用户名: 密码: 验证码:
ZHC116对肾间质纤维化疗效及作用机制初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章ZHC116抗UUO大鼠肾间质纤维化的疗效观察
     研究背景肾间质纤维化(Renal interstitial fibrosis, RIF)是指由多种原因引起的细胞外基质(Extracellular matrix, ECM)在肾间质的过度沉积,是多种慢性肾脏病(Chronic Kidney Disease, CKD)进展至终末期肾病(End-stage renal disease,ESRD)的病理基础和共同通路。探讨肾间质纤维化的发生机制、研发抗肾间质纤维化的药物对慢性肾脏疾病的控制具有重要意义。ZHC-116是本课题组设计的新一代抗纤维化新药。前期体外研究表明,ZHC116具有抗肾小管上皮细胞转分化(Epithelial mesenchymal transition,EMT)的作用,具有抗纤维化的潜能。
     目的观察ZHC116对单侧输尿管结扎(Unilateral Ureteral Obstruction, UUO)大鼠肾间质纤维化动物模型间质损伤、纤维化、Ⅲ型胶原表达的影响。
     方法建立UUO肾间质纤维化模型。SD大鼠(20只,每组5只)随机分为假手术组、UUO模型14天组、ZHC116(100mg/d)治疗组、吡非尼酮(500mg/d)治疗组;于UUO术后14天留取各组大鼠梗阻侧肾脏标本,用HE和Masson染色方法观察大鼠肾间质纤维化成模情况及药物疗效,免疫组化方法观察Ⅲ型胶原表达。
     结果UUO术后14天,模型组大鼠梗阻侧肾脏肾间质损伤指数、Masson染色评分以及Ⅲ型胶原表达比假手术组显著升高(p<0.05);与模型组相比,ZHC116和吡非尼酮治疗均能显著降低UUO大鼠梗阻侧肾间质损伤评分、Masson染色评分和Ⅲ型胶原的表达(p<0.05);与毗非尼酮治疗组相比,ZHC116治疗组肾间质Ⅲ型胶原阳性表达面积百分比显著减少(p<0.05)。
     结论ZHC116具有抗肾间质纤维化的作用,100mg/kg ZHC116疗效优于500mg/kg吡非尼酮。
     第二章ZHC116对AngⅡ刺激肾小管上皮细胞MAPK通路的影响
     研究背景肾素-血管紧张素-醛固酮系统(RAAS)的激活,尤其是血管紧张素Ⅱ (Angiotensin Ⅱ)的产生是肾间质纤维化和慢性肾脏病进展的重要介质。丝裂原活化蛋白激酶(Mitogen-activated protein kinase, MAPK)是参与多种细胞过程如分化、增殖、炎症、纤维化的重要信号转导通路。Ang Ⅱ可以诱导肾小管上皮细胞MAPK通路的活化,参与肾间质纤维化中的炎症、氧化应激、细胞增殖、致纤维化因子产生等发病机制。初步研究显示ZHC116具有抗肾间质纤维化的疗效,本部分将初步探讨ZHC116抗肾间质纤维化的作用机制。
     目的观察ZHC116对Ang Ⅱ刺激大鼠肾小管上皮细胞(NRK-52E) MAPK通路中细胞外信号调节激酶1/2(Extracellular signal-regulated protein kinase1/2, ERK1/2)通路的影响。
     方法培养NRK-52E细胞,设立正常对照组、Ang Ⅱ刺激模型组、AngⅡ+ZHC116治疗组、Ang Ⅱ+p-ERK抑制剂组。模型组予以Ang Ⅱ(10-7M)刺激15min; ZHC116治疗组予以ZHC116(50ug/ml)预处理24小时,并用Ang Ⅱ (10-7M)刺激15min;抑制剂组p-ERK抑制剂(PD98059,10μM)处1h,并用Ang Ⅱ(10-7M)刺激15min。同时收集各组细胞总蛋白,Western Blot方法检测p-ERK、ERK、β-actin的表达。
     结果Ang Ⅱ刺激NRK-52E细胞15min后,p-ERK/ERK蛋白表达比值(p<0.05)增高;ZHC116和p-ERK抑制剂能够显著降低p-ERK/ERK蛋白表达比值(p<0.05)。
     结论ZHC116可能通过抑制Ang Ⅱ诱导的ERK1/2磷酸化起到抗肾间质纤维化的作用。
Part I The effect of ZHC116on renal interstitial fibrosis in a rat model of UUO
     Background:Renal interstitial fibrosis is the common pathway of virtually all progressive kidney diseases. As the pathologic basis for the progression of CKD to end-stage renal diseases, RIF is characterized by the deposition of massive extracellular matrix in the renal interstitial. With the purpose of controlling the progression of chronic kidney disease, it is of great value to elucidate the mechanisms of renal fibrosis and develop new drugs with anti-fibrotic effect. Our team has recently discovered a new drug—ZHC116, with potential anti-fibrotic effect. Previous research has shown that ZHC116has the effect of anti-EMT and anti-fibrotic effect in vitro.
     Objective:To investigate whether ZHC116can ameliorate interstitial injury, interstitial fibrosis, and expression of collagen III in order to study the effect of ZHC116on renal interstitial fibrosis.
     Methods:20Sprague-Dawley rats were randomly divided into four groups:Sham operation group,14days of UUO model group, ZHC116(100mg/kg) treated group and pirfenidone (500mg/kg) treated group. SD rats were submitted to unilateral ureteral obstruction (UUO) and sacrificed at day14. The obstructed kidney tissue after ureteral obstruction at day14was stained by HE and Masson methods to observe the extend of interstitial fibrosis and the anti-fibrotic effect of ZHC116, and by immunochemistry of Collagen type III to examine the collagen content.
     Result:HE and MASSON staining revealed that the tubulointerstitial damage index and relative area of renal interstitial collagen III significantly increased in UUO models as compared with the sham-operated group (p<0.05). Compared with UUO group, treatment of ZHC116and pirfenidone significantly ameliorated interstitial damage and fibrosis, as well as the deposition of collage type Ⅲ(p<0.05)100mg/kg of ZHC116shows better effect of reducing the area of collagen type III than500mg/kg of pirfenidone.
