用户名: 密码: 验证码:
等通道转角挤压(ECAP)铝合金的力学性能和断裂行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等通道转角挤压(Equal Channel Angular Pressing–ECAP)技术是制备超细晶金属材料的重要方法之一。本论文以铸态Al-0.63%Cu、Al-3.9%Cu和Al-2.77%Mg合金为实验材料,观察了ECAP过程合金的组织变化,系统研究了ECAP后合金的拉伸、疲劳、冲击性能以及其变形与断裂机制。
     上述合金经四次ECAP后,晶粒都细化到了亚微米级别。而且,铸态Al-3.9%Cu合金中的沿晶界分布的粗大θ相被挤碎,成为了弥散分布的颗粒。因此,合金拉伸强度增加,但延伸率降低。多次挤压后,合金的静力韧度增大。Al-2.77%Mg合金ECAP四次之后在523K退火处理,得到了具有双态晶粒度的组织,提高了材料的综合力学性能。
     合金的拉伸断裂显示出不同的特征。对于Al-0.63%Cu合金,随着挤压道次增多,拉伸断裂从颈缩方式转变为剪切方式。对于Al-3.9%Cu合金,铸态时表现为正断,而ECAP之后则以剪切方式断裂。铸态Al-2.77%Mg合金拉伸时发生颈缩断裂,经不同道次挤压后则显示为具有不同剪切断裂角的剪切断裂。论文中对合金的拉伸断裂机制进行了探讨。
     在应变疲劳实验中,Al-0.63%Cu合金表现出明显的循环软化行为。多次ECAP处理使合金滞回环的形状系数变小,同时,使合金的包申格效应增强。疲劳后,在ECAP后合金的XZ面上出现了与循环应力轴成45°夹角的剪切带,而在XY面上,剪切带垂直于循环应力轴。研究表明,剪切带的方向和ECAP模具的剪切平面之间没有对应关系。另外,疲劳裂纹也可以在剪切带区域外出现。
     在应力疲劳实验中,Al-2.77%Mg合金的疲劳寿命随着ECAP道次的增多而明显提高。ECAP一次的合金表面有沿着剪切带出现的疲劳裂纹,也有横穿过剪切带的之字形疲劳裂纹。在ECAP四道次的Al-2.77%Mg合金疲劳断口上可以看到明显的疲劳裂纹萌生区、扩展区和最后瞬断区。
     ECAP处理增强了铸态Al-0.63%Cu和Al-2.77%Mg合金的冲击性能。由于Al-3.9%Cu合金中含有较多的第二相,在ECAP后其冲击性能没有提高。研究表明,合金的冲击性能和静力韧度具有一定的相关性。
Equal channel angular pressing (ECAP) technique is one of the important techniques for producing ultrafine-grained (UFG) materials. In this paper, cast alloys Al-0.63%Cu, Al-3.9%Cu and Al-2.77%Mg were subjected to ECAP for the experimental materials. After ECAP, the microstructures of the alloys were observed, and tension, fatigue and impact tests were performed, to investigate the corresponding mechanical properties as well as deformation and fracture mechanisms. The following conclusions can be drawn:
     The grains are refined to submicron-meter scale after four ECAP passes. In addition, the precipitation phaseθalong grain boundaries in cast alloy Al-3.9%Cu can be broken into disperse particles. As a result, the tensile strength is improved, while elongation decreases. It is noted that the static toughness of the alloys increases after multi-passes. For Al-2.77%Mg alloy subjected to four ECAP passes and subsequent annealing at 523K, comprehensive mechanical properties are enhanced due to the bimodal distribution of grain size.
     The tensile failure modes of the alloys display different features. For Al-0.63% Cu alloy, necking degree decreases gradually, and the shear feature becomes more obvious with increasing the number of ECAP passes. For Al-3.9%Cu alloy, the cast sample displays fracture normal to the tensile axis, while the ECAPed samples fail in shear mode. For Al-2.77%Mg alloy, the cast sample exhibits obvious necking before failure, while the samples subjected to different number of ECAP passes display shear fracture with different shear fracture angles. Based on the results above, the tensile failure mechanisms of the ECAPed alloy are discussed.
     The ECAPed Al-0.63%Cu alloy displays obvious cyclic softening during strain-controlled fatigue tests. Meanwhile, It is found that multipass ECAP can decrease the shape parameter of hysteresis loops, indicative of a large Bauschinger effect. The shear bands orient at about 45°to the cyclic loading axis on XZ-plane, while make an angle of around 90°with respect to the cyclic loading axis on XY-plane. The current research proves that there is no one-to-one relationship between the shear bands induced by fatigue and the shear plane in the last ECAP pass. In addition, it is noted that fatigue cracks can also occur in the area away from shear bands.
     Stress-controlled fatigue life of Al-2.77%Mg alloy increases with increasing the number of ECAP passes. Meanwhile, It is found that fatigue cracks can propagate along shear bands, or across the shear bands on the surface of the alloy ECAPed for one pass. The fatigue fractograph consists of several different zones, such as fatigue crack initiation, propagation and final fracture.
     Impact properties of Al-0.63%Cu and Al-2.77%Mg alloys are enhanced after ECAP. While for Al-3.9%Cu alloy, its impact toughness is not improved as a result of more second-phase in the alloy. It is shown that the impact properties have a close relation with the static toughness of the alloys.
