用户名: 密码: 验证码:
SCN5A基因突变/缺失致窦房结功能改变的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分SCN5A基因点突变致病态窦房结综合征分子机制的研究
     目的SCN5A基因点突变E161K,T187I和L212P对Nav1.5通道的动力学以及通道蛋白转运的影响。
     方法采用定点突变的方法,得到含有E161K,T187I和L212P的SCN5A突变质粒,转染人胚胎肾293细胞(HEK293细胞),用膜片钳记录Nav1.5激活,失活和恢复等通道动力学改变。在Nav1.5通道跨膜结构域Ⅰ的第一和第二个跨膜片段胞外连接处插入flag序列,与Nav1.5通道共表达,了解三个突变点对通道蛋白的转运是否有影响。
     结果正常钠通道在-20mv时,钠通道的电流最大,峰电流密度约为800pA/pF,激活曲线V1/2为-33.8±0.7 mV,斜率K为6.7±0.2;失活曲线V1/2为-80.3±0.9 mV,斜率K为6.2±0.1。T187I峰电流值减少约100%;E161K峰电流值减少约70%,L212P峰电流基本不变。E161K激活曲线明显右移,激活曲线斜率K为8.8±0.1mV,V1/2为-14.9±0.6mV,激活速度减慢,P<0.01;稳态失活曲线与正常接近,k为-6.5±0.2mV,V1/2为-78.4±0.8mV,通道失活不变。L212P其激活曲线明显左移,激活加快,激活曲线斜率k为8.4±0.2mV,V1/2为-14.9±0.6mV,通道激活速度加快,P<0.01;稳态失活曲线明显左移,曲线斜率k为-5.2±0.1mV,V1/2为-90.7±1.1mV,失活加快,P<0.01。E161K和L212P突变对通道的恢复无明显影响。三种突变通道上的Flag均能正常的表达在细胞膜上。
     结论T187I表现为Nav1.5通道失功能;E161K和L212P表现为Nav1.5通道功能减弱。三种突变Nav1.5通道均能被转运到细胞膜表面。
     第二部分Scn5a基因敲除小鼠模型的建立及鉴定
     目的建立Scn5a基因敲除杂合子(Scn5a +/-)小鼠模型。
     方法采用基因打靶技术,DNA同源重组的方法,建立Scn5a +/-小鼠模型。选择一组5月龄的同期培育的Scn5a +/-小鼠和正常野生型小鼠,取鼠尾提取DNA行PCR鉴定。分离小鼠的心室肌细胞,应用抗α-actin抗体鉴定分离下来的心室肌细胞。利用膜片钳技术记录Nav1.5通道电流。比较Nav1.5通道动力学的变化。
     结果PCR结果显示野生型小鼠在980Bp处出现一条带,而Scn5a +/-小鼠则在980Bp和650Bp处各出现一条条带。与正常野生型小鼠相比, Scn5a+/-小鼠心室肌细胞钠电流峰电流密度减少约45%(16±6PA/PF vs 34±8PA/PF,n=5,P <0.05);其激活,失活曲线的半数有效电压和斜率均没有改变,无统计学差异。
     结论Scn5a +/-小鼠可以很好的被用来作为研究Nav1.5通道异常的疾病模型
     第三部分Scn5a基因敲除小鼠心脏传导系统功能障碍的电生理研究
     目的探讨Scn5a基因敲除杂合子(Scn5a +/-)小鼠窦房结等传导系统功能障碍的原因。
     方法记录小鼠离体心脏的心表心电图,观察心率和节律的改变。通过电mapping了解窦房结发放冲动传导至外周冠状窦的时间。膜片钳技术检测小鼠窦房结细胞Nav1.5通道电流和功能。局部组织冰冻切片免疫组织化学检测窦房结区Nav1.5通道蛋白的表达。
     结果与野生型小鼠相比,Scn5a +/-小鼠的心率明显减慢(259±27 bpm VS 336±8 bpm,P<0.05,n=6),并且该组小鼠间的心率变异度也大,并且出现2:1的房室传导阻滞;心表心电图上显示为P波时限(12.91±4.17ms VS 22.35±6.44ms, P<0.05,n=6)和PR间期延长(44.22±5.98ms VS 66.81±8.24ms, P<0.01,n=6) ;电mapping显示由窦房结发出的冲动传导到冠状窦的时间延长(8.16±1.36ms vs 3.56±0.26ms P<0.05,n=6)。Scn5a +/-小鼠窦房结细胞Nav1.5通道最大电流电流密度减小(36±1PA/PF vs 57±4PA/PF, P<0.05,n=5),通道功能没有改变。免疫荧光的结果显示Scn5a +/-小鼠窦房结区Nav1.5通道蛋白表达减少。
     结论Nav1.5通道蛋白运输和表达障碍是导致Scn5a +/-小鼠Nav1.5通道电流减小,产生病态窦房结综合征的主要原因。
PartⅠStudy of Molecular Mechanism of Sick Sinus Syndrome Caused by Point Mutation of SCN5A Gene
     Objective: Point mutations of SCN5A gene(E161K,T187I and L212P) and their effects on kenetics of Nav1.5 channel and transportation of channel protein.
