al. Through-Water Close Range Digital Photogrammetry in Flume and Field Environments [J]. The Photogrammetric Record.2002,17(99):419-439.
    [11]刘昌华,王成龙,李峰,等.数字近景摄影测量在山地矿区变形监测中的应用[J].测绘科学.2009(4):197-199.
    [12]任伟中,白世伟,葛修润.厚覆盖层条件下地下采矿引起的地表变形陷落特征模型试验研究[J].岩石力学与工程学报.2004(10):1715-1719.
    [13]杨化超,邓喀中,张书毕,等.数字近景摄影测量技术在矿山地表沉陷监测中的应用研究[J].中国图象图形学报.2008(3):519-524.
    [14]张祖勋,杨生春,张剑清,等.多基线一数字近景摄影测量[J].地理空间信息.2007(1):1-4.
    [15]柯涛,张祖勋,张剑清.旋转多基线数字近景摄影测量[J].武汉大学学报(信息科学版).2009(1):44-47.
    [16]何秀国,武吉军,高何利Lensphoto摄影测量系统在水布垭溢洪道中的应用[J].人民长江.2007(10):28-29.
    [17]许新发,李建锋,樊宜,等.多波束水下测量超声仪(SeaBat8101)在水利工程中的应用[J].水利水电技术.2003(6):60-64.
    [18]Nara M, Inouchi Y. Submarine topography of Kaihara, a shallow marine sandridge, off Nogutsuna Island, Ehime Prefecture, Japan. Observations using narrow multibeam echo sounder SEABAT (a preliminary report).[J]. Journal of the Sedimentological Society of Japan.2000: 5-12.
    [19]王振先,金欢阳.实验室用超声地形测量仪[J].海洋一[程.2001(1):94-98.
    [20]林海立,曲兆松,王兴奎.河工模型超声地形仪的数字信号处理[J].水力发电.2004(11):78-80.
    [21]马志敏,范北林,许明,等.河床模型地形的无接触快速测量技术[J].无损检测.2006(4):185-188.
    [22]王宗义.线结构光视觉传感器与水下三维探测[D].哈尔滨工程大学,2005.
    [23]段发阶.计算机视觉检测基础理论及应用技术研究[D].天津大学,1994.
    [24]佟锦林,张广军,王红,等.结构光三维视觉系统研究[J].航空学报.1999(4).
    [25]李清泉,王植,李宇光.基于线结构光的3维目标测量与多分辨率建模[J].测绘学报.2006(4):371-378.
    [26]解则晓,张国雄,徐玉春.回转式激光线扫描测量仪[J].天津大学学报.2001(6):833-836.
    [27]Salvi J, Pages J, Batlle J. Pattern codification strategies in structured light systems[J]. Pattern Recognition.2004,37(4):827-849.
    [28]李兵,罗意平,王昭,等.多光刀三维轮廓快速测量方法研究[J].光子学报.2003(6):738-741.
    [29]张启灿,苏显渝,邹小平.多个线结构光传感器三维测量系统的校准[J].激光技术.2005(3):225-227.
    [30]刘保华,李兵,崔希君,等.一种多线结构光测头的误差补偿方法[J].西安交通大学学报.2007(1):50-54.
    [31]陈彦军,左旺孟,王宽全,等.结构光编码方法综述[J].小型微型计算机系统.2010(9):1856一1863.
    [32]Chen F, Brown G M, Song M. Overview of three-dimensional shape measurement using optical methods[J]. Optical Engineering.2000,39(1):10-22.
    [33]朱铮涛,黎绍发.镜头畸变及其校正技术[J].光学技术.2005(1):136-138.
    [34]冯文灏,李建松,闫利.基于二维直接线性变换的数字相机畸变模型的建立[J].武汉大学学报(信息科学版).2004(3):254-258.
    [35]杨朝辉,李浩,杨林.数码相机可量测化的研制[J].测绘工程.2003(2):34-37.
    [36]谭晓军,余志,李军.一种改进的立体摄像机标定方法[J].测绘学报.2006(2):138-142.
    [37]Zhang Z. A flexible new technique for camera calibration[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on.2000,22(11):1330-1334.
    [38]谭晓军,郭志豪,蒋芝.基于对称性特征的棋盘方格角点自动检测算法[J].计算机应用.2008(6):1540-1542.
    [39]全厚德,闫守成,张洪才.基于SUSAN算法的格点坐标自动提取技术[Z].中国四川成都:2007.
    [40]张少军,艾矫健.利用数字图像处理技术测量几何尺寸[J].北京科技大学学报.2002,24(003):284-287.
    [41]罗希平,田捷,诸葛婴,等.图像分割方法综述[J].模式识别与人工智能.1999(3):300-312.
    [42]王刚.图像二值化方法研究及其在监控识别系统中的应用[D].湖南大学,2010.
    [43]Sahoo P K, Soltani S, Wong A K C. A survey of thresholding techniques[Z].1988:41,233-260.
    [44]Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging.2004,13(1):146-168.
    [45]吴秀芹ArcGIS 9地理信息系统应用与实践[M].清华大学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700