引文
[1]冯端,师昌绪,刘治国,材料科学导论,北京:化学工业出版社,2002
    [2]Hall EO, The deformation and ageing of mild steel: Ⅲ discussion of results, Proceedings of the Physical Society B, 1951, 64: 747-753
    [3]Petch NJ, The cleavage strength of polycrystals, The Journal of the Iron&Steel Institute, 1953, 174: 25-28
    [4]Orowan, Symposium on internal stresses in metals and alloys, Institute of Metals, London, 1948
    [5]Valiev RZ, Islamgaliev RK, Alexandrov IV, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, 2000, 45 (2): 103-189
    [6]Valiev RZ,Alexandrov IV,剧烈塑性形变纳米材料(林柏年),北京:科学出版社,2006
    [7]黄崇湘,ECAP 过程中铜、不锈钢的结构演化和力学性能研究:[博士学位论文],沈阳;中国科学院金属研究所,2006
    [8]Saito Y, Utsunomiya H, Tsuji N, et al., Novel ultra-high straining process for bulk materials - Development of the accumulative roll-bonding (ARB) process, Acta Materialia, 1999, 47 (2): 579-583
    [9]Nishida Y, Arima H, Kim JC, et al., Rotary-die equal-channel angular pressing of an A1-7 mass% Si-0.35 mass% Mg alloy, Scripta Materialia, 2001, 45 (3): 261-266
    [10]Nakashima K, Horita Z, Nemoto M, et al., Development of a multi-pass facility for equal-channel angular pressing to high total strains, Materials Science and Engineering A, 2000, 281 (1-2): 82-87
    [11]Zhu YT, Jiang HG, Huang JY, et al., A new route to bulk nanostructured metals, Metallurgical and Materials Transactions A, 2001, 32 (6): 1559-1562
    [12]Lee JC, Seok HK, Suh JY, Microstructural evolutions of the Al strip prepared by cold rolling and continuous equal channel angular pressing, Acta Materialia, 2002, 50 (16): 4005-4019
    [13]Raab GJ, Valiev RZ, Lowe TC, et al., Continuous processing of ultrafine grained Al by ECAP-Conform, Materials Science and Engineering A, 2004, 382 (1-2): 30-34
    [14]Cherukuri B, Nedkova TS, Srinivasan R, A comparison of the properties of SPD-processed AA-6061 by equal-channel angular pressing, multi-axial compressions/forgings and accumulative roll bonding, Materials Science and Engineering A, 2005, 410: 394-397
    [15]Zehetbauer MJ, Stuwe HP, Vorhauer A, et al., The role of hydrostatic pressure in severe plastic deformation, Advanced Engineering Materials, 2003, 5 (5): 330-337
    [16]Segal VM, USSR Patent, No. 575892, 1977
    [17]Valiev RZ, Krasilnikov NA, Tsenev NK, Plastic-Deformation of Alloys with Submicron-Grained Structure, Materials Science and Engineering A, 1991, 137: 35-40
    [18]Valiev RZ, Korznikov AV, Mulyukov RR, Structure and Properties of Ultrafine-Grained Materials Produced by Severe Plastic-Deformation, Materials Science and Engineering A, 1993, 168 (2): 141-148
    [19]Kawazoe M, Shibata T, Mukai T, et al., Elevated temperature mechanical properties of AA5056 Al-Mg alloy processed by equal-channel-angular-extrusion, Scripta Materialia, 1997, 36 (6): 699-705
    [20]Mabuchi M, Iwasaki H, Higashi K, Microstructure and mechanical properties of 5056 Al alloy processed by equal channel angular extrusion, Nanostructured Materials, 1997, 8 (8): 1105-1111
    [21]Mukai T, Kawazoe M, Higashi K, Strain-rate dependence of mechanical properties in AA5056 Al-Mg alloy processed by equal-channel-angular-extrusion, Materials Science and Engineering A, 1998, 247 (1-2): 270-274
    [22]Chakkingal U, Suriadi AB, Thomson PF, Microstructure development during equal channel angular drawing of Al at room temperature, Scripta Materialia, 1998, 39 (6): 677-684
    [23]Markushev MV, Murashkin MY, Prangnell PB, et al., Structure and mechanical behaviour of an Al-Mg alloy after equal channel angular extrusion, Nanostructured Materials, 1999, 12 (5-8): 839-842
    [24]Vinogradov A, Nagasaki S, Patlan V, et al., Fatigue properties of 5056 Al-Mg alloy produced by equal-channel angular pressing, Nanostructured Materials, 1999, 11 (7): 925-934
    [25]Murayama M, Horita Z, Hono K, Microstructure of two-phase Al-1.7 at% Cu alloy deformed by equal-channel angular pressing, Acta Materialia, 2001, 49 (1): 21-29
    [26]Patlan V, Vinogradov A, Higashi K, et al., Overview of fatigue properties of fine grain 5056 Al-Mg alloy processed by equal-channel angular pressing, Materials Science and Engineering A, 2001, 300 (1-2): 171-182
    [27]Oh-ishi K, Horita Z, Smith DJ, et al., Grain boundary structure in Al-Mg and Al-Mg-Sc alloys after equal-channel angular pressing, Journal of Materials Research, 2001, 16 (2): 583-589
    [28]Chang SY, Lee JG, Park KT, et al., Microstructures and mechanical properties of equal channel angular pressed 5083 Al alloy, Materials Transactions, 2001, 42 (6): 1074-1080
    [29]Vevecka A, Cavaliere P, Cabbibo M, et al., Strengthening of a commercial Al-5754 alloy using equal-channel angular pressing, Journal of Materials Science Letters, 2001, 20 (17): 1601-1603
    [30]Horita Z, Fujinami T, Nemoto M, et al., Improvement of mechanical properties for Al alloys using equal-channel angular pressing, Journal of Materials Processing Technology, 2001, 117 (3): 288-292
    [31]Patlan V, Higashi K, Kitagawa K, et al., Cyclic response of fine grain 5056 Al-Mg alloy processed by equal-channel angular pressing, Materials Science and Engineering A, 2001, 319: 587-591
    [32]Moon BS, Kim HS, Hong SI, Plastic flow and deformation homogeneity of 6061 Al during equal channel angular pressing, Scripta Materialia, 2002, 46 (2): 131-136
    [33]Lee JC, Seok HK, Suh JY, et al., Structural evolution of a strip-cast Al alloy sheet processed by continuous equal-channel angular pressing, Metallurgical and Materials Transactions A, 2002, 33 (3): 665-673
    [34]Dupuy L, Blandin JJ, Damage sensitivity in a commercial Al alloy processed by equal channel angular extrusion, Acta Materialia, 2002, 50 (12): 3251-3264