     Method: Site-directed mutagenesis method was used to construct plasmids, then transfected into HEK-293 cell. Sodium channel kenetics were studied by patch clamp technique between the wild type channel and mutant channels. The flag gene was inserted into the genes encoding the ecto-linker between segament I and II in homologous domain I of Nav1.5 sodium channel and co-expressed with Nav1.5. Flag was detected by immunofluorescence.
     Result: At -20mv, Normal wild type sodium channel showed maximal current, the peak current was 800pA/pF, V1/2 and K of activation curve were -33.8±0.7 mV and 6.7±0.2 mV respectively, V1/2 and K of inactivation curve were -80.3±0.9 mV and 6.2±0.1 mV respectively. The peak current of T187I was reduced 100%; The peak current of E161K was reduced to 70%, stable activation curve showed obvious right shift, V1/2 and K of activation curve were -14.9±0.6mV and 8.8±0.1mV respectively (P<0.01 ); The peak current of L212P had no change, but stable activation curve showed obvious left shift, V1/2 and K of activation curve were -14.9±0.6mV and 8.4±0.2mV respectively (P<0.01); stable inactivation curve showed obvious left shift, V1/2 mV and K of inactivation curve were -90.7±1.1mV and -5.2±0.1mV respectively (P<0.01). E161K and L212P mutations did not affect the recovery of the Nav1.5 channel. Flags in three mutational channels could express on the cell membrance normally.
     Conclusion:T187I showed non-function of Nav1.5 channel; E161K and L212P showed loss of function. Three mutations did not affect the transport of the Nav1.5 channel.
     PartⅡEstablishment and Identification of Mouse Model of Targeted Disruption of Gene Scn5a
     Objective: To establish the mouse model of targeted disruption of gene Scn5a.
     Method: Scn5a gene targeted disruption mouse model was generated by gene targeting and homologous recombination of DNA. One group of Scn5a +/- mice and one group of wild type normal mice as control with the same matched age of 5 months were chosen. The template of PCR was got from DNA extracted from fresh mice tails. Single mouse ventricular cell was enzymatically isolated to be identified by anti-αactin antibody. Sodium currents from two different groups were recorded by patch clamp technique. Kenetics of sodium channels between cells from two different groups were compared by activation and inactivation.
     Results: PCR showed in wild type mouse group, there was a band at size of 980 base pair, however, in Scn5a +/- mouse group, there was a band at size of 980 and 650 base pair respectively. At -20mv, showed the maximum current density, compared with WT mice cells, the current density from heterozygous mice cells was reduced to 45%(16±6PA/PF vs 34±8PA/PF,n=5,P<0.05). But there was no significant difference in V1/2 and K of activation and inactivation between these two groups.
     Conclusion:Scn5a +/- mouse is a good animal model to investigate the disease related to abnormalities of Nav1.5 channel.
     PartⅢElectrophysiological study of cardiac conduction system of Scn5a +/- mouse
     Objective: To explore the electrophysiological disturbance of cardiac conduction systems of Scn5a +/- mouse.
     Method: ECG was recorded in the condition of langendorff perfusion system, heart rate and rhythm were observed. Impulse conduction time from sinus node to coronary sinus was measured by electrical mapping recording. The current and function of Nav1.5 channel of sinus node cell were detected by patch clamp thechique. The expression of Nav1.5 protein in SAN area was detected in tissue frozen section by immunoflurescence.
