用户名: 密码: 验证码:
法洛四联症患儿VANGL2、TGFβ2、PAX3基因的序列、甲基化及表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
圆锥动脉干畸形是一类复杂型先心病,可以导致新生儿时期出现低氧血症和难以纠正的酸中毒,引起患儿早期死亡。先心病是多基因与环境因素相互作用的结果,遗传因素日益受到重视。VANGL2、TGFβ2和PAX3基因敲除实验动物均出现了圆锥动脉干畸形的表现,因而被认为是圆锥动脉干畸形发病的候选基因。然而,在人类圆锥动脉干畸形与VANGL2、TGFβ2和PAX3基因的研究还非常有限。本课题拟研究法洛四联症患儿的VANGL2、TGFβ2和PAX3等三个基因的外显子区及5’非编码区(5’-UTR区)的基因序列、甲基化水平以及其在右室流出道心肌组织中的mRNA和蛋白表达水平,探讨VANGL2、TGFβ2和PAX3基因与法洛四联症的关系,为深入研究以法洛四联症为代表的圆锥动脉干畸形的发生机制提供依据和基础。
     第一部分法洛四联症患儿VANGL2、TGFβ2、PAX3基因序列研究
     目的:
     探讨法洛四联症患儿VANGL2、TGFβ2、PAX3基因的序列变化,观察这些基因是否为法洛四联症发病的候选易感基因。
     方法:
     应用PCR技术以及测序方法,对100例法洛四联症患儿、200例心脏结构正常的健康儿童,对VANGL2、TGFβ2和PAX3基因编码区外显子和其上游5’-非编码区前1500bp左右的碱基序列进行测序。对VANGL2、TGFβ2和PAX3基因序列变化与圆锥动脉干畸形的关系进行分析。
     结果:
     1、VANGL2基因序列分析
     检测VANGL2基因的全部编码区外显子序列和第一外显子上游1500bp的5’-UTR区域序列,发现3种多态类型,其中第7外显子的33543位点发现等位基因A、G改变,在第8外显子34641位点等位基因G、A改变位于基因编码区内,未造成编码氨基酸的改变,且在病例组和对照组间无明显统计学差异。5’-UTR区的9010位点存在T、G等位基因改变,在两组间基因型差异具有统计学差异(X2=6.865,P=0.032),认为5’-UTR区9010位点的单核苷酸多态性改变可能与法洛四联症的遗传易感性有关。
     2、TGF β2基因序列分析
     检测TGF β2基因的全部编码区外显子序列和第一外显子上游1500bp的5’-UTR区域序列,在编码区全部8个外显子区未发现基因序列改变,在5’-UTR区域发现3个多态性位点,其中9126位点等位基因A、C改变和9353位点等位基因A、G改变在病例组和对照组中无明显统计学差异。而9040_9043位点在部分病例组合对照组中出现CTTC片段缺失,且两组间差异具有统计学意义(X2=17.469,P<0.001),考虑5’-UTR区9040_9043位点的多态性改变与法洛四联症的遗传易感性有关,推测CTTC片段的表达可能是法洛四联症的危险因素(OR=3.692,95%CI:1.971-6.917)。
     3.PAX3基因序列分析
     检测PAX3基因的全部编码区外显子序列和第一外显子上游1500bp的5’-UTR区域序列,在编码区第2外显子的95457位点上所有的病例组和对照组均表现为GG纯合子改变,考虑为中国人群的正常碱基序列。在5’-UTR区域发现病例组有2个多态性位点,其中97596位点表现为G、C等位基因单核苷酸多态性改变,且两组间差异具有统计学差异(X2=4.367,P=0.037),推测该位点多态性可能与法洛四联症的遗传易感性有关;在97632_97655位点发现两组均有部分样本出现12个GT重复片段缺失改变,且两组间差异具有统计学差异(X2=72.0,P<0.001),推测5’-UTR区97632_97655位点多态性改变与法洛四联症的遗传易感性有关,且12个GT重复片段的表达可能是法洛四联症的危险因素(OR=16,95%CI:8.002-31.994)。
     在PAX3基因5’-UTR区域发现2个突变位点,其中在100例病例组中,有5例法洛四联症患儿表现有97654_97655位点的一个GT片段缺失改变,1例法洛四联症患儿98064位点出现G>GA的改变,认为是中国人群中法洛四联症患儿的突变位点。
     小结:
     1、VANGL2基因5’-UTR区9010位点T/G单核苷酸的多态性可能与法洛四联症的遗传易感性有关。
     2、TGF β2基因5'-UTR区域9040_9043位点CTTC片段缺失改变与法洛四联症的遗传易感性有关,推测CTTC片段的表达可能是法洛四联症的危险因素。
     3、PAX3基因5’-UTR区域97596位点G/C单核苷酸多态性可能与法洛四联症的遗传易感性有关,97632_97655位点12个GT重复片段缺失改变与法洛四联症的遗传易感性有关,该位点12个GT片段的表达可能是法洛四联症的危险因素。
     4、PAX3基因5’-UTR区域97654_97655位点的单个GT片段缺失和5’-UTR区域98064位点G>GA的改变是中国人群中法洛四联症患儿的突变位点。