    [35]Oh-ishi K, Zhilyaev AP, McNelley TR, Effect of strain path on evolution of deformation bands during ECAP of pure aluminum, Materials Science and Engineering A, 2005, 410: 183-187
    [36]Salem HG, Lyons JS, Effect of equal channel angular extrusion on the microstructure and superplasticity of an Al-Li alloy, Journal of Materials Engineering and Performance, 2002, 11 (4): 384-391
    [37]Salem AA, Langdon TG, McNelley TR, et al., Strain-path effects on the evolution of microstructure and texture during the severe-plastic deformation of aluminum, Metallurgical and Materials Transactions A, 2006, 37A (9): 2879-2891
    [38]Kim WJ, Kim JK, Park TY, et al., Enhancement of strength and superplasticity in a 6061 Al alloy processed by equal-channel-angular-pressing, Metallurgical and Materials Transactions A, 2002, 33 (10): 3155-3164
    [39]Chung CS, Kim JK, Kim HK, et al., Improvement of high-cycle fatigue life in a 6061 Al alloy produced by equal channel angular pressing, Materials Science and Engineering A, 2002, 337 (1-2): 39-44
    [40]Musin F, Kaibyshev R, Motohashi Y, et al., High strain rate superplasticity in an Al-Li-Mg alloy subjected to equal-channel angular extrusion, Materials Transactions, 2002, 43 (10): 2370-2377
    [41]Mazurina IA, Sitdikov OS, Kaybyshev RO, Evolution of the microstructure of the Al-Mg-Sc alloy upon equal-channel angular pressing, Physics of Metals and Metallography, 2002, 94 (4): 413-420
    [42]Munoz-Morris MA, Oca CG, Morris DG, Mechanical behaviour of dilute Al-Mg alloy processed by equal channel angular pressing, Scripta Materialia, 2003, 48 (3): 213-218
    [43]Liu SM, Wang ZG, Fatigue properties of 8090 Al-Li alloy processed by equal-channel angular pressing, Scripta Materialia, 2003, 48 (10): 1421-1426
    [44]Vinogradov A, Washikita A, Kitagawa K, et al., Fatigue life of fine-grain Al-Mg-Sc alloys produced by equal-channel angular pressing, Materials Science and Engineering A, 2003, 349 (1-2): 318-326
    [45]Kim WJ, Chung CS, Ma DS, et al., Optimization of strength and ductility of 2024 Al by equal channel angular pressing (ECAP) and post-ECAP aging, Scripta Materialia, 2003, 49 (4): 333-338
    [46]Perez CJL, Gonzalez P, Garces Y, Equal channel angular extrusion in a commercial Al-Mn alloy, Journal of Materials Processing Technology, 2003, 143: 506-511
    [47]Liu SM, Wang ZG, Low cycle fatigue properties of Al-Li-Cu-Mg-Zr alloy processed by equal-channel angular pressing, Journal of Materials Science, 2004, 39 (2): 733-735
    [48]Wang JT, Kang SB, Kim HW, Microstructure transformation from lamellar to equiaxed microduplex through equal-channel angular pressing in an Al-33 pct Cu eutectic alloy, Metallurgical and Materials Transactions A, 2004, 35A (1): 279-286
    [49]Markushev MV, Murashkin MY, Structure and mechanical properties of commercial Al-Mg 1560 alloy after equal-channel angular extrusion and annealing, Materials Science and Engineering A, 2004, 367 (1-2): 234-242
    [50]Shin DH, Hwang DY, Oh YJ, et al., High-strain-rate superplastic behavior of equal-channel angular-pressed 5083 Al-0.2 Wt Pct Sc, Metallurgical and Materials Transactions A, 2004, 35A (3): 825-837
    [51]Park KT, Myung SH, Shin DH, et al., Size and distribution of particles and voids pre-existing in equal channel angular pressed 5083 Al alloy: their effect on cavitation during low-temperature superplastic deformation, Materials Science and Engineering A, 2004, 371 (1-2): 178-186
    [52]Geng HB, Kang SB, Min BK, High temperature tensile behavior of ultra-fine grained Al-3.3Mg-0.2Sc-0.2Zr alloy by equal channel angular pressing, Materials Science and Engineering A, 2004, 373 (1-2): 229-238
    [53]Park KT, Lee HJ, Lee CS, et al., Enhancement of high strain rate superplastic elongation of a modified 5154 Al by subsequent rolling after equal channel angular pressing, Scripta Materialia, 2004, 51 (6): 479-483
    [54]Munoz-Morris MA, Oca CG, Gonzalez-Doncel G, et al., Microstructural evolution of dilute Al-Mg alloys during processing by equal channel angular pressing and during subsequent annealing, Materials Science and Engineering A, 2004, 375-77: 853-856
    [55]Kamachi M, Furukawa M, Horita Z, et al., Achieving superplasticity of Al-1%Mg-0.2%Sc alloy in plate samples processed by equal-channel angular pressing, Materials Transactions, 2004, 45 (8): 2521-2524
    [56]Ma AB, Suzuki K, Saito N, et al., Impact toughness of an ingot hypereutectic Al-23 mass% Si alloy improved by rotary-die equal-channel angular pressing, Materials Science and Engineering A, 2005, 399 (1-2): 181-189
    [57]Luis-Perez CJ, Luri-Irigoyen R, Gaston-Ochoa D, Finite element modelling of an Al-Mn alloy by equal channel angular extrusion (ECAE), Journal of Materials Processing Technology, 2004, 153-54: 846-852
    [58]Zhang ZG, Watanabe Y, Kim I, et al., Microstructure and refining performance of an Al-5Ti-0.25C refiner before and after equal-channel angular pressing, Metallurgical and Materials Transactions A, 2005, 36A (3A): 837-844
    [59]Kaibyshev R, Shipilova K, Musin F, et al., Continuous dynamic recrystallization in an Al-Li-Mg-Sc alloy during equal-channel angular extrusion, Materials Science and Engineering A, 2005, 396 (1-2): 341-351
    [60]Stolyarov VV, Brodova IG, Yablonskikh TI, et al., The effect of backpressure on the structure and mechanical properties of the Al-5 wt % Fe alloy produced by equal-channel angular pressing, Physics of Metals and Metallography, 2005, 100 (2): 182-191
    [61]Cai M, Lorimer GW, Effect of equal channel angular extrusion on the microstructures and properties of two extruded Al-Mg-Si alloys, Journal of Materials Science & Technology, 2005, 21 (5): 623-629