     Result: Compared with WT mouse, heart rates in the Scn5a +/- mouse were slowed (259±27 bpm VS 336±8 bpm,P<0.05,n=6)and discrepancy accompanied with 2:1 atrial ventricle block; the durations of P wave (12.91±4.17ms VS 22.35±6.44ms, P<0.05,n=6) and PR intervals (44.22±5.98ms VS 66.81±8.24ms, P<0.01,n=6) in ECG were prolonged; the conduction time from SAN to cornarary sinus was also prolonged(8.16±1.36ms VS 3.56±0.26ms P<0.05, n=6). The maximal current density of Nav1.5 channel in SAN cells was reduced (36±1PA/PF VS 57±4PA/PF, P<0.05, n=5) but without functional change. Expression of Nav1.5 protein in SAN area was reduced.
     Conclusion: The trafficking and expression abnormalities of Nav1.5 protein contribute predominantly to the decrease of Nav1.5 currents resulting in sick sinus syndrome.
引文
1. Keith A, Flack MW. The form and nature of the muscular connections between the primary divisions of the vertebrate heart. J Anat Physiol. 1907;41:172–189.
    2. Keith A. An Autobiography: Sir Arthur Keith. London, UK: Watts & Co; 1950.
    3. Sanchez-Quintana D, Cabrera JA, Farre J, Climent V, Anderson RH, HoSY. Sinus node revisited in the era of electroanatomical mapping and catheter ablation. Heart. 2005;91:189–194.
    4. Benditt DG, Sakaguchi S, Goldstein MA, et al. Sinus node dysfunction: pathophysiology, clinical features, evaluation, and treatment. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology: From Cell to Bedside. 2nd ed. Philadelphia, Pa: WB Saunders Company; 1995:1215–1247.
    5. Adan V, Crown LA. Diagnosis and treatment of sick sinus syndrome. Am Fam Physician. 2003;67:1725–1732.
    6. Mohler PJ, Bennett V. Ankyrin-based cardiac arrhythmias: a new class of channelopathies due to loss of cellular targeting. Curr Opin Cardiol. 2005; 20:189–193.
    7. Mohler PJ, Schott JJ, Gramolini AO,et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 2003;421:634-639.
    8. Gaita F, Giustetto C, Bianchi F, et al. Short QT syndrome: a familial cause of sudden death. Circulation. 2003;108 : 965 -970.
    9. Wang DW, Yazawa K, George AL Jr, et al. Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. Proc Natl Acad Sci U S A. 1996;93:13200-13205
    10. Wei J, Wang DW, Alings M,et al. Congenital long-QT syndrome caused by anovel mutation in a conserved acidic domain of the cardiac Na+ channel. mutation in a conserved acidic domain of the cardiac Na+ channel. Circulation.1999; 99:3165-3171.
    11. Clancy CE, Tateyama M, Liu H,et al. Non-equilibrium gating in cardiac Na+ channels: an original mechanism of arrhythmia.Circulation. 2003;107:2233-2237.
    12. Wang Q,Curran ME,Splawski I,et al.Positonal cloning of a novel potassium channel gene:KCNQ1 mutations cause cardiac arrhythmias. Nat Genet,1996;12:17-23.
    13. Jiang C, Atkinson D, Towbin JA, et al. Two long QT syndrome loci map to chromosomes 3 and 7 with evidence for further heterogeneity. Nat Genet. 1994;8:141-147.
    14. Yamamoto M, Dobrzynski H, Tellez J, et al. Extended atrial conduction system characterized by the expression of the HCN4 channel and connexin45. CardiovascRes. 2006;72:271–281.
    15. Schulze-Bahr E, Neu A, Friederich P, et al. Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest. 2003;111:1537–1545.
    16. Ueda K, Nakamura K, Hayashi T, et al. Functional characterization of a trafficking-defective HCN4 mutation, D553N, associated with cardiac arrhythmia. J Biol Chem. 2004;279:27194–27198.
    17. Milanesi R, Baruscotti M, Gnecchi-Ruscone T, et al.Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. N Engl J Med. 2006;354:151–157.