     第二部分VANGL2、TGFβ2、PAX3基因在法洛四联症患儿心肌组织中甲基化及表达差异的初步研究
     目的:
     观察VANGL2、TGFβ2、PAX3基因在法洛四联症患儿心肌组织中甲基化及表达差异,探讨这些基因在法洛四联症发病机制中的作用。
     方法:
     选取5例法洛四联症患儿右室流出道心肌组织作为研究对象,通过MBD柱层析与甲基化敏感性限制性内切酶联用法(COMPARE-MS)观察VANGL2, TGF β2, PAX3基因在法洛四联症患儿心肌组织中甲基化水平变化;应用real-time PCR和免疫组化的方法检测VANGL2、TGFβ2、PAX3基因在法洛四联症患儿心肌组织中的表达差异。
     结果:
     1、法洛四联症患儿心肌组织VANGL2、TGFβ2和PAX3基因5’-UTR区甲基化水平较对照组均降低。
     2、TGFβ2、PAX3基因mRNA在法洛四联症患儿心肌组织中表达明显高于对照组。VANGL2基因mRNA在在法洛四联症患儿心肌组织中表达明显低于对照组。
     3、PAX3蛋白表达水平在法洛四联症患儿心肌组织中明显高于对照组。TGFβ2蛋白在心肌细胞中表达水平在病例组和对照组间差异不明显,但在病例组可见心肌细胞周围的间质组织中有TGF β2蛋白的表达。VANGL2蛋白在病例组心肌细胞中表达水平明显低于对照组。
     小结:
     1、PAX3和TGFβ2基因的表达升高可能与法洛四联症的发生有关。PAX3和TGFβ2基因甲基化水平降低可能与其表达水平升高有关。
     2、VANGL2基因在心肌组织中的低表达可能与法洛四联症的发生有关。VANGL2基因mRNA和蛋白水平低表达可能与该基因甲基化降低有关,但可能还受到其他调控因素的影响。
Congenital heart disease (CHD) is one of the most commonly seen congenital malformations in children, which can severely influence mortality and life quality of children. Conotruncal defect (CTD) is a kind of complex congenital heart disease, it can cause hypoxemia and irreversible acidosis during neonatal period, thus, leads to early death. The pathogenesis of CTD has already been more highlighted. Reciprocity of multi-gene and environment are accepted as the cause of CHD. Tetralogy of Fallot (TOF) is the common conotruncal defects. VANGL2, TGFβ2and PAX3gene knockout animals have appeared in the phenotype of conotruncal defects. Thus, these genes were considered as candidate genes for conotruncal development. Our studies were to investigate the DNA sequence changes and examine the methylation and the expression level of VANGL2, TGFβ2and PAX3genes in patients with TOF. The results will help to illustrate the pathogenesis of conotruncal defects.
     Part Ⅰ Sequence changes of VANGL2, TGFβ2, PAX3genes in patients with Tetralogy of Fallot
     Objective:
     To examine the DNA sequence changes of VANGL2, TGFβ2and PAX3genes with Tetralogy of Fallot, and to observe whether these genes are the susceptibility genes for TOF.
     Methods:
     A cohort of100pediatric patients with Tetralogy of Fallot was recruited in the study,200normal children were used as control. PCR and genotyping were performed for the detections of DNA changes of VANGL2, TGFβ2and PAX3genes.