     Conclusion:ZHC116significantly ameliorates renal interstitial damage and fibrosis.100mg/kg of ZHC116shows more anti fibrotic effect than500mg/kg of pirfenidone.
     Part II The effect of ZHC116on MAPK signaling ERK in Ang Ⅱ-stimulated NRK-52E cells
     Background:The activated renin-angiotensin-aldosterone system (RAAS), especially the production of angiotensin Ⅱ, is a key mediator in the progression of renal interstitial fibrosis and chronic kidney diseases. Mitogen-activated protein kinase is an important signal transduction pathway related to multiple cellular processes such as differentiation, proliferation, inflammation and fibrosis. Ang Ⅱ induce the activation of MAPK pathway in tubular cells, leading to its effect on mechanisms of renal interstitial fibrosis, such as inflammation, oxidative stress, proliferation of interstitial fibroblast and the production of pro-fibrotic cytokines. Previous research has shown the anti-fibrotic effect of ZHC116. The present study is objected to examine the mechanism of ZHC116's anti-fibrotic effect in renal epithelial cells.
     Objective:Observing the effect of ZHC116on the expression of extracellular signal-regulated protein kinasel/2(ERK1/2) in normal rat tubular cell line (NRK-52E cells) stimulated with Ang II.
     Methods:In vitro experiments, NRK-52E cells were divided into normal control group, Ang II stimulated model group, ZHC116treatment group, and p-ERK inhibitor (PD98059,10μM) treatment group. ZHC116(50ug/ml) were given for24hours, p-ERK inhibitor were given for1hour. All group except normal control were stimulated with Ang Ⅱ (10-7M) for15min. western blot is used for the detection of the expression of p-ERK, ERK and β-actin.
     Result:In Ang-II stimulated NRK-52E cell, expression of p-ERK were significantly increased, as shown by the expression ratio of p-ERK to ERK (p<0.05). ZHC116treatment markedly attenuated the elevation of p-ERK/ERK (P<0.05). These responses were also attenuated by ZHC116and p-ERK inhibitor (PD98059).
     Conclusion:The anti-fibrotic effect of ZHC116probably depends on its inhibition of phosphorylation of ERK1/2.
引文
[1]Go, A.S., et al., Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med,2004.351(13):p.1296-305.
    [2]Liu, Y., Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol, 2011.7(12):p.684-96.
    [3]Boor, P., T. Ostendorf and J. Floege, Renal fibrosis:novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol,2010.6(11):p.643-56.
    [4]Nath, K.A., Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis,1992.20(1):p.1-17.
    [5]Risdon, R.A., J.C. Sloper and H.E. De Wardener, Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis. Lancet,1968.2(7564):p.363-6.
    [6]Bazzi, C, et al., Characterization of proteinuria in primary glomerulonephritides. SDS-PAGE patterns:clinical significance and prognostic value of low molecular weight ("tubular") proteins. Am J Kidney Dis,1997.29(1):p.27-35.
    [7]Woo, K.T., et al., Pattern of proteinuria in IgA nephritis by SDS-PAGE:clinical significance. Clin Nephrol,1991.36(1):p.6-11.
    [8]Wynn, T.A. and T.R. Ramalingam, Mechanisms of fibrosis:therapeutic translation for fibrotic disease. Nat Med,2012.18(7):p.1028-40.
    [9]Peng, Y., et al., The antihepatic fibrotic effects of fluorofenidone via MAPK signalling pathways. Eur J Clin Invest,2013.43(4):p.358-68.
    [10]Chen, L.X., et al., Fluorofenidone inhibits transforming growth factor-betal-induced cardiac myofibroblast differentiation. Pharmazie,2012.67(5):p.452-6.
    [11]Meng, J., et al., Fluorofenidone attenuates bleomycin-induced pulmonary inflammation and fibrosis in mice via restoring caveolin 1 expression and inhibiting mitogen-activated protein kinase signaling pathway. Shock,2012. 38(5):p.567-73.
    [12]Ning, W.B., et al., Fluorofenidone inhibits Ang II-induced apoptosis of renal tubular cells through blockage of the Fas/FasL pathway. Int Immunopharmacol, 2011.11(9):p.1327-32.
    [13]Yuan, Q., et al., Fluorofenidone attenuates tubulointerstitial fibrosis by inhibiting TGF-beta(1)-induced fibroblast activation. Am J Nephrol,2011. 34(2):p.181-94.
    [14]Li, B.X., et al., Fluorofenidone attenuates renal interstitial fibrosis in the rat model of obstructive nephropathy. Mol Cell Biochem,2011.354(1-2):p.263-73.
    [15]Wang, L.H., et al., Fluorofenidone attenuates diabetic nephropathy and kidney fibrosis in db/db mice. Pharmacology,2011.88(1-2):p.88-99.
    [16]Yuan, Q., et al., Fluorofenidone suppresses epithelial-mesenchymal transition and the expression of connective tissue growth factor via inhibiting TGF-beta/Smads signaling in human proximal tubular epithelial cells. Pharmazie, 2011.66(12):p.961-7.
    [17]Tang, Y., et al., Fluorofenidone protects mice from lethal endotoxemia through the inhibition of TNF-alpha and IL-1beta release. Int Immunopharmacol,2010. 10(5):p.580-3.
    [18]Wang, L., et al., Fluorofenidone inhibits TGF-betal induced CTGF via MAPK pathways in mouse mesangial cells. Pharmazie,2009.64(10):p.680-4.
    [19]Peng, Z.Z., et al., Fluorofenidone attenuates collagen I and transforming growth factor-betal expression through a nicotinamide adenine dinucleotide phosphate oxidase-dependent way in NRK-52E cells. Nephrology (Carlton),2009.14(6):p. 565-72.
    [20]Manucha, W., Biochemical-molecular markers in unilateral ureteral obstruction. Biocell,2007.31(1):p.1-12.
    [21]Radford, M.J., et al., Predicting renal outcome in IgA nephropathy. J Am Soc Nephrol,1997.8(2):p.199-207.
    [22]Mizuguchi, Y., et al., Atorvastatin ameliorates renal tissue damage in unilateral ureteral obstruction. J Urol,2004.172(6 Pt 1):p.2456-9.