    [62]Kapoor R, Gupta C, Sharma G, et al., Deformation behavior of Al-1.5Mg processed using the equal channel angular pressing technique, Scripta Materialia, 2005, 53 (12): 1389-1393
    [63]Ma AB, Takagi M, Saito N, et al., Tensile properties of an Al-11 mass%Si alloy at elevated temperatures processed by rotary-die equal-channel angular pressing, Materials Science and Engineering A, 2005, 408 (1-2): 147-153
    [64]Zhang ZF, Wu SD, Li YJ, et al., Cyclic deformation and fatigue properties of Al-0.7 wt.% Cu alloy produced by equal channel angular pressing, Materials Science and Engineering A, 2005, 412 (1-2): 279-286
    [65]Zhang K, Alexandrov IV, Lu K, The X-ray diffraction study on a nanocrystalline Cu processed by equal-channel angular pressing, Nanostructured Materials, 1997, 9 (1-8): 347-350
    [66]Vinogradov A, Patlan V, Suzuki Y, et al., Structure and properties of ultra-fine grain Cu-Cr-Zr alloy produced by equal-channel angular pressing, Acta Materialia, 2002, 50 (7): 1639-1651
    [67]Liu ZY, Liang GX, Wang ED, et al., The effect of cumulative large plastic strain on the structure and properties of a Cu-Zn alloy, Materials Science and Engineering A, 1998, 242 (1-2): 137-140
    [68]Neishi K, Horita Z, Langdon TG, Achieving superplasticity in a Cu-40%Zn alloy through severe plastic deformation, Scripta Materialia, 2001, 45 (8): 965-970
    [69]Neishi K, Uchida T, Yamauchi A, et al., Low-temperature superplasticity in a Cu-Zn-Sn alloy processed by severe plastic deformation, Materials Science and Engineering A, 2001, 307 (1-2): 23-28
    [70]Wang G, Wu SD, Zuo L, et al., Microstructure, texture, grain boundaries in recrystallization regions in pure Cu ECAE samples, Materials Science and Engineering A, 2003, 346 (1-2): 83-90
    [71]Dalla Torre F, Lapovok R, Sandlin J, et al., Microstructures and properties of copper processed by equal channel angular extrusion for 1-16 passes, Acta Materialia, 2004, 52 (16): 4819-4832
    [72]Dalla Torre F, Pereloma EV, Davies CHJ, Strain rate sensitivity and apparent activation volume measurements on equal channel angular extruded Cu processed by one to twelve passes, Scripta Materialia, 2004, 51 (5): 367-371
    [73]Dalla Torre FH, Pereloma EV, Davies CHJ, Strain hardening behaviour and deformation kinetics of Cu deformed by equal channel angular extrusion from 1 to 16 passes, Acta Materialia, 2006, 54 (4): 1135-1146
    [74]Vinogradov A, Ishida T, Kitagawa K, et al., Effect of strain path on structure and mechanical behavior of ultrafine grain Cu-Cr alloy produced by equal-channel angular pressing, Acta Materialia, 2005, 53 (8): 2181-2192
    [75]Conrad H, Jung K, On the strain rate sensitivity of the flow stress of ultrafine-grained Cu processed by equal channel angular extrusion (ECAE), Scripta Materialia, 2005, 53 (5): 581-584
    [76]Schafler E, Steiner G, Korznikova E, et al., Lattice defect investigation of ECAP-Cu by means of X-ray line profile analysis, calorimetry and electrical resistometry, Materials Science and Engineering A, 2005, 410: 169-173
    [77]Fujita T, Nishimura S, Fujinami T, et al., Application of equal-channel angular pressing to Cu-Co alloy with ferromagnetic precipitates, Materials Science and Engineering A, 2006, 417 (1-2): 149-157
    [78]Wu SD, Wang ZG, Jiang CB, et al., Scanning electron microscopy-electron channelling contrast investigation of recrystallization during cyclic deformation of ultrafine grained copper processed by equal channel angular pressing, Philosophical Magazine Letters, 2002, 82 (10): 559-565
    [79]Wu SD, Wang ZG, Jiang CB, et al., The formation of PSB-like shear bands in cyclically deformed ultrafine grained copper processed by ECAP, Scripta Materialia, 2003, 48 (12): 1605-1609
    [80]Wu SD, Wang ZG, Jiang CB, et al., Shear bands in cyclically deformed ultrafine grained copper processed by ECAP, Materials Science and Engineering A, 2004, 387-89: 560-564
    [81]Huang CX, Wang K, Wu SD, et al., Deformation twinning in polycrystalline copper at room temperature and low strain rate, Acta Materialia, 2006, 54 (3): 655-665
    [82]Kim WJ, An CW, Kim YS, et al., Mechanical properties and microstructures of an AZ61 Mg Alloy produced by equal channel angular pressing, Scripta Materialia, 2002, 47 (1): 39-44
    [83]Kim WJ, Hong SI, Kim YS, et al., Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing, Acta Materialia, 2003, 51 (11): 3293-3307
    [84]Mathis K, Gubicza J, Nam NH, Microstructure and mechanical behavior of AZ91 Mg alloy processed by equal channel angular pressing, Journal of Alloys and Compounds, 2005, 394 (1-2): 194-199
    [85]Watanabe H, Somekawa H, Higashi K, Fine-grain processing by equal channel angular extrusion of rapidly quenched bulk Mg-Y-Zn alloy, Journal of Materials Research, 2005, 20 (1): 93-101
    [86]Somekawa H, Singh A, Mukai T, Deformation structure after fracture-toughness test of Mg-Al-Zn alloys processed by equal-channel-angular extrusion, Philosophical Magazine Letters, 2006, 86 (3): 195-204
    [87]Somekawa H, Mukai T, Fracture toughness in Mg-Al-Zn alloy processed by equal-channel-angular extrusion, Scripta Materialia, 2006, 54 (4): 633-638
    [88]Jin L, Lin DL, Mao DL, et al., Microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion, Materials Science and Engineering A, 2006, 423 (1-2): 247-252
    [89]Wei Q, Kecskes L, Jiao T, et al., Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation, Acta Materialia, 2004, 52 (7): 1859-1869
    [90]Han WZ, Zhang ZF, Wu SD, et al., Anisotropic compressive properties of iron subjected to single-pass equal-channel angular pressing, Philosophical Magazine Letters, 2006, 86 (7): 435-441