     Results:
     1. Sequence changes of VANGL2
     Among all TOF patients, only3single nucleotide changes including33543A>AG in exon7,34641G>GA in exon8and9010T>TG in5'-UTR were found, however all of these3heterozygous changes do not alternate the amino acid of the VANGL2protein. There were no significant differences in allelic frequencies and genotypes frequencies of position33543and34641in coding region between the TOF group and the Control. There were significant differences in allelic frequencies (X2=6.865, P=0.032) of position9010in5'-UTR between the TOF group and the Control.
     2. Sequence changes of TGFβ2
     No mutations were identified in coding region in all TOF patients. However,3single nucleotide changes including9126A>AC,9353A>AG and9040_9043del CTTC in5'-UTR were found. There were no significant differences in allelic frequencies and genotypes frequencies of position9126and9353between the TOF group and the Control. There were significant differences in allelic frequencies (X2=17.469, P<0.001) of position9040_9043in5'-UTR between the TOF group and the Control.
     3. Sequence changes of PAX3
     A single nucleotide change AA>GG in the position95457in exon2was detected in all examined people. Two single nucleotide changes including97596G>GC and9763297655del GTGTGTGTGTGTGTGTGTGTGTGT in5'-UTR were found in TOF patients. There were significant differences in allelic frequencies and genotypes frequencies (X2=8.711, P=0.013; X2=4.367, P=0.037) of position97596between the TOF group and the Control. There were significant differences in allelic frequencies (X2=72.0, P<0.001) of position97632_97655in5'-UTR between the TOF group and the Control.
     There were5patients with97654_97655del GT and1patients with98064G>GA in5'-UTR in all100TOF patient, which were thought as two pathogenic mutations in5'-UTR in TOF patients.
     Conclusions:
     1. SNPs at position9010T>TG in5'-UTR of VANGL2is associated with the susceptibility of TOF.
     2. SNPs at position9040_9043del CTTC in5'-UTR of TGFβ2is associated with the susceptibility of TOF. CTTC allelic may be susceptible allelic to TOF.
     3. SNPs at position97596G>GC and97632_97655del GTGTGTGTGTGTGTGTGTGTGTGT in5'-UTR of PAX3is associated with the susceptibility of TOF. GTGTGTGTGTGTGTGTGTGTGTGT allelic in97632_97655may be susceptible allelic to TOF.
     4. Two pathogenic mutations in5'-UTR of PAX3were identified in Chinese TOF patients (97654_97655del GT and98064G>GA).
     Part II
     Methylation at5'-UTR and expression of VANGL2, TGFβ2, PAX3genes in right ventricular outflow tract myocardium in TOF patients
     Objective:
     To examine the CpG island methylation and expression of VANGL2, TGFβ2, and PAX3genes in the myocardium of patients with TOF, and to illustrate the roles of these genes in the pathogenesis of TOF.
     Methods:
     Five pediatric patients with Tetralogy of Fallot was recruited in the study. The CpG island methylation status was detected at5'-UTR of VANGL2, TGFβ2and PAX3genes using COMPARE-MS. The mRNA expression of VANGL2, TGFβ2and PAX3was detected in right ventricular outflow tract myocardium using real-time PCR. The protein expression of VANGL2, TGFβ2and PAX3genes was detected using Immunohistochemistry.
     Results:
     1. The methylation levels of VANGL2, TGFβ2and PAX3at their5'-UTR CpG island in the TOF group were lower than the control.
     2. The mRNA expression of TGFβ2and PAX3in myocardium was significantly higher in the TOF group than that in the control, while the mRNA expression of VANGL2was significantly lower in the TOF group than that in the control.
     3. The protein expression of PAX3in myocardium was significantly higher in the TOF group than that in the control. The protein expression of TGFβ2was not changed significantly in the TOF group as compared with the control. However, it was expressed obviously in the mesenchymal tissue surrounding the myocardial cells. The protein expression of VANGL2was significantly lower in the TOF group than that in the control.
     Conclusions:
     1. The increased expression of TGFβ2, PAX3might be related to the development of TOF, which may be regulated by the lower methylation level of TGFβ2, PAX3genes.
     2. The decreased expression of VANGL2might also be related to the development of TOF, which may be related to lower methylation level of the gene, interacting with other pathways.