    18. Miake J, Marban E, Nuss HB. Biological pacemaker created by gene transfer. Nature. 2002;419:132–133.
    19. Valdivia CR, Tester DJ, Rok BA, et al.A trafficking defective, Brugada syndrome-causing SCN5A mutation rescued by drugs Cardiovasc Res. 2004; 62:53-62.
    20. Lei M, Jones SA, Liu J, et al. Requirement of neuronaland cardiac-type sodium channels for murine sinoatrial node pacemaking. J Physiol. 2004;559:835– 848.
    1. Lei M, Zhang H, Grace AA,et al. SCN5A and sinoatrial node pacemaker function. Cardiovasc Res.2007; 74:356-365.
    2. Benson DW, Wang DW, Dyment M, et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest.2003;112:1019-1028.
    3. Groenewegen WA, Firouzi M, Bezzina CR, et al. A Cardiac Sodium Channel Mutation Cosegregates With a Rare Connexin40 Genotype in Familial Atrial Standstill. Circ Res. 2003; 92:14-22.
    4. Smits JPP, Koopmann TT, Wilders R, et al. A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. Journal of Molecular and Cellular Cardiology. 2005; 38:969-981.
    5. Veldkamp MW, Wilders R, Baartscheer A, et al .Contribution of sodium channel mutations to bradycardia and sinus node dysfunction in LQT3 families. Circ Res. 2003;92: 976-983.
    6. Lei M, Jones SA, Liu J,et al .Requirement of neuronal- and cardiac-type sodium channels for murine sinoatrial node pacemaking. J Physiol .2004;559: 835-848
    7. Irisawa H, Brown HF,Giles W. et al. Cardiac pacemaking in the sinoatrial node. Physiol Rev.1993; 73:197-227.
    8. Tellez JO, Dobrzynski H, Greener ID, et al. Differential expression of ion channel transcripts in atrial muscle and sinoatrial node in rabbit. Circ Res. 2006;99:1384-1393.
    9. Smits JP, Koopmann TT, Wilders R, et al .A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. J Mol Cell Cardiol .2005;38:969-981.
    10. Makita N, Sasaki K, Groenewegen WA, et al. Congenital atrial standstill associated with coinheritance of a novel SCN5A mutation and connexin 40 polymorphisms. Heart Rhythm. 2005;2:1128-1134.
    11. Makiyama T, Akao M, Tsuji K,et al. High risk for bradyarrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations. J Am Coll Cardiol .2005;46:2100-2106.
    12. Rudy Y, Shaw R M. Cardiac excitation: an interactive process of ion channels and gap junctions. Adv Exp Med Biol. 1997;430:269-279.
    13. Remme CA, Verkerk AO, Nuyens D, et al. Overlap Syndrome of Cardiac Sodium Channel Disease in Mice Carrying the Equivalent Mutation of Human SCN5A-1795insD. Circulation. 2006;114:2584-2594
    1. Marban E. Cardiac channelopaties. Nature.2002;415:213–218.
    2. Bennett PB, Yazawa K, Makita N, et al. Molecular mechanism for an inherited cardiac arrhythmia. Nature. 1995;376:683– 685.
    3. Tan HL, Bezzina CR, Smits JP, et al. Genetic control of sodium channel function. Cardiovasc Res. 2003;57:961–973.
    4. Antzelevitch C, Brugada P, Brugada J, et al. Brugada syndrome: from cell to bedside. Curr Probl Cardiol. 2005;30:9-54.
    5. Wang Q, Shen J, Splawski I, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell.1995;80:805–811.
    6. Akai J, Makita N, Sakurada H, et al. A novel SCN5A mutation associated with idiopathic ventricular fibrillation without typical ECG findings of Brugada syndrome. FEBS Lett. 2000;479:29-34.
    7. 7. Benson DW, Wang DW, Dyment M, et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest. 2003;112:1019-1028.
    8. George AL, Varkony TA, Drabkin HA, et al.Assignment of the human heart tetrodotoxin-resistant voltage-gated Na+ channel alpha-subunit gene (SCN5A) to band 3p21. Cytogenet Cell Genet. 1995;68:67-70.