    [23]Cochrane, A.L., et al., Renal structural and functional repair in a mouse model of reversal of ureteral obstruction. J Am Soc Nephrol,2005.16(12):p.3623-30.
    [24]Chaabane, W., et al., Renal functional decline and glomerulotubular injury are arrested but not restored by release of unilateral ureteral obstruction (UUO). Am J Physiol Renal Physiol,2013.304(4):p. F432-9.
    [25]Szeto, C.C., et al., The safety and short-term efficacy of aliskiren in the treatment of immunoglobulin a nephropathy-a randomized cross-over study. PLoS One,2013.8(5):p. e62736.
    [26]Flammer, A.J., et al., Renin inhibition with aliskiren lowers circulating endothelial progenitor cells in patients with early atherosclerosis. J Hypertens, 2013.31(3):p.632-5.
    [27]Morishita, Y. and E. Kusano, Direct Renin inhibitor:aliskiren in chronic kidney disease. Nephrourol Mon,2013.5(1):p.668-72.
    [28]Sidharta, P.N., et al., Macitentan:entry-into-humans study with a new endothelin receptor antagonist. Eur J Clin Pharmacol,2011.67(10):p.977-84.
    [29]Hahm, K., et al., Alphav beta6 integrin regulates renal fibrosis and inflammation in Alport mouse. Am J Pathol,2007.170(1):p.110-25.
    [30]Trachtman, H., et al., A phase 1, single-dose study of fresolimumab, an anti-TGF-beta antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int,2011.79(11):p.1236-43.
    [31]Xu, Y., et al., BMP-7 counteracts TGF-betal-induced epithelial-to-mesenchymal transition in human renal proximal tubular epithelial cells. J Nephrol,2009.22(3):p.403-10.
    [32]Zeisberg, M., et al., BMP-7 counteracts TGF-betal-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med,2003.9(7): p.964-8.
    [33]Pradere, J.P., et al., LPA1 receptor activation promotes renal interstitial fibrosis. J Am Soc Nephrol,2007.18(12):p.3110-8.
    [34]Tager, A.M., et al., The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med,2008.14(1):p.45-54.
    [35]Fineschi, S., et al., In vivo investigations on anti-fibrotic potential of proteasome inhibition in lung and skin fibrosis. Am J Respir Cell Mol Biol, 2008.39(4):p.458-65.
    [36]Cho, M.E. and J.B. Kopp, Pirfenidone:an anti-fibrotic therapy for progressive kidney disease. Expert Opin Investig Drugs,2010.19(2):p.275-83.
    [37]Shimizu, T., et al., Pirfenidone prevents collagen accumulation in the remnant kidney in rats with partial nephrectomy. Kidney Int Suppl,1997.63:p. S239-43.
    [38]Shimizu, T., et al., Pirfenidone improves renal function and fibrosis in the post-obstructed kidney. Kidney Int,1998.54(1):p.99-109.
    [39]Miric, G., et al., Reversal of cardiac and renal fibrosis by pirfenidone and spironolactone in streptozotocin-diabetic rats. Br J Pharmacol,2001.133(5):p. 687-94.
    [40]Park, H.S., et al., Pirfenidone suppressed the development of glomerulosclerosis in the FGS/Kist mouse. J Korean Med Sci,2003.18(4):p.527-33.
    [41]Leh, S., et al., Pirfenidone and candesartan ameliorate morphological damage in mild chronic anti-GBM nephritis in rats. Nephrol Dial Transplant,2005.20(1): p.71-82.
    [42]RamachandraRao, S.P., et al., Pirfenidone is renoprotective in diabetic kidney disease. J Am Soc Nephrol,2009.20(8):p.1765-75.
    [43]Takakuta, K., et al., Renoprotective properties of pirfenidone in subtotally nephrectomized rats. Eur J Pharmacol,2010.629(1-3):p.118-24.
    [44]Sharma, K., et al., Pirfenidone for diabetic nephropathy. J Am Soc Nephrol, 2011.22(6):p.1144-51.
    [45]Shepler, B., et al., Update on potential drugs for the treatment of diabetic kidney disease. Clin Ther,2012.34(6):p.1237-46.
    [46]Silverstein, D.M., et al., Altered expression of immune modulator and structural genes in neonatal unilateral ureteral obstruction. Kidney Int,2003.64(1):p.25-35.
    [47]Chevalier, R.L., M.S. Forbes and B.A. Thornhill, Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int, 2009.75(11):p.1145-52.
    [48]Zeisberg, M., et al., Renal fibrosis. Extracellular matrix microenvironment regulates migratory behavior of activated tubular epithelial cells. Am J Pathol, 2002.160(6):p.2001-8.
    [49]Yoshioka, K., et al., Distribution of type I collagen in human kidney diseases in comparison with type Ⅲ collagen. J Pathol,1990.162(2):p.141-8.
    [50]Aros, C. and G. Remuzzi, The renin-angiotensin system in progression, remission and regression of chronic nephropathies. J Hypertens Suppl,2002. 20(3):p. S45-53.
    [51]Ruster, C. and G. Wolf, Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol,2006.17(11):p.2985-91.
    [52]Zaman, M.A., S. Oparil and D.A. Calhoun, Drugs targeting the renin-angiotensin-aldosterone system. Nat Rev Drug Discov,2002.1(8):p.621-36.
    [53]Parving, H.H., et al., Baseline characteristics in the Aliskiren Trial in Type 2 Diabetes Using Cardio-Renal Endpoints (ALTITUDE). J Renin Angiotensin Aldosterone Syst,2012.13(3):p.387-93.
    [54]McMurray, J.J., et al., Aliskiren, ALTITUDE, and the implications for ATMOSPHERE. Eur J Heart Fail,2012.14(4):p.341-3.
    [55]Javelaud, D. and A. Mauviel, Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis. Oncogene,2005.24(37):p.5742-50.
    [56]Salinas-Sanchez, A.S., et al., [Role of mitogen-activated protein kinase (MAPK) in the sporadic renal cell carcinoma]. Actas Urol Esp,2012.36(2):p.99-103.