引文
[1]Goldmuntz E. The epidemiology and genetics of congenital heart disease[J]. Clin Perinatol,2001,28(1):1-10.
    [2]刘薇廷,宁寿葆,华邦杰等.上海市杨浦、徐汇区小儿先心病发病率及其特点[J].中华儿科杂志,1995,33(6):347-349.
    [3]张陈,黄国英等,先天性心脏圆锥动脉干畸形患者CX43基因突变的初步研究[J].复旦学报,2003,30(6):523-526.
    [4]Anderson RH, Weinberg PM. The clinical anatomy of tetralogy of fallot[J]. Cardiol Young,2005,15:38-47.
    [5]Goldmuntz E, Clark BJ, Mitchhell LE, et al. Frequency of 22q11 deletions in patients with conotruncal defects. J Am Coll Cardiol.1998,32:492-498. Trainer AH, Morrison N, Dunlop A, et al. Chromosome 22qll microdeletions in tetralogy of Fallot. Arch Dis Child.1996,74:62-63.
    [6]Lu JH, Chung MY, Betau H, et al. Molecular characterization of tetralogy of fallot within Digeorge critical region of the chromosome 22[J]. Pediatr Cardiol,2001, 22:279-284.
    [7]Waldo K, Donna K, et al. Cardiac neural crest is essential for the persistence rather than the formation of an arch artery[J]. Dev Biol,1998,192(2):129-144.
    [8]Poelmann RE, Mikawa T, et al. Neural crest cells in outflow tract septation of the embryonic chicken heart:differentiation and apoptosis[J]. Dev Dyn,1998,212(3): 373-384.
    [9]M Farrell, Waldo K, et al. A Novel Role for Cardiac Neural Crest in Heart Development[J]. J Clln Invest,1999,103:1499-1507.
    [10]Phillips HM, Murdoch JN, Chaudhry B, et al. Vang12 acts via RhoA signaling to regulate polarized cell movements during development of the proximal outflow tract[J].2005, Circ Res,96:292-299.
    [11]Bartram U, Molin DG, Wisse LJ, et al. Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-beta(2)-knockout mice[J]. Circulation,2001,103(22):2745-2752.
    [12]Sucov HM, Dyson E, et al. RXR a mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis[J]. Genes Dev,1994; 8:1007-1018.
    [13]Pedersen AG, Baldi P, Chauvin Y, et al. The biology of eukaryotic promoter prediction[J]. Comput Chem,1999,23:191-207.
    [14]Sadhu C, Gedamu L. Regulation of human metallothionein(MT) gene[J]. Biol Chem,1988,263:2679-2684.
    [15]Hudson TJ. Wanted:regulatory SNPs[J]. Nat Genet.2003,33(4):439-440.
    [16]Kibar Z, Underhill, DA, et al. Identification of a New Chemically Induced Allele at the Loop-Tail Locus:Morphology Histology and Genetic Mapping[J]. Genomics, 72:331—337.
    [17]Darken RS, et al. The planar polarity gene strabismus regulates convergent extension movements in Xenopus[J]. EMBO,2002;21:976-985.
    [18].Goto, T, Keller, R. The planar cell polarity gene strabismus regulates convergence and extension and neural fold closure in Xenopus. Dev. Biol[J].2002; 247,165-181.
    [19]Jessen JR, et al. Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements[J]. Nat Cell Biol,2002,4:610-615.
    [20]Murdoch JN, Doudney K, Paternotte C, et al. Severe neural tube defects in the loop-tail mouse result from mutation of Lppl, a novel gene involved in floor plate specification[J]. Hum Mol Genet,2001,10:2593-2601.
    [21]Kibar Z, Vogan KJ, Groulx N, et al. Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail [J]. Nat Genet,2001,28:251-255.
    [22]Henderson DJ, Conway SJ, Greene ND, et al. Cardiovascular defects associated with abnormalities in midline development in the Loop-tail mouse mutant[J]. Circ Res, 2001,89:6-12.
    [23]E Erdal, C Erdal, G Bulut et al. Mutation analysis of the Vangl2 coding region in Tetralogy of Fallot[J]. International Medical Research,2007,35:867-872.
    [24]Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis[J]. N Engl J Med,1994,331(19):1286-1292.