    9. Tester DJ, Will ML, Haglund CM, et al. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm. 2005; 2:507–517.
    10. Nuyens D, Stengl M, Dugarmaa S, et al. Abrupt rate accelerations or premature beats cause lifethreatening arrhythmias in mice with long-QT3 syndrome. Nat Med.2001;7:1021–1027.
    11. Remme CA, Verkerk AO, Nuyens D, et al. Overlap syndrome of cardiac sodiumchannel disease in mice carrying the equivalent mutation of human SCN5A- 1795insD. Circulation.2006;114: 2584–2594.
    12. Tian XL, Yong SL, Wan X, et al. Mechanisms by which SCN5A mutation N1325S causes cardiac arrhythmias and sudden death in vivo Cardiovasc Res. 2004;61:256-267.
    13. Probst V, Hoorntje TM, Hulsbeek M, et al. Cardiac conduction defects associate with mutations in SCN5A. Nat Genet. 1999;23:20-21.
    14. Papadatos GA, Wallerstein PM, Head CE, et al. Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a. Proc Natl Acad Sci U S A. 2002;99:6210-6215.
    15. Laitinen-Forsblom PJ,Makynen P,Makynen H, et al. SCN5A mutation associated with cardiac conduction defect and atrial arrhythmias. J Cardiovasc Electrophysiol. 2006;17:480–485.
    16. Chen LY, Ballew JD, Herron KJ, et al. A common polymorphism in SCN5A is associated with Lone Atrial Fibrillation. Clin Pharmacol Ther.2007;81:35–41.
    17. Hesse M. Dilated Cardiomyopathy is Associated with Reduced Expression of the Cardiac Sodium Channel Scn5a. Cardiovasc Res.2007;75:498–509.
    1. Irisawa H, Brown HF, Giles W. Cardiac pacemaking in the sinoatrial node. Physiol Rev. 1993 ;73:197-227.
    2. Lei M, Jones SA, Liu J, et al. Requirement of neuronal- and cardiac-type sodium channels for murine sinoatrial node pacemaking. J Physiol. 2004; 559:835-848.
    3. George AL Jr, Varkony TA, Drabkin HA, et al. Assignment of the human heart tetrodotoxin-resistant voltage-gated Na+ channel alpha-subunit gene (SCN5A) to band 3p21. Cytogenet Cell Genet. 1995; 68 :67-70.
    4. Olson TM, Michels VV, Ballew JD,et al. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA. 2005; 293 :447-54.
    5. Antzelevitch C, Brugada P, Brugada J, et al. Brugada syndrome: from cell to bedside. Curr Probl Cardiol. 2005; 30:9-54.
    6. Akai J, Makita N, Sakurada H, et al. A novel SCN5A mutation associated with idiopathic ventricular fibrillation without typical ECG findings of Brugada syndrome. FEBS Lett. 2000; 479: 29-34.
    7. Benson DW, Wang DW, Dyment M, et al .Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest. 2003; 112:1019-1028.
    8.Probst V, Hoorntje TM, Hulsbeek M, et al. Cardiac conduction defects associate with mutations in SCN5A. Nat Genet. 1999; 23: 20-21.
    9.Splawski I, Timothy KW, Tateyama M, et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science. 2002; 297 :1333-1336.
    10.Veldkamp MW, Wilders R, Baartscheer A, et al. Contribution of sodium channel mutations to bradycardia and sinus node dysfunction in LQT3 families. Circ Res. 2003;92:976-83.
    11. Valdivia CR, Tester DJ, Rok BA, et al.A trafficking defective, Brugadasyndrome-causing SCN5A mutation rescued by drugs Cardiovasc Res. 2004; 62:53-62.
    12. Papadatos GA, Wallerstein PM, Head CE, et al. Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a. PNAS 2002;99:6210-6215.
    13. Remme CA, Verkerk AO, Nuyens D, et al. Overlap Syndrome of Cardiac Sodium Channel Disease in Mice Carrying the Equivalent Mutation of Human SCN5A-1795insD. Circulation. 2006;114:2584-2594.
    14. Wang Q, Shen J, Splawski I, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995;80:805-811.
    15. Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature. 1998;392:293-296.
    1. Benson DW, Wang DW, Dyment M, et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest. 2003;112:1019-1028.
    2. Shimizu W. The Brugada syndrome--an update. Intern Med. 2005;44:1224-1231.
    3. Modell SM, Lehmann MH. The long QT syndrome family of cardiac ion hannelopathies: a HuGE review. Genet Med. 2006;8:143-155.