    [57]Tian, W., Z. Zhang and D.M. Cohen, MAPK signaling and the kidney. Am J Physiol Renal Physiol,2000.279(4):p. F593-604.
    [58]Lakshmanan, A.P., et al., Modulation of AT-1R/MAPK cascade by an olmesartan treatment attenuates diabetic nephropathy in streptozotocin-induced diabetic mice. Mol Cell Endocrinol,2012.348(1):p.104-11.
    [59]Rodriguez-Pena, A.B., et al., Activation of Erkl/2 and Akt following unilateral ureteral obstruction. Kidney Int,2008.74(2):p.196-209.
    [60]Su, Z., J. Zimpelmann and K.D. Burns, Angiotensin-(1-7) inhibits angiotensin II-stimulated phosphorylation of MAP kinases in proximal tubular cells. Kidney Int,2006.69(12):p.2212-8.
    [61]Liu, Y., et al., Rosiglitazone inhibits transforming growth factor-betal mediated fibrogenesis in ADPKD cyst-lining epithelial cells. PLoS One,2011.6(12):p. e28915.
    [62]Harris, R.C. and E.G. Neilson, Toward a unified theory of renal progression. Annu Rev Med,2006.57:p.365-80.
    [63]Chang, L. and M. Karin, Mammalian MAP kinase signalling cascades. Nature, 2001.410(6824):p.37-40.
    [64]Tharaux, P.L., et al., Angiotensin Ⅱ activates collagen I gene through a mechanism involving the MAP/ER kinase pathway. Hypertension,2000.36(3): p.330-6.
    [65]Wolf, G., Angiotensin Ⅱ as a renal growth factor. Contrib Nephrol,2001(135): p.92-110.
    [66]Remuzzi, G., et al., The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease. Kidney Int Suppl,2005(99):p. S57-65.
    [67]Ruiz-Ortega, M., et al., Proinflammatory actions of angiotensins. Curr Opin Nephrol Hypertens,2001.10(3):p.321-9.
    [68]Mezzano, S.A., M. Ruiz-Ortega and J. Egido, Angiotensin Ⅱ and renal fibrosis. Hypertension,2001.38(3 Pt 2):p.635-8.
    [69]Lavoz, C., et al., Angiotensin Ⅱ contributes to renal fibrosis independently of Notch pathway activation. PLoS One,2012.7(7):p. e40490.
    [70]Gaedeke, J., et al., Angiotensin Ⅱ, TGF-beta and renal fibrosis. Contrib Nephrol, 2001(135):p.153-60.
    [71]Yuan, B., et al., Gene expression reveals vulnerability to oxidative stress and interstitial fibrosis of renal outer medulla to nonhypertensive elevations of ANG II. Am J Physiol Regul Integr Comp Physiol,2003.284(5):p. R1219-30.
    [72]Hannken, T., et al., Reactive oxygen species stimulate p44/42 mitogen-activated protein kinase and induce p27(Kipl):role in angiotensin Ⅱ-mediated hypertrophy of proximal tubular cells. J Am Soc Nephrol,2000.11(8):p.1387-97.
    [73]Kyriakis, J.M. and J. Avruch, Mammalian MAPK signal transduction pathways activated by stress and inflammation:a 10-year update. Physiol Rev,2012. 92(2):p.689-737.
    [74]Kutz, S.M., et al., TGF-betal-induced PAI-1 gene expression requires MEK activity and cell-to-substrate adhesion. J Cell Sci,2001.114(Pt 21):p.3905-14.
    [75]Liu, G.X., et al., Disruption of Smad7 promotes ANG Ⅱ-mediated renal inflammation and fibrosis via Spl-TGF-beta/Smad3-NF.kappaB-dependent mechanisms in mice. PLoS One,2013.8(1):p. e53573.
    [1]Zhang, Q.L. and D. Rothenbacher, Prevalence of chronic kidney disease in population-based studies:systematic review. BMC Public Health,2008.8:p. 117.
    [2]Go, A.S., et al., Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med,2004.351(13):p.1296-305.
    [3]Liu, Y., Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol, 2011.7(12):p.684-96.
    [4]Boor, P., T. Ostendorf and J. Floege, Renal fibrosis:novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol,2010.6(11):p.643-56.
    [5]Nangaku, M., Chronic hypoxia and tubulointerstitial injury:a final common pathway to end-stage renal failure. J Am Soc Nephrol,2006.17(1):p.17-25.
    [6]Nath, K.A., Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis,1992.20(1):p.1-17.
    [7]Risdon, R.A., J.C. Sloper and H.E. De Wardener, Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis. Lancet,1968.2(7564):p.363-6.
    [8]Bazzi, C., et al., Characterization of proteinuria in primary glomerulonephritides. SDS-PAGE patterns:clinical significance and prognostic value of low molecular weight ("tubular") proteins. Am J Kidney Dis,1997.29(1):p.27-35.
    [9]Woo, K.T., et al., Pattern of proteinuria in IgA nephritis by SDS-PAGE:clinical significance. Clin Nephrol,1991.36(1):p.6-11.
    [10]Cochrane, A.L., et al., Renal structural and functional repair in a mouse model of reversal of ureteral obstruction. J Am Soc Nephrol,2005.16(12):p.3623-30.
    [11]Chaabane, W., et al., Renal functional decline and glomerulotubular injury are arrested but not restored by release of unilateral ureteral obstruction (UUO). Am J Physiol Renal Physiol,2013.304(4):p. F432-9.
    [12]Harris, R.C. and E.G. Neilson, Toward a unified theory of renal progression. Annu Rev Med,2006.57:p.365-80.
    [13]Kelly, K.J. and J.H. Dominguez, Rapid progression of diabetic nephropathy is linked to inflammation and episodes of acute renal failure. Am J Nephrol,2010. 32(5):p.469-75.
    [14]Nishida, M. and K. Hamaoka, Macrophage phenotype and renal fibrosis in obstructive nephropathy. Nephron Exp Nephrol,2008.110(1):p. e31-6.
    [15]Nishida, M., et al., Absence of angiotensin II type 1 receptor in bone marrow-derived cells is detrimental in the evolution of renal fibrosis. J Clin Invest,2002. 110(12):p.1859-68.