    [91]Shin DH, Kim BC, Kim YS, et al., Microstructural evolution in a commercial low carbon steel by equal channel angular pressing, Acta Materialia, 2000, 48 (9): 2247-2255
    [92]Shin DH, Kim YS, Lavernia EJ, Formation of fine cementite precipitates by static annealing of equal-channel angular pressed low-carbon steels, Acta Materialia, 2001, 49 (13): 2387-2393
    [93]Kim J, Kim I, Shin DH, Development of deformation structures in low carbon steel by equal channel angular pressing, Scripta Materialia, 2001, 45 (4): 421-426
    [94]Park KT, Han SY, Ahn BD, et al., Ultrafine grained dual phase steel fabricated by equal channel angular pressing and subsequent intercritical annealing, Scripta Materialia, 2004, 51 (9): 909-913
    [95]Huang CX, Gao YL, Yang G, et al., Bulk nanocrystalline stainless steel fabricated by equal channel angular pressing, Journal of Materials Research, 2006, 21 (7): 1687-1692
    [96]Tanaka T, Watanabe H, Higashi K, Microstructure in Zn-Al alloys after equal-channel-angular extrusion, Materials Transactions, 2003, 44 (9): 1891-1894
    [97]Purcek G, Altan BS, Miskioglu I, et al., Processing of eutectic Zn-5% Al alloy by equal-channel angular pressing, Journal of Materials Processing Technology, 2004, 148 (3): 279-287
    [98]Kumar P, Xu C, Langdon TG, The significance of grain boundary sliding in the superplastic Zn-22% Al alloy after processing by ECAP, Materials Science and Engineering A, 2005, 410: 447-450
    [99]Purcek G, Improvement of mechanical properties for Zn-Al alloys using equal-channel angular pressing, Journal of Materials Processing Technology, 2005, 169 (2): 242-248
    [100]Gray GT, Lowe TC, Cady CM, et al., Influence of strain rate & temperature on the mechanical response of ultrafine-grained Cu, Ni, and Al-4Cu-0.5Zr, Nanostructured Materials, 1997, 9 (1-8): 477-480
    [101]Neishi K, Horita Z, Langdon TG, Grain refinement of pure nickel using equal-channel angular pressing, Materials Science and Engineering A, 2002, 325 (1-2): 54-58
    [102]Zhilyaev AP, Kim BK, Szpunar JA, et al., The microstructural characteristics of ultratine-grained nickel, Materials Science and Engineering A, 2005, 391 (1-2): 377-389
    [103]Krasilnikov N, Lojkowski W, Pakiela Z, et al., Tensile strength and ductility of ultra-fine-grained nickel processed by severe plastic deformation, Materials Science and Engineering A, 2005, 397 (1-2): 330-337
    [104]Zhilyaev AP, Kim BK, Nurislamova GV, et al., Orientation imaging microscopy of ultrafine-grained nickel, Scripta Materialia, 2002, 46 (8): 575-580
    [105]Stolyarov VV, Zhu YT, Alexandrov IV, et al., Influence of ECAP routes on the microstructure and properties of pure Ti, Materials Science and Engineering A, 2001, 299 (1-2): 59-67
    [106]Kim I, Jeong WS, Kim J, et al., Deformation structures of pure Ti produced by equal channel angular pressing, Scripta Materialia, 2001, 45 (5): 575-581
    [107]Kim I, Kim J, Shin DH, et al., Effects of equal channel angular pressing temperature on deformation structures of pure Ti, Materials Science and Engineering A, 2003, 342 (1-2): 302-310
    [108]Stolyarov VV, Zhu YT, Alexandrov IV, et al., Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling, Materials Science and Engineering A, 2003, 343 (1-2): 43-50
    [109]Zhu YT, Huang JY, Gubicza J, et al., Nanostructures in Ti processed by severe plastic deformation, Journal of Materials Research, 2003, 18 (8): 1908-1917
    [110]Choi WS, Ryoo HS, Hwang SK, et al., Microstructure evolution in Zr under equal channel angular pressing, Metallurgical and Materials Transactions A, 2002, 33 (3): 973-980
    [111]Yu SH, Ryoo HS, Hwang SK, et al., Monte-Carlo modeling of grain growth in Zr equal channel angular pressed and recrystallized, Metals and Materials International, 2003, 9 (2): 107-114
    [112]Yu SH, Chun YB, Hwang SK, et al., Texture development and Monte-Carlo simulation of microstructure evolution in pure Zr grain-refined by equal channel angular pressing, Philosophical Magazine, 2005, 85 (2-3): 345-371
    [113]Wei Q, Ramesh KT, Ma E, et al., Plastic flow localization in bulk-tungsten with ultrafine microstructure, Applied Physics Letters, 2005, 86 (10): 101907
    [114]Wei Q, Jiao T, Ramesh KT, et al., Mechanical behavior and dynamic failure of high-strength ultrafine grained tungsten under uniaxial compression, Acta Materialia, 2006, 54 (1): 77-87
    [115]Semenova IP, Raab GI, Saitova LR, et al., The effect of equal-channel angular pressing on the structure and mechanical behavior of Ti-6A1-4V alloy, Materials Science and Engineering A, 2004, 387-89: 805-808
    [116]Kim SM, Kim J, Shin DH, et al., Microstructure development and segment formation during ECA pressing of Ti-6Al-4V alloy, Scripta Materialia, 2004, 50 (7): 927-930
    [117]Li Y, Langdon TG, Equal-channel angular pressing of an Al-6061 metal matrix composite, Journal of Materials Science, 2000, 35 (5): 1201-1204
    [118]Zheng MY, Kamado S, Kojima Y, In-situ quasicrystal-reinforced magnesium matrix composite processed by equal channel angular extrusion (ECAE), Journal of Materials Science, 2005, 40 (9-10): 2587-2590
    [119]Chen LJ, Ma CY, Stoica GM, et al., Mechanical behavior of a 6061 Al alloy and an Al2O3/6061 Al composite after equal-channel angular processing, Materials Science and Engineering A, 2005, 410: 472-475
    [120]Pushin VG, Stolyarov VV, Valiev RZ, et al., Nanostructured TiNi-based shape memory alloys processed by severe plastic deformation, Materials Science and Engineering A, 2005, 410: 386-389