    [25]Saitoh M, Nishitoh H, Amagasa T, et al. Identification of important regions in the cytoplasmic juxtamembrane domain of type I receptor that separate signaling pathways transforming growth factor-beta[J]. J Biol Chem,1996,271(5): 2769-2775.
    [26]Pepin MC, Beauchemin M, Plamondon J, et al. Scanning-deletion analysis of the extracellular domain of the TGF-beta receptor type II[J]. Biochem Biophys Res Commun,1996,220(2):289-293.
    [27]Franzen P, ten Dijke P, Ichijo H, el al. Cloning of a TGF beta type Ⅰ receptor that forms a heteromeric complex with the TGF beta type Ⅱ receptor[J]. Cell,1993,75(4): 681-692.
    [28]Luo K, Lodish HF. Positive and negative regulation of type Ⅱ TGF-beta receptor signal transduction by autophosphorylation on multiple serine residues[J]. Embo J,1997,16(8):1970-1981.
    [29]Chen S, Lechleider RJ. Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line[J]. Circ Res,2004,94(9): 1195-1202.
    [30]Molin DG, Bartram U, Van der Heiden K, et al. Expression patterns of Tgfbeta 1-3 associate with myocardialisation of the outflow tract and the development of the epicardium and the fibrous heart skeleton[J]. Dev Dyn,2003,227(3):431-444.
    [31]Sanford LP,Ormsby I, Gittenberger-de Groot AC, et al. TGF beta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes[J]. Development,1997,124(13):2659-2670.
    [32]Kubalak SW, Hutson DR, Scott KK, et al. Elevated transforming growth factor beta2 enhances apoptosis and contributes to abnormal outflow tract and aortic sac development in retinoic X receptor alpha knockout embryos[J]. Development,2002, 129(3):733-746.
    [33]赵晓晴,黄国英等TGF β2在心脏近端流出道隔心肌化过程中的作用[J].解剖学报,2006,37(2):190-194.
    [34]Chalepakis G, Jones FS, Edelman GM, et al. Pax-3 contains domains for transcription activation and transcription inhibition[J]. Proc Natl Acad Sci USA, 1994,91 (26):12745-12749.
    [35]Buckinqham M, Relaix F. The role of Pax genes in the development of tissues and organs:PAX3 and Pax7 regulate muscle progenitor cellfunctions[J]. Annu Rev Cell Dev Biol,2007,23:645-673.
    [36]Milewski RC, Chi NC, Li J, et al. Identification of minimal enhancer elements sufficient for PAX3 expression in neural crest and implication of Tead2 as a regulator of PAX3[J]. Development,2004,131:829-837.
    [37]Franz, T. Persistent truncus arteriosus in the Splotch mutant mouse[J]. Anat. Embryol,1989,180:457-464.
    [38]Wolffe AP, Matzk MA, et al. Epigenetics:regulation through repression[J]. Science,1999,286(5439):481-486.
    [39]Jaenisch R, Bird A. Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals[J]. Nat Rev Genet,2003,33:245-254.
    [40]黄庆,郭颖,府伟灵.人类表观计划[J].生命的化学,2004,24(2):101-102.
    [41]Patra SK, Patra A, Rizzi F, et al. Demethylation of(Cytosine 25-C-methyl)DNA and regulation of transcription in the epigenetic pathways of cancer development[J]. Cancer Metastasis Rev,2008,27(2):315-334.
    [42]Huang Z, Wen Y, Shandilya R, et al. High throughput detection of M6P/IGF2R intronic hypermethylation and LOH inovarian cancer[J]. Nucleic Acids Res.2006, 34(2):555-563.
    [43]Antequera F. Structure, function and evolution of CpG island promoters[J]. CellMol Life Sci.2003,60(8):1647-1658.
    [44]Zulueta MG, Bender CM, Yang AS, et al. Methylation of the 5'CpG island of the p16CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing[J]. Cancer Res,1995,55(20):4531-4535.
    [45]Wu CT, Morris JR. Genes, genetics and epigenetics:a correspondence [J].Science,2001,293:1103-1105.
    [46]Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with down regulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells[J]. Cancer Cell,2006,9:435-43.
    [47]Lujambio A, Ropero S, Ballestar E, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells[J]. Cancer Res,2007,67:1424-9.
    [48]Dahl C, Guldberg P. DNA methylation analysis techniques [J]. Biogerontology, 2003,4(4):233-250.