    4. Wolf CM, Berul CI. Inherited conduction system abnormalities--one group of diseases, many genes. J Cardiovasc Electrophysiol. 2006;17:446-455.
    5. George AL, Jr., Varkony TA, Drabkin HA, et al. Assignment of the human heart tetrodotoxin-resistant voltage-gated Na+ channel alpha-subunit gene (SCN5A) to band 3p21. Cytogenet Cell Genet. 1995;68:67-70.
    6. Gellens ME, George AL, Jr., Chen LQ, et al. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci U S A. 1992;89:554-558.
    7. Stuhmer W, Conti F, Suzuki H, et al. Structural parts involved in activation and inactivation of the sodium channel. Nature. 1989;339:597-603.
    8. Yang N, George AL, Jr., et al. Molecular basis of charge movement in voltage-gated sodium c annels. Neuron. 1996;16:113-122.
    9. Vassilev PM, Scheuer T, Catterall WA. Identification of an intracellular peptide segment involved in sodium channel inactivation. Science. 1988;241:1658-1661.
    10. Armstrong CM. Sodium channels and gating currents. Physiol Rev. 1981;61:644-683.
    11. Yang N, Horn R. Evidence for voltage-dependent S4 movement in sodium channels. Neuron. 1995;15:213-218.
    12. Mannuzzu LM, Moronne MM, et al. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science. 1996;271:213-216.
    13. Cha A, Snyder GE, Selvin PR, et al. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature. 1999;402:809-813.
    14. Bendahhou S, O'Reilly A O, Duclohier H. Role of hydrophobic residues in the voltage sensors of the voltage-gated sodium channel. Biochimica et biophysica acta. 2007;1768:1440-1447.
    15. Hilber K, Sandtner W, Kudlacek O, et al. The selectivity filter of the voltage-gated sodium channel is involved in channel activation. The Journal of biological chemistry. 2001;276:27831-27839.
    16. Glaaser IW, Bankston JR, Liu H, et al. A carboxyl-terminal hydrophobic interface is critical to sodium channel function. Relevance to inherited disorders. J Biol Chem.2006;281:24015-24023.
    17. Veldkamp MW, Viswanathan PC, Bezzina C, et al. Two distinct congenital arrhythmias evoked by a multidysfunctional Na(+) channel. Circ Res. 86:E91-97.
    18. Motoike HK, Liu H, Glaaser IW, et al. The Na+ Channel Inactivation Gate Is a Molecular Complex: A Novel Role of the COOH-terminal Domain. J. Gen. Physiol. 2004;123:155-165.
    19. Chandler WK, Meves H. Slow changes in membrane permeability and long-lasting action potentials in axons perfused with fluoride solutions. J Physiol. 1970;211: 707-728.
    20. McNulty MM, Kyle JW, Lipkind GM, et al. An inner pore residue (Asn406) in the Nav1.5 channel controls slow inactivation and enhances mibefradil block to T-type Ca2+ channel levels. Mol Pharmacol. 2006;70:1514-1523.
    21. Xiong W, Farukhi YZ, Tian Y, et al. A conserved ring of charge in mammalian Na+ channels: a molecular regulator of the outer pore conformation during slow inactivation. J Physiol (Lond). 2006;576:739-754.
    22. Nuss HB, Balser JR, Orias DW, et al. Coupling between fast and slow inactivation revealed by analysis of a point mutation (F1304Q) in mu 1 rat skeletal muscle sodiumchannels. The Journal of physiology. 1996;494:411-429.
    23. Alekov AK, Peter W, Mitrovic N, et al. Two mutations in the IV/S4-S5 segment of the human skeletal muscle Na+ channel disrupt fast and enhance slow inactivation. Neuroscience letters. 2001;306:173-176.
    24. McCollum IJ, Vilin YY, Spackman E, et al. Negatively charged residues adjacent to IFM motif in the DIII-DIV linker of hNa(V)1.4 differentially affect slow inactivation. FEBS Lett.;552:163-169.