    [16]Wada, T., et al., Gene therapy via blockade of monocyte chemoattractant protein-1 for renal fibrosis. J Am Soc Nephrol,2004.15(4):p.940-8.
    [17]Sung, S.A., et al., Reduction of renal fibrosis as a result of liposome encapsulated clodronate induced macrophage depletion after unilateral ureteral obstruction in rats. Nephron Exp Nephrol,2007.105(1):p. e1-9.
    [18]Nishida, M. and K. Hamaoka, Macrophage phenotype and renal fibrosis in obstructive nephropathy. Nephron Exp Nephrol,2008.110(1):p. e31-6.
    [19]Anders, H.J. and M. Ryu, Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int,2011.80(9):p.915-25.
    [20]Nishida, M., et al., Adoptive transfer of macrophages ameliorates renal fibrosis in mice. Biochem Biophys Res Commun,2005.332(1):p.11-6.
    [21]Nishida, M., et al., MMP-2 inhibition reduces renal macrophage infiltration with increased fibrosis in UUO. Biochem Biophys Res Commun,2007.354(1):p. 133-9.
    [22]Cochrane, A.L., et al., Renal structural and functional repair in a mouse model of reversal of ureteral obstruction. J Am Soc Nephrol,2005.16(12):p.3623-30.
    [23]Kushiyama, T., et al., Alteration in the phenotype of macrophages in the repair of renal interstitial fibrosis in mice. Nephrology (Carlton),2011.16(5):p.522-35.
    [24]Ricardo, S.D., H. van Goor and A.A. Eddy, Macrophage diversity in renal injury and repair. J Clin Invest,2008.118(11):p.3522-30.
    [25]Biswas, S.K., et al., Macrophage polarization and plasticity in health and disease. Immunol Res,2012.
    [26]Mantovani, A., et al., Macrophage polarization:tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol, 2002.23(11):p.549-55.
    [27]Chen, Y., et al., A regulatory role for macrophage class A scavenger receptors in TLR4-mediated LPS responses. Eur J Immunol,2010.40(5):p.1451-60.
    [28]Gordon, S., Alternative activation of macrophages. Nat Rev Immunol,2003. 3(1):p.23-35.
    [29]Liu, L., et al., CD4+ T Lymphocytes, especially Th2 cells, contribute to the progress of renal fibrosis. Am J Nephrol,2012.36(4):p.386-96.
    [30]Tapmeier, T.T., et al., Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction. Kidney Int,2010.78(4):p.351-62.
    [31]Reilkoff, R.A., R. Bucala and E.L. Herzog, Fibrocytes:emerging effector cells in chronic inflammation. Nat Rev Immunol,2011.11(6):p.427-35.
    [32]Picard, N., et al., Origin of renal myofibroblasts in the model of unilateral ureter obstruction in the rat. Histochem Cell Biol,2008.130(1):p.141-55.
    [33]Kisseleva, T. and D.A. Brenner, Mechanisms of fibrogenesis. Exp Biol Med (Maywood),2008.233(2):p.109-22.
    [34]Sakai, N., et al., The renin-angiotensin system contributes to renal fibrosis through regulation of fibrocytes. J Hypertens,2008.26(4):p.780-90.
    [35]Sakai, N., et al., Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR7 signaling regulates fibrocytes in renal fibrosis. Proc Natl Acad Sci U S A,2006. 103(38):p.14098-103.
    [36]Veerappan, A., et al., Mast cells are required for the development of renal fibrosis in the rodent unilateral ureteral obstruction model. Am J Physiol Renal Physiol,2012.302(1):p. F192-204.
    [37]Okusa, M.D. and L. Li, Dendritic cells in acute kidney injury:cues from the microenvironment. Trans Am Clin Climatol Assoc,2012.123:p.54-62; discussion 62-3.
    [38]Rysz, J., et al., Blood serum levels of IL-2, IL-6, IL-8, TNF-alpha and IL-lbeta in patients on maintenance hemodialysis. Cell Mol Immunol,2006.3(2):p.151-4.
    [39]Yamagishi, H., et al., Genetically modified bone marrow-derived vehicle cells site specifically deliver an anti-inflammatory cytokine to inflamed interstitium of obstructive nephropathy. J Immunol,2001.166(1):p.609-16.
    [40]Liu, F., et al., C-reactive protein promotes diabetic kidney disease in a mouse model of type 1 diabetes. Diabetologia,2011.54(10):p.2713-23.
    [41]Li, Z.I., et al., C-reactive protein promotes acute renal inflammation and fibrosis in unilateral ureteral obstructive nephropathy in mice. Lab Invest,2011.91(6):p. 837-51.
    [42]Elmarakby, A.A., et al., TNF-alpha inhibition reduces renal injury in DOCA-salt hypertensive rats. Am J Physiol Regul Integr Comp Physiol,2008.294(1):p. R76-83.
    [43]Meldrum, K.K., et al., TNF-alpha neutralization decreases nuclear factor-kappaB activation and apoptosis during renal obstruction. J Surg Res,2006. 131(2):p.182-8.
    [44]De Rycke, L., et al., The effect of TNFalpha blockade on the antinuclear antibody profile in patients with chronic arthritis:biological and clinical implications. Lupus,2005.14(12):p.931-7.
    [45]Bani-Hani, A.H., et al., Cytokines in epithelial-mesenchymal transition:a new insight into obstructive nephropathy. J Urol,2008.180(2):p.461-8.
    [46]Guo, G., et al., Role of TNFR1 and TNFR2 receptors in tubulointerstitial fibrosis of obstructive nephropathy. Am J Physiol,1999.277(5 Pt 2):p. F766-72.
    [47]Therrien, F.J., et al., Neutralization of tumor necrosis factor-alpha reduces renal fibrosis and hypertension in rats with renal failure. Am J Nephrol,2012.36(2): p.151-61.
    [48]Misseri, R., et al., TNF-alpha mediates obstruction-induced renal tubular cell apoptosis and proapoptotic signaling. Am J Physiol Renal Physiol,2005.288(2): p.F406-11.
    [49]Wynn, T.A. and T.R. Ramalingam, Mechanisms of fibrosis:therapeutic translation for fibrotic disease. Nat Med,2012.18(7):p.1028-40.