    [121]Karaman I, Kulkarni AV, Luo ZP, Transformation behaviour and unusual twinning in a NiTi shape memory alloy ausformed using equal channel angular extrusion, Philosophical Magazine, 2005, 85 (16): 1729-1745
    [122]Segal VM, Materials Processing by Simple Shear, Materials Science and Engineering A, 1995, 197 (2): 157-164
    [123]Segal VM, Equal channel angular extrusion: from macromechanics to structure formation, Materials Science and Engineering A, 1999, 271 (1-2): 322-333
    [124]Segal VM, Severe plastic deformation: simple shear versus pure shear, Materials Science and Engineering A, 2002, 338 (1-2): 331-344
    [125]Iwahashi Y, Wang JT, Horita Z, et al., Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scripta Materialia, 1996, 35 (2): 143-146
    [126]Nemoto M, Horita Z, Furukawa M, et al., Equal-channel angular pressing: A novel tool for microstructural control, Metals and Materials International, 1998, 4 (6): 1181-1190
    [127]Horita Z, Furukawa M, Nemoto M, et al., Development of fine grained structures using severe plastic deformation, Materials Science and Technology, 2000, 16 (11-12): 1239-1245
    [128]Furukawa M, Horita Z, Langdon TG, Factors influencing microstructural development in equal-channel angular pressing, Metals and Materials International, 2003, 9 (2): 141-149
    [129]Furukawa M, Iwahashi Y, Horita Z, et al., The shearing characteristics associated with equal-channel angular pressing, Materials Science and Engineering A, 1998, 257 (2): 328-332
    [130]Furukawa M, Horita Z, Langdon TG, Factors influencing the shearing patterns in equal-channel angular pressing, Materials Science and Engineering A, 2002, 332 (1-2): 97-109
    [131]Gholinia A, Prangnell PB, Markushev MV, The effect of strain path on the development of deformation structures in severely deformed aluminium alloys processed by ECAE, Acta Materialia, 2000, 48 (5): 1115-1130
    [132]Prangnell PB, Harris C, Roberts SM, Finite element modelling of equal channel angular extrusion, Scripta Materialia, 1997, 37 (7): 983-989
    [133]Suh JY, Kim HS, Park JW, et al., Finite element analysis of material flow in equal channel angular pressing, Scripta Materialia, 2001, 44 (4): 677-681
    [134]Kim HS, Finite element analysis of equal channel angular pressing using a round corner die, Materials Science and Engineering A, 2001, 315 (1-2): 122-128
    [135]Pei QX, Hu BH, Lu C, et al., A finite element study of the temperature rise during equal channel angular pressing, Scripta Materialia, 2003, 49 (4): 303-308
    [136]Srinivasan R, Computer simulation of the equichannel angular extrusion (ECAE) process, Scripta Materialia, 2001, 44 (1): 91-96
    [137]Li S, Bourke MAM, Beyerlein IJ, et al., Finite element analysis of the plastic deformation zone and working load in equal channel angular extrusion, Materials Science and Engineering A, 2004, 382 (1-2): 217-236
    [138]Yang FQ, Saran A, Okazaki K, Finite element simulation of equal channel angular extrusion, Journal of Materials Processing Technology, 2005, 166 (1): 71-78
    [139]Dumoulin S, Roven HJ, Werenskiold JC, et al., Finite element modeling of equal channel angular pressing: Effect of material properties, friction and die geometry, Materials Science and Engineering A, 2005, 410: 248-251
    [140]Zhao WJ, Ding H, Ren YP, et al., Finite element simulation of deformation behavior of pure aluminum during equal channel angular pressing, Materials Science and Engineering A, 2005, 410: 348-352
    [141]Figueiredo RB, Aguilar MTP, Cetlin PR, Finite element modelling of plastic instability during ECAP processing of flow-softening materials, Materials Science and Engineering A, 2006, 430 (1-2): 179-184
    [142]Son HI, Lee JH, Im YT, Finite element investigation of equal channel angular extrusion with back pressure, Journal of Materials Processing Technology, 2006, 171 (3): 480-487
    [143]Iwahashi Y, Horita Z, Nemoto M, et al., An investigation of microstructural evolution during equal-channel angular pressing, Acta Materialia, 1997, 45 (11): 4733-4741
    [144]Iwahashi Y, Horita Z, Nemoto M, et al., The process of grain refinement in equal-channel angular pressing, Acta Materialia, 1998, 46 (9): 3317-3331
    [145]Chang CP, Sun PL, Kao PW, Deformation induced grain boundaries in commercially pure aluminium, Acta Materialia, 2000, 48 (13): 3377-3385
    [146]Murr LE, Interfacial phenomena in metals and alloys, Herndan VA: Techbooks, 1975, 145
    [147]Iwahashi Y, Horita Z, Nemoto M, et al., Factors influencing the equilibrium grain size in equal-channel angular pressing: Role of Mg additions to aluminum, Metallurgical and Materials Transactions A, 1998, 29 (10): 2503-2510
    [148]Komura S, Horita Z, Nemoto M, et al., Influence of stacking fault energy on microstructural development in equal-channel angular pressing, Journal of Materials Research, 1999, 14 (10): 4044-4050
    [149]Mabuchi M, Ameyama K, Iwasaki H, et al., Low temperature superplasticity of AZ91 magnesium alloy with non-equilibrium grain boundaries, Acta Materialia, 1999, 47 (7): 2047-2057
    [150]Lapovok R, Thomson PF, Cottam R, et al., Processing routes leading to superplastic behaviour of magnesium alloy ZK60, Materials Science and Engineering A, 2005, 410: 390-393
    [151]Liu T, Wang YD, Wu SD, et al., Textures and mechanical behavior of Mg-3.3%Li alloy after ECAP, Scripta Materialia, 2004, 51 (11): 1057-1061
    [152]Han BQ, Lavernia EJ, Mohamed FA, Mechanical properties of iron processed by severe plastic deformation, Metallurgical and Materials Transactions A, 2003, 34 (1): 71-83