    25. Armstrong CM BF, Rogas E. Destruction of sodium conductance inactivation in squid axons perfused with pronase. J Gen Physiol. 1973;62:375-391.
    26. Aldrich RW SC. Voltage-dependent gating of single sodium channels from mammalian neuroblastoma cells. J Neurosci. 1987;7:418-431.
    27. Sheets MF KJ, Kallen RG, Hanck DA. The Na channel voltage sensor associated with inactivation is localized to the external charged residues of domain IV, S4. Biophys J. 1999;77:747-757.
    28. Sheets MF HD. Voltage-dependent open-state inactivation of cardiac sodium channels: gating current studies with Anthopleurin-A toxin. J Gen Physiol 1995;106:617-640.
    29. Chandra R SC, Grant AO. Multiple effects of KPQ deletion mutation on gating of human cardiac Na1 channels expressed in mammalian cells. Am J Physiol. 1998;274:H1643–H1654.
    30. Qu Y, Rogers JC, Chen SF, McCormick KA, et al. Functional roles of the extracellular segments of the sodium channel alpha subunit in voltage-dependent gating and modulation by beta1 subunits. J Biol Chem. 1999;274:32647-32654.
    31. Qu Y, Curtis R, Lawson D, et al. Differential modulation of sodium channel gating and persistent sodium currents by the beta1, beta2, and beta3 subunits. Mol Cell Neurosci. 2001;18:570-580.
    32. Nuss HB, Chiamvimonvat N, Perez-Garcia MT, et al. Functional association of thebeta 1 subunit with human cardiac (hH1) and rat skeletal muscle (mu 1) sodium channel alpha subunits expressed in Xenopus oocytes. J Gen Physiol. 1995;106:1171-1191.
    33. Fahmi AI, Patel M, Stevens EB, et al. The sodium channel beta-subunit SCN3b modulates the kinetics of SCN5a and is expressed heterogeneously in sheep heart. J Physiol (Lond). 2001;537:693-700.
    34. Ko SH, Lenkowski PW, Lee HC, et al. Modulation of Na(v)1.5 by beta1-- and beta3-subunit co-expression in mammalian cells. Pflugers Arch. 2005;449:403-412.
    35. Malhotra JD, Thyagarajan V, Chen C, et al. Tyrosine-phosphorylated and nonphosphorylated sodium channel beta1 subunits are differentially localized in cardiac myocytes. J Biol Chem. 2004;279:40748-40754.
    36. Dhar Malhotra J, Chen C, Rivolta I, et al. Characterization of sodium channel alpha- and beta-subunits in rat and mouse cardiac myocytes. Circulation. 2001;103:1303-1310.
    37. Zimmer T, Benndorf K. The intracellular domain of the beta 2 subunit modulates the gating of cardiac Na v 1.5 channels. Biophys J. 2007;92:3885-3892.
    38. Morgan K, Stevens EB, Shah B, et al. beta 3: an additional auxiliary subunit of the voltage-sensitive sodium channel that modulates channel gating with distinct kinetics. Proc Natl Acad Sci U S A. 2000;97:2308-2313.
    39. Yu FH, Westenbroek RE, Silos-Santiago I, et al. Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2. J Neurosci. 2003;23:7577-7585.
    40. Wang GK, Edrich T, Wang SY. Time-dependent block and resurgent tail currents induced by mouse beta4(154-167) peptide in cardiac Na+ channels. J Gen Physiol. Mar 2006;127:277-289.
    41. Medeiros-Domingo A, Kaku T, Tester DJ, et al. SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation. 2007;116:134-142.
    42. Irisawa H, Brown HF, Giles W. Cardiac pacemaking in the sinoatrial node. Physiological reviews. 1993;73:197-227.
    43. Lei M, Goddard C, Liu J, et al. Sinus node dysfunction following targeted disruption of the murine cardiac sodium channel gene Scn5a. J Physiol. 2005;567:387-400.
    44. Remme CA, Verkerk AO, Nuyens D, et al. Overlap Syndrome of Cardiac Sodium Channel Disease in Mice Carrying the Equivalent Mutation of Human SCN5A-1795insD. Circulation. 2006;114:2584-2594.
    45. Papadatos GA, Wallerstein PM, Head CE, et al. Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a. Proc Natl Acad Sci U S A. 2002;99:6210-6215.