    [50]Raghu, G., et al., Treatment of idiopathic pulmonary fibrosis with etanercept:an exploratory, placebo-controlled trial. Am J Respir Crit Care Med,2008.178(9): p.948-55.
    [51]Gasse, P., et al., IL-1Rl/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest,2007.117(12):p. 3786-99.
    [52]Yamagishi, H., et al., Genetically modified bone marrow-derived vehicle cells site specifically deliver an anti-inflammatory cytokine to inflamed interstitium of obstructive nephropathy. J Immunol,2001.166(1):p.609-16.
    [53]Vesey, D.A., et al., Interleukin-lbeta stimulates human renal fibroblast proliferation and matrix protein production by means of a transforming growth factor-beta-dependent mechanism. J Lab Clin Med,2002.140(5):p.342-50.
    [54]Fan, J.M., et al., Interleukin-1 induces tubular epithelial-myofibroblast transdifferentiation through a transforming growth factor-betal-dependent mechanism in vitro. Am J Kidney Dis,2001.37(4):p.820-31.
    [55]Elewa, U., et al., Cardiovascular risk biomarkers in CKD:the inflammation link and the road less traveled. Int Urol Nephrol,2012.44(6):p.1731-44.
    [56]Zhang, W., et al., Interleukin 6 underlies angiotensin II-induced hypertension and chronic renal damage. Hypertension,2012.59(1):p.136-44.
    [57]Dai, Y., et al., A2B adenosine receptor-mediated induction of IL-6 promotes CKD. J Am Soc Nephrol,2011.22(5):p.890-901.
    [58]Segerer, S. and P.J. Nelson, Chemokines in renal diseases. ScientificWorl-dJournal,2005.5:p.835-44.
    [59]Segerer, S., et al., CXCR3 is involved in tubulointerstitial injury in human glomerulonephritis. Am J Pathol,2004.164(2):p.635-49.
    [60]Yoshimoto, K., et al., CD68 and MCP-1/CCR2 expression of initial biopsies reflect the outcomes of membranous nephropathy. Nephron Clin Pract,2004. 98(1):p. c25-34.
    [61]Segerer, S., et al., Expression of the fractalkine receptor (CX3CR1) in human kidney diseases. Kidney Int,2002.62(2):p.488-95.
    [62]Vielhauer, V., et al., Obstructive nephropathy in the mouse:progressive fibrosis correlates with tubulointerstitial chemokine expression and accumulation of CC chemokine receptor 2-and 5-positive leukocytes. J Am Soc Nephrol,2001. 12(6):p.1173-87.
    [63]Kaneto, H., et al., [mRNA expression of chemokines in rat kidneys with ureteral obstruction]. Nihon Hinyokika Gakkai Zasshi,2000.91(2):p.69-74.
    [64][64]. Vielhauer, V., et al., Obstructive nephropathy in the mouse: progressive fibrosis correlates with tubulointerstitial chemokine expression and accumulation of CC chemokine receptor 2-and 5-positive leukocytes. J Am Soc Nephrol,2001.12(6):p.1173-87.
    [65]Pittock, S.T., et al., MCP-1 is up-regulated in unstressed and stressed HO-1 knockout mice:Pathophysiologic correlates. Kidney Int,2005.68(2):p.611-22.
    [66]Vielhauer, V., et al., Obstructive nephropathy in the mouse:progressive fibrosis correlates with tubulointerstitial chemokine expression and accumulation of CC chemokine receptor 2- and 5-positive leukocytes. J Am Soc Nephrol,2001. 12(6):p.1173-87.
    [67]Eis, V., et al., Chemokine receptor CCR1 but not CCR5 mediates leukocyte recruitment and subsequent renal fibrosis after unilateral ureteral obstruction. J Am Soc Nephrol,2004.15(2):p.337-47.
    [68]Anders, H.J., et al., A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. J Clin Invest,2002.109(2):p.251-9.
    [69]Kitagawa, K., et al., Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am J Pathol,2004.165(1):p.237-46.
    [70]Crisman, J.M., et al., Chemokine expression in the obstructed kidney. Exp Nephrol,2001.9(4):p.241-8.
    [71]Crisman, J.M., et al., Chemokine expression in the obstructed kidney. Exp Nephrol,2001.9(4):p.241-8.
    [72]Nakaya, I., et al., Blockade of IP-10/CXCR3 promotes progressive renal fibrosis. Nephron Exp Nephrol,2007.107(1):p. e12-21.
    [73]Hasegawa, H., et al., Antagonist of monocyte chemoattractant protein 1 ameliorates the initiation and progression of lupus nephritis and renal vasculitis in MRL/lpr mice. Arthritis Rheum,2003.48(9):p.2555-66.
    [74]Saiura, A., et al., Antimonocyte chemoattractant protein-1 gene therapy attenuates graft vasculopathy. Arterioscler Thromb Vasc Biol,2004.24(10):p. 1886-90.
    [75]Inoue, A., et al., Antagonist of fractalkine (CX3CL1) delays the initiation and ameliorates the progression of lupus nephritis in MRL/lpr mice. Arthritis Rheum,2005.52(5):p.1522-33.
    [76]Chow, F.Y., et al., Monocyte chemoattractant protein-1-induced tissue inflammation is critical for the development of renal injury but not type 2 diabetes in obese db/db mice. Diabetologia,2007.50(2):p.471-80.
    [77]Chow, F.Y., et al., Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int, 2006.69(1):p.73-80.
    [78]Panzer, U., et al., Compartment-specific expression and function of the chemokine IP-10/CXCL10 in a model of renal endothelial microvascular injury. J Am Soc Nephrol,2006.17(2):p.454-64.
    [79]Furuichi, K., et al., Gene therapy expressing amino-terminal truncated monocyte chemoattractant protein-1 prevents renal ischemia-reperfusion injury. J Am Soc Nephrol,2003.14(4):p.1066-71.
    [80]Furuichi, K., et al., CCR2 signaling contributes to ischemia-reperfusion injury in kidney. J Am Soc Nephrol,2003.14(10):p.2503-15.