    [153]Fukuda Y, Oh-ishi K, Horita Z, et al., Processing of a low-carbon steel by equal-channel angular pressing, Acta Materialia, 2002, 50 (6): 1359-1368
    [154]Horita Z, Fujinami T, Nemoto M, et al., Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties, Metallurgical and Materials Transactions A, 2000, 31 (3): 691-701
    [155]Zhu YT, Langdon TG, The fundamentals of nanostructured materials processed by severe plastic deformation, JOM, 2004, 56 (10): 58-63
    [156]Valiev RZ, Langdon TG, Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science, 2006, 51 (7): 881-981
    [157]Valiev RZ, Alexandrov IV, Zhu YT, et al., Paradox of strength and ductility in metals processed by severe plastic deformation, Journal of Materials Research, 2002, 17 (1): 5-8
    [158]H?ppel HW, May J, Eisenlohr P, et al., Strain-rate sensitivity of ultrafine-grained materials, Zeitschrift Für Metallkunde, 2005, 96 (6): 566-571
    [159]May J, H?ppel HW, Goken M, Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation, Scripta Materialia, 2005, 53 (2): 189-194
    [160]Valiev RZ, Sergueeva AV, Mukherjee AK, The effect of annealing on tensile deformation behavior of nanostructured SPD titanium, Scripta Materialia, 2003, 49 (7): 669-674
    [161]Valiev RZ, Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Materials 2004, 3: 511-516
    [162]Wang Y, Chen MW, Zhou FH, et al., High tensile ductility in a nanostructured metal, Nature, 2002, 419: 912-914
    [163]Zhang X, Wang H, Scattergood RO, et al., Studies of deformation mechanisms in ultra-fine-grained and nanostructured Zn, Acta Materialia, 2002, 50 (19): 4823-4830
    [164]Park YS, Chung KH, Kim NJ, et al., Microstructural investigation of nanocrystalline bulk Al-Mg alloy fabricated by cryomilling and extrusion, Materials Science and Engineering A, 2004, 374 (1-2): 211-216
    [165]Koch CC, Optimization of strength and ductility in nanocrystalline and ultrafine grained metals, Scripta Materialia, 2003, 49 (7): 657-662
    [166]Horita Z, Ohashi K, Fujita T, et al., Achieving high strength and high ductility in precipitation-hardened alloys, Advanced Materials, 2005, 17 (13): 1599
    [167]Suresh S,材料的疲劳(王中光等),北京:国防工业出版社,1999
    [168]郑修麟,金属疲劳的定量理论,西安:西北工业大学出版社,1994
    [169]Mughrabi H, The cyclic hardening and saturation behaviour of copper single crystals, Materials Science and Engineering A, 1978, 33: 207-223
    [170]张哲峰,胡运明,王中光,铜双晶体的循环应力-应变响应,力学进展,2000, 30 (3):400-414
    [171]Mughrabi H, Plastic Deformation and Fracture of Materials, Cambridge: Cambridge press, 1993
    [172]束德林,金属力学性能,北京:机械工业出版社,1997
    [173]Suresh S, Fatigue of Materials, New York: Cambridge University Press, 1991
    [174]Pelloux RM, Ultrafine-Grain Metals, New York: Syracuse Univ. Press, 1970
    [175]Mughrabi H, Investigations and Appliacations of Severe Plastic Deformation, Norwell: Kluwer Publishers, 2000
    [176]Vinogradov AY, Stolyarov VV, Hashimoto S, et al., Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation, Materials Science and Engineering A, 2001, 318 (1-2): 163-173
    [177]Kim HS, Estrin Y, Bush MB, Plastic deformation behaviour of fine-grained materials, Acta Materialia, 2000, 48 (2): 493-504
    [178]Agnew SR, Weertman JR, Cyclic softening of ultrafine grain copper, Materials Science and Engineering A, 1998, 244 (2): 145-153
    [179]Agnew SR, Vinogradov AY, Hashimoto S, et al., Overview of fatigue performance of Cu processed by severe plastic deformation, Journal of Electronic Materials, 1999, 28 (9): 1038-1044
    [180]H?ppel HW, Zhou ZM, Mughrabi H, et al., Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper, Philosophical Magazine A, 2002, 82 (9): 1781-1794
    [181]Vinogradov A, Hashimoto S, Multiscale phenomena in fatigue of ultra-fine grain materials - an overview, Materials Transactions, 2001, 42 (1): 74-84
    [182]Thiele E, Holste C, Klemm R, Influence of size effect on microstructural changes in cyclically deformed polycrystalline nickel, Zeitschrift Für Metallkunde, 2002, 93 (7): 730-736
    [183]Vinogradov A, Patlan V, Hashimoto S, et al., Acoustic emission during cyclic deformation of ultrafine-grain copper processed by severe plastic deformation, Philosophical Magazine A, 2002, 82 (2): 317-335
    [184]Vinogradov A, Hashimoto S, Kopylov VI, Enhanced strength and fatigue life of ultra-fine grain Fe-36Ni invar alloy, Materials Science and Engineering A, 2003, 355 (1-2): 277-285
    [185]Vinogradov A, Hashimoto S, Fatigue of severely deformed metals, Advanced Engineering Materials, 2003, 5 (5): 351-358
    [186]Kim WJ, Hyun CY, Kim HK, Fatigue strength of ultrafine-grained pure Ti after severe plastic deformation, Scripta Materialia, 2006, 54 (10): 1745-1750
    [187]Mughrabi H, H?ppel HW, Kautz M, Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation, Scripta Materialia, 2004, 51 (8): 807-812
    [188]Vinogradov A, Kaneko Y, Kitagawa K, et al., Cyclic response of ultrafine-grained copper at constant plastic strain amplitude, Scripta Materialia, 1997, 36 (11): 1345-1351
    [189]H?ppel HW, Valiev RZ, On the possibilities to enhance the fatigue properties of ultrafine-grained metals, Zeitschrift Für Metallkunde, 2002, 93 (7): 641-648
    [190]姚卫星,结构疲劳寿命分析,北京:国防工业出版社,2003
    [191]Xue Y, Kadiri HE, Horstemeyer MF, et al., Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy, Acta Materialia, 2007, 55 (6): 1975-1984
    [192]Vinogradov A, Acoustic emission in ultra-fine grained copper, Scripta Materialia, 1998, 39 (6): 797-805
    [193]Markushev MV, Murashkin MY, Mechanical properties of submicrocrystalline aluminum alloys after severe plastic deformation by angular pressing, Physics of Metals and Metallography, 2000, 90 (5): 506-515