    46. Lown B. Electrical reversion of cardiac arrhythmias. Br Heart J. Jul 1967;29:469-489.
    47. Rodriguez RD, Schocken DD. Update on sick sinus syndrome, a cardiac disorder of aging. Geriatrics. 1990;45:26-30, 33-26.
    48. Napolitano C, Bloise R, Priori SG. Gene-specific therapy for inherited arrhythmogenic diseases. Pharmacol Ther. 2006;110:1-13.
    49. Veldkamp MW, Wilders R, Baartscheer A, et al. Contribution of sodium channel mutations to bradycardia and sinus node dysfunction in LQT3 families. Circ Res. 2003;92:976-983.
    50. Groenewegen WA, Bezzina CR, van Tintelen JP, et al. A novel LQT3 mutation implicates the human cardiac sodium channel domain IVS6 in inactivation kinetics. Cardiovasc Res. 2003;57:1072-1078.
    51. Schulze-Bahr E, Neu A, Friederich P, et al. Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest. 2003;111:1537-1545.
    52. Milanesi R, Baruscotti M, Gnecchi-Ruscone T, et al. Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. N Engl J Med. 2006;354:151-157.
    53. Nof E, Luria D, Brass D, et al. Point mutation in the HCN4 cardiac ion channel poreaffecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia. Circulation. 2007;116:463-470.
    54. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol. 1992;20:1391-1396.
    55. Paul G, Yusuf S, Sharma S. Unmasking of the Brugada syndrome phenotype during the acute phase of amiodarone infusion. Circulation. 2006;114:489-491.
    56. Frustaci A, Priori SG, Pieroni M, et al. Cardiac histological substrate in patients with clinical phenotype of Brugada syndrome. Circulation. 2005;112:3680-3687.
    57. Lenègre J MP. Le bloc auriculo-ventriculaire chronique: etude anatomique, clinique et histologique. Arch Mal Cur. 1963;56:867–888.
    58. Lev M. Anatomic Basis For Atrioventricular Block. Am J Med. 1964;37:742-748.
    59. Tan HL, Bink-Boelkens MT, Bezzina CR, et al. A sodium-channel mutation causes isolated cardiac conduction disease. Nature. 2001;409:1043-1047.
    60. Schott JJ, Alshinawi C, Kyndt F, et al. Cardiac conduction defects associate with mutations in SCN5A. Nat Genet. 1999;23:20-21.
    61. Grant AO. Molecular biology of sodium channels and their role in cardiac arrhythmias. Am J Med. 2001;110:296-305.
    62. Royer A, van Veen TA, Le Bouter S, et al. Mouse model of SCN5A-linked hereditary Lenegre's disease: age-related conduction slowing and myocardial fibrosis. Circulation. 2005;111:1738-1746.
    63. Vatta M, Ackerman MJ, Ye B, et al. Mutant Caveolin-3 Induces Persistent Late Sodium Current and Is Associated With Long-QT Syndrome.Circulation. 2006;106: 352-6368.
    64. Liu K, Yang T, Viswanathan PC, et al. New mechanism contributing to drug-induced arrhythmia: rescue of a misprocessed LQT3 mutant. Circulation. 2005;112: 3239-3246.
    65. Valdivia CR, Ackerman MJ, Tester DJ, et al. A novel SCN5A arrhythmia mutation, M1766L, with expression defect rescued by mexiletine. Cardiovasc Res. 2002; 55:279-289.
    66. Probst V, Allouis M, Sacher F, et al. Progressive cardiac conduction defect is the prevailing phenotype in carriers of a Brugada syndrome SCN5A mutation. J Cardiovasc Electrophysiol. 2006;17:270-275.
    67. Makiyama T, Akao M, Tsuji K, et al. High risk for bradyarrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations. J Am Coll Cardiol. 2005;46:2100-2106.
    68. Bezzina C, Veldkamp MW, van den Berg MP, et al. A Single Na+ Channel Mutation Causing Both Long-QT and Brugada Syndromes. Circ Res. 1999;85:1206-1213.
    69. Wang DW, Makita N, Kitabatake A, et al. Enhanced Na(+) channel intermediate inactivation in Brugada syndrome. Circ Res. 2000;87:E37-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700