    [81]Miura, M., et al., Neutralization of Gro alpha and macrophage inflammatory protein-2 attenuates renal ischemia/reperfusion injury. Am J Pathol,2001. 159(6):p.2137-45.
    [82]Oh, D.J., et al., Fractalkine receptor (CX3CR1) inhibition is protective against ischemic acute renal failure in mice. Am J Physiol Renal Physiol,2008.294(1): P.F264-71.
    [83]Fiorina, P., et al., Role of CXC chemokine receptor 3 pathway in renal ischemic injury. J Am Soc Nephrol,2006.17(3):p.716-23.
    [84]Stroo, I., et al., Chemokine expression in renal ischemia/reperfusion injury is most profound during the reparative phase. Int Immunol,2010.22(6):p.433-42.
    [85]Mamuya, F.A. and M.K. Duncan, aV integrins and TGF-beta-induced EMT:a circle of regulation. J Cell Mol Med,2012.16(3):p.445-55.
    [86]Hahm, K., et al., Alphav beta6 integrin regulates renal fibrosis and inflammation in Alport mouse. Am J Pathol,2007.170(1):p.110-25.
    [87]Li, Y., et al., Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis. J Am Soc Nephrol,2009.20(9):p.1907-18.
    [88]Li, Y., et al., Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis. J Am Soc Nephrol,2009.20(9):p.1907-18.
    [89]Li, Y., et al., Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest,2003. 112(4):p.503-16.
    [90]Shikata, K., et al., L-selectin and its ligands mediate infiltration of mononuclear cells into kidney interstitium after ureteric obstruction. J Pathol,1999.188(1):p. 93-9.
    [91]Naruse, T., et al., P-selectin-dependent macrophage migration into the tubulointerstitium in unilateral ureteral obstruction. Kidney Int,2002.62(1):p. 94-105.
    [92]Lange-Sperandio, B., et al., Selectins mediate macrophage infiltration in obstructive nephropathy in newborn mice. Kidney Int,2002.61(2):p.516-24.
    [93]Morrissey, J.J. and S. Klahr, Differential effects of ACE and AT1 receptor inhibition on chemoattractant and adhesion molecule synthesis. Am J Physiol, 1998.274(3Pt2):p.F580-6.
    [94]Ricardo, S.D., et al., Expression of adhesion molecules in rat renal cortex during experimental hydronephrosis. Kidney Int,1996.50(6):p.2002-10.
    [95]Shappell, S.B., et al., Expression of adhesion molecules in kidney with experimental chronic obstructive uropathy:the pathogenic role of ICAM-1 and VCAM-1. Nephron,2000.85(2):p.156-66.
    [96]Yamagishi, H., et al., Genetically modified bone marrow-derived vehicle cells site specifically deliver an anti-inflammatory cytokine to inflamed interstitium of obstructive nephropathy. J Immunol,2001.166(1):p.609-16.
    [97]Cheng, Q.L., et al., Effects of ICAM-1 antisense oligonucleotide on the tubulointerstitium in mice with unilateral ureteral obstruction. Kidney Int,2000. 57(1):p.183-90.
    [98]Ruiz-Ortega, M., et al., Proinflammatory actions of angiotensins. Curr Opin Nephrol Hypertens,2001.10(3):p.321-9.
    [99]Wolf, G., et al., Angiotensin Ⅱ activates nuclear transcription factor-kappaB through AT1 and AT2 receptors. Kidney Int,2002.61(6):p.1986-95.
    [100]Naito, T., et al., Angiotensin Ⅱ induces thrombospondin-1 production in human mesangial cells via p38 MAPK and JNK:a mechanism for activation of latent TGF-betal. Am J Physiol Renal Physiol,2004.286(2):p. F278-87.
    [101]Takeda, K., et al., Roles of MAPKKK ASK1 in stress-induced cell death. Cell Struct Funct,2003.28(1):p.23-9.
    [102]Nistala, R., et al., Renin-angiotensin-aldosterone system-mediated redox effects in chronic kidney disease. Transl Res,2009.153(3):p.102-13.
    [103]Nagase, R., et al., Phenotypic change of macrophages in the progression of diabetic nephropathy; sialoadhesin-positive activated macrophages are increased in diabetic kidney. Clin Exp Nephrol,2012.16(5):p.739-48.
    [104]Liu, G.X., et al., Disruption of Smad7 promotes ANG Ⅱ-mediated renal inflammation and fibrosis via Spl-TGF-beta/Smad3-NF.kappaB-dependent mechanisms in mice. PLoS One,2013.8(1):p. e53573.
    [105]Liu, Z., X.R. Huang and H.Y. Lan, Smad3 mediates ANG Ⅱ-induced hypertensive kidney disease in mice. Am J Physiol Renal Physiol,2012.302(8): p. F986-97.
    [106]Liao, T.D., et al., Role of inflammation in the development of renal damage and dysfunction in angiotensin Ⅱ-induced hypertension. Hypertension,2008.52(2): p.256-63.
    [107]Bethunaickan, R., et al., Anti-tumor necrosis factor alpha treatment of interferon-alpha-induced murine lupus nephritis reduces the renal macrophage response but does not alter glomerular immune complex formation. Arthritis Rheum,2012.64(10):p.3399-408.
    [108]Zheng, L., R. Sinniah and S.I. Hsu, In situ glomerular expression of activated NF-kappaB in human lupus nephritis and other non-proliferative proteinuric glomerulopathy. Virchows Arch,2006.448(2):p.172-83.
    [109]Kaneko, Y., et al., Macrophage metalloelastase as a major factor for glomerular injury in anti-glomerular basement membrane nephritis. J Immunol,2003. 170(6):p.3377-85.
    [110]Rastaldi, M.P., et al., Glomerular monocyte-macrophage features in ANCA-positive renal vasculitis and cryoglobulinemic nephritis. J Am Soc Nephrol, 2000.11(11):p.2036-43.
    [111]Balakumar, P., H.K. Bishnoi and N. Mahadevan, Telmisartan in the management of diabetic nephropathy:a contemporary view. Curr Diabetes Rev, 2012.8(3):p.183-90.