    [194]Ding HZ, Mughrabi H, H?ppel HW, A low-cycle fatigue life prediction model of ultrafine-grained metals, Fatigue&Fracture of Engineering Materials&Structures, 2002, 25 (10): 975-984
    [195]Estrin Y, Kubin LP, Local strain hardening and nonuniformity of plastic deformation, Acta Metallurgica, 1986, 34 (12): 2455-2464
    [196]Horita Z, Furukawa M, Nemoto M, et al., Superplastic forming at high strain rates after severe plastic deformation, Acta Materialia, 2000, 48 (14): 3633-3640
    [197]Berbon PB, Furukawa M, Horita Z, et al., Requirements for achieving high-strain-rate superplasticity in cast aluminium alloys, Philosophical Magazine Letters, 1998, 78 (4): 313-318
    [198]王笑天,金属材料学,北京:机械工业出版社,1987
    [199]潘复生,张丁非,铝合金及应用,北京:化学工业出版社,2006
    [200]Kaibyshev R, Mazurina I, Mechanisms of grain refinement in aluminum alloys during severe plastic deformation, Materials Science Forum, 2004, 467-470: 1251-1260
    [201]Wang JT, Kang SB, Kim HW, Shear features during equal channel angular pressing of a lamellae eutectic alloy, Materials Science and Engineering A, 2004, 383 (2): 356-361
    [202]Shan AD, Moon IG, Ko HS, et al., Direct observation of shear deformation during equal channel angular pressing of pure aluminum, Scripta Materialia, 1999, 41 (4): 353-357
    [203]Ashby MF, Jones DRH, Engineering Materials, Oxford: Pergamon Press, 1980
    [204]Pan XF, Zhang H, Zhang Z, et al., Vickers hardness and compressive properties of bulk metallic glasses and nanostructure-dendrite composites Journal of Materials Research, 2005, 20 (10): 2632-2638
    [205]William D, Callister J, Fundamentals of Materials Science and Engineering, John Wiley&Sons, Inc, 2001
    [206]Tsai TL, Sun PL, Kao PW, et al., Microstructure and tensile properties of a commercial 5052 aluminum alloy processed by equal channel angular extrusion, Materials Science and Engineering A, 2003, 342 (1-2): 144-151
    [207]Yamashita A, Yamaguchi D, Horita Z, et al., Influence of pressing temperature on microstructural development in equal-channel angular pressing, Materials Science and Engineering A, 2000, 287 (1): 100-106
    [208]Zhao YH, Liao XZ, Zhu YT, et al., Enhanced mechanical properties in ultrafine grained 7075 Al alloy, Journal of Materials Research, 2005, 20 (2): 288-291
    [209]Wang J, Iwahashi Y, Horita Z, An investigation of microstructural stability in an Al-Mg alloy with submicrometer grain size, Acta Materialia, 1996, 44 (7): 2973-2982
    [210]Morris DG, Munoz-Morris MA, Microstructure of severely deformed Al-3Mg and its evolution during annealing, Acta Materialia, 2002, 50 (16): 4047-4060
    [211]Furukawa M, Horita Z, Nemoto M, et al., Microhardness measurements and the Hall-Petch relationship in an Al-Mg alloy with submicrometer grain size, Acta Materialia, 1996, 44 (11): 4619-4629
    [212]Ko YG, Shin DH, Park KT, et al., An analysis of the strain hardening behavior of ultra-fine grain pure titanium, Scripta Materialia, 2006, 54 (10): 1785-1789
    [213]Zhang ZF, Eckert J, Unified tensile fracture Criterion, Physical Review Letters, 2005, 94: 094301
    [214]Mughrabi H, H?ppel HW, Kautz M, et al., Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metal's produced by severe plastic deformation, Zeitschrift Für Metallkunde, 2003, 94 (10): 1079-1083
    [215]Maier HJ, Gabor P, Gupta N, et al., Cyclic stress-strain response of ultrafine grained copper, International Journal of Fatigue, 2006, 28 (3): 243-250
    [216]Kim HK, Choi MI, Chung CS, et al., Fatigue properties of ultrafine grained low carbon steel produced by equal channel angular pressing, Materials Science and Engineering A, 2003, 340 (1-2): 243-250
    [217]Goto M, Han SZ, Yakushiji T, et al., Formation process of shear bands and protrusions in ultrafine grained copper under cyclic stresses, Scripta Materialia, 2006, 54 (12): 2101-2106
    [218]H?ppel HW, Xu C, Kautz M, et al., Proceedings of second international conference on nanomaterials by severe plastic deformation, Weinheim: Wiley-VCH, 2004
    [219]Hashimoto S, Kaneko Y, Kitagawa K, et al., Materials Science Forum, 1999, 312-314: 593
    [220]Wong MK, Kao WP, Lui JT, Cyclic deformation of ultrafine-grained aluminuim, Acta Materialia, 2007, 55 (2): 715-725
    [221]Fang DR, Zhang ZF, Wu SD, et al., Effect of equal channel angular pressing on tensile properties and fracture modes of casting Al-Cu alloys, Materials Science and Engineering A, 2006, 426 (1-2): 305-313
    [222]Liu SM, Wang ZG, Cyclic deformation behavior of ECAP Al-Li-Cu-Mg-Zr alloy, Acta Metal Sinica, 2004, 40: 225-229
    [223]Abel A, Muir H, The Bauschinger effect and discontinuous yielding, Philosophical Magazine A, 1972, 26: 489-504
    [224]Haouaoui M, Karaman I, Maier HJ, Flow stress anisotropy and Bauschinger effect in ultrafine grained copper, Acta Materialia, 2006, 54 (20): 5477-5488
    [225]Ma AB, Suzuki K, Nishida Y, et al., Impact toughness of an ultrafine-grained Al-11mass%Si alloy processed by rotary-die equal-channel angular pressing, Acta Materialia, 2005, 53 (1): 211-220
    [226]Li Z, Samuel AM, Samuel FH, Parameters controlling the performance of AA319-type alloys Part II. Impact properties and fractography, Materials Science and Engineering A, 2004, 367 (1-2): 111-122
    [227]Gür CH, Y?ld?z ?, Non-destructive investigation on the effect of precipitation hardening on impact toughness of 7020 Al-Zn-Mg alloy, Materials Science and Engineering A, 2004, 382 (1-2): 395-400
    [228]Menzemer CC, Srivatsan TS, Al-Hajri M, The impact toughness and tensile properties of 8320 steel, Materials Science and Engineering A, 2000, 289 (1-2): 198-207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700