    [112]Choi, D.E., et al., Aliskiren ameliorates renal inflammation and fibrosis induced by unilateral ureteral obstruction in mice. J Urol,2011.186(2):p.694-701.
    [113]Zeisberg, M. and G.A. Muller, Mechanistic insights into the antifibrotic activity of aliskiren in the kidney. Hypertens Res,2012.35(3):p.266-8.
    [114]Pilz, B., et al., Aliskiren, a human renin inhibitor, ameliorates cardiac and renal damage in double-transgenic rats. Hypertension,2005.46(3):p.569-76.
    [115]McMurray, J.J., et al., Aliskiren, ALTITUDE, and the implications for ATMOSPHERE. Eur J Heart Fail,2012.14(4):p.341-3.
    [116]Vogt, L., G.D. Laverman and G. Navis, Time for a comeback of NSAIDs in proteinuric chronic kidney disease? Neth J Med,2010.68(12):p.400-7.
    [117]Badri, S., et al., A review of the potential benefits of pentoxifylline in diabetic and non-diabetic proteinuria. J Pharm Pharm Sci,2011.14(1):p.128-37.
    [118]Lin, S.L., et al., Pentoxifylline attenuated the renal disease progression in rats with remnant kidney. J Am Soc Nephrol,2002.13(12):p.2916-29.
    [119]Chen, Y.M., et al., Pentoxifylline suppresses renal tumour necrosis factor-alpha and ameliorates experimental crescentic glomerulonephritis in rats. Nephrol Dial Transplant,2004.19(5):p.1106-15.
    [120]Han, K.H., et al., Prolonged administration enhances the renoprotective effect of pentoxifylline via anti-inflammatory activity in streptozotocin-induced diabetic nephropathy. Inflammation,2010.33(3):p.137-43.
    [121]Gonzalez-Espinoza, L., et al., Pentoxifylline decreases serum levels of tumor necrosis factor alpha, interleukin 6 and C-reactive protein in hemodialysis patients:results of a randomized double-blind, controlled clinical trial. Nephrol Dial Transplant,2012.27(5):p.2023-8.
    [122]Chen, Y.M., et al., Pentoxifylline ameliorates proteinuria through suppression of renal monocyte chemoattractant protein-1 in patients with proteinuric primary glomerular diseases. Kidney Int,2006.69(8):p.1410-5.
    [123]Shan, D., et al., Pentoxifylline for diabetic kidney disease. Cochrane Database Syst Rev,2012.2:p. CD006800.
    [124]Shepler, B., et al., Update on potential drugs for the treatment of diabetic kidney disease. Clin Ther,2012.34(6):p.1237-46.
    [125]Matsui, I., et al., Active vitamin D and its analogue,22-oxacalcitriol, ameliorate puromycin aminonucleoside-induced nephrosis in rats. Nephrol Dial Transplant, 2009.24(8):p.2354-61.
    [126]Tan, X., X. Wen and Y. Liu, Paricalcitol inhibits renal inflammation by promoting vitamin D receptor-mediated sequestration of NF-kappaB signaling. J Am Soc Nephrol,2008.19(9):p.1741-52.
    [127]Zhang, Z., et al., Renoprotective role of the vitamin D receptor in diabetic nephropathy. Kidney Int,2008.73(2):p.163-71.
    [128]Agarwal, R., Vitamin D, proteinuria, diabetic nephropathy, and progression of CKD. Clin J Am Soc Nephrol,2009.4(9):p.1523-8.
    [129]Jun, M., et al., Antioxidants for chronic kidney disease. Cochrane Database Syst Rev,2012.10:p. CD008176.
    [130]Sahni, N., et al., Intake of antioxidants and their status in chronic kidney disease patients. J Ren Nutr,2012.22(4):p.389-99.
    [131]Richeldi, L. and R.M. du Bois, Pirfenidone in idiopathic pulmonary fibrosis:the CAPACITY program. Expert Rev Respir Med,2011.5(4):p.473-81.
    [132]Alcantar-Diaz, B.E., et al., Genotoxic evaluation of pirfenidone using erythrocyte rodent micronucleus assay. Food Chem Toxicol,2012.50(8):p. 2760-5.
    [133]Cho, M.E. and J.B. Kopp, Pirfenidone:an anti-fibrotic therapy for progressive kidney disease. Expert Opin Investig Drugs,2010.19(2):p.275-83.
    [134]Shimizu, T., et al., Pirfenidone prevents collagen accumulation in the remnant kidney in rats with partial nephrectomy. Kidney Int Suppl,1997.63:p. S239-43.
    [135]Shimizu, T., et al., Pirfenidone improves renal function and fibrosis in the post-obstructed kidney. Kidney Int,1998.54(1):p.99-109.
    [136]Miric, G., et al., Reversal of cardiac and renal fibrosis by pirfenidone and spironolactone in streptozotocin-diabetic rats. Br J Pharmacol,2001.133(5):p. 687-94.
    [137]Park, H.S., et al., Pirfenidone suppressed the development of glomerulosclerosis in the FGS/Kist mouse. J Korean Med Sci,2003.18(4):p.527-33.
    [138]Leh, S., et al., Pirfenidone and candesartan ameliorate morphological damage in mild chronic anti-GBM nephritis in rats. Nephrol Dial Transplant,2005.20(1): p.71-82.
    [139]RamachandraRao, S.P., et al., Pirfenidone is renoprotective in diabetic kidney disease. J Am Soc Nephrol,2009.20(8):p.1765-75.
    [140]Takakuta, K., et al., Renoprotective properties of pirfenidone in subtotally nephrectomized rats. Eur J Pharmacol,2010.629(1-3):p.118-24.
    [141]Sharma, K., et al., Pirfenidone for diabetic nephropathy. J Am Soc Nephrol, 2011.22(6):p.1144-51.
    [142]Goicoechea, M., et al., Effects of atorvastatin on inflammatory and fibrinolytic parameters in patients with chronic kidney disease. J Am Soc Nephrol,2006. 17(12 Suppl 3):p. S231-5.
    [143]Wang, Y., et al., The effect of atorvastatin on mRNA levels of inflammatory genes expression in human peripheral blood lymphocytes by DNA microarray. Biomed Pharmacother,2011.65(2):p.118-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700