    [49]Feinberg AP,Cui H, Ohlsson R. DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms[J]. Semin Cancer Biol,2002,12: 389-398.
    [50]董玉玮,侯进慧,朱必才等.表观遗传学的相关概念和研究进展[J].生命的化学,2005,22(1):1-3.
    [51]Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation[J]. N Engl J Med,2003,349:2042-2054.
    [52]Weber M, Hellmann I, Stadler MB, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome[J]. Nat Genet,2007,39:457-466.
    [53]Yegnasubramanian S,Lin X,et al. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation[J].Nucleic Acids Res,2006,34(3):19.
    [54]Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins [J]. Mol Cell Biol,1998,18:6538-6547.
    [55]Bartram U, Molin DG, Wisse LJ, et al. Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-beta(2)-knockout mice[J]. Circulation,2001,103(22):2745-2752.
    [56]Wiggan O, Fadel MP, Hamel PA. PAX3 induces cell aggregation and regulates phenotypic mesenchymal-epithelial interconversion[J]. J Cell Sci,2002, 115:517-529.
    [57]XU T, ZHU Y, et al. A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma[J]. Carcinogenesis,2008,29 (11):2126-2131.
    [58]Sarah CM, Frederic R, et al. Oxidative Stress during Diabetic Pregnancy Disrupts Cardiac Neural Crest Migration and Causes Outflow Tract Defects[J]. Birth Defects Res,2008,82:453-463.
    [59]Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells[J]. Nat Rev Genet,2005,6:826-835.
    [60]Christoffels VM, Habets PE, Franco D, et al. Chamber formation and morphogenesis in the developing mammalian heart[J]. Dev Biol,2000,223:266-278.
    [61]Bajolle F, Zaffran S, Kelly RG, et al. Rotation of the myocardial wall of the outflow tract is implicated in the normal positioning of the great arteries[J]. Circ Res, 2006,98:421-428.
    [62]Kirby ML, Turnage KL, Hays BM. Characterization of conotruncal malformations following ablation of "cardiac" neural crest[J]. Anat Rec,1985, 213:87-93.
    [63]Fanny B, Stephane Z, et al. Genetics and embryological mechanisms of congenital heart diseases[J]. Archives of Cardiovascular Disease,2009,102:59-63.
    [64]Ferencz C, Rubin JD, MeCarter RJ, et al. Congenital heart disease:prevalence at livebirth:the Baltimore-Washington Infant Study[J]. Am J Epidemiol,1985,121: 31-36.
    [65]Jonathan AE, Jun L, Migration of cardiac neural crest cells in Splotch embryos[J]. Development,2000,127:1869-1878.
    [66]祁丽华,景雅等.小鼠胚胎心脏发育过程中转化生长因子的表达特点[J].解剖学杂志,2005,28(1):34-36.
    [1]Goldmuntz E. The epidemiology and genetics of congenital heart disease. Clin Perinatol,2001,28(1):1-10
    [2]Rittler M, Liascovich R, Lopez-Camelo J,et al. Parental consanguinity in specific types of congenital anomalies. Am J Med Genet,2001,102(1):36-43
    [3]Guitti JC.Epidemiological characteristics of congenital heart diseases in Londrina, Parana'South Brazil. Arq Bras Cardiol,2000,74(5):395-404
    [4]Hoffman JI. Congenital heart disease:incidence and inheritance. Pediatr Clin North Am,1990,37(1):25-43
    [5]American Heart Association. Congenital heart defects in children factsheet. Available online at: http://www.americanheart.org/presenter.jhtml?identifier=12012.2005
    [6]Liu WT(刘薇廷),Ning SB(宁寿葆), et al上海市杨浦、徐汇区小儿先天性心脏病发病率及其特点Chin J Pediatr(中华儿科杂志),1995,33(6):347-349
    [7]Alabdulgader AA.Congenital heart disease in 740 subjects:epidemiological spects. Ann Trop Paediatr,2001,21(2):111-118
    [8]Hoffman JI. Incidence of congenital heart disease:I. Postnatal incidence. Pediatr Cardiol,16(3):103-113
    [9]Wang HS(王惠珊),Yuan X, Xi YS, et al. Prevalence study of congenital heart disease in 19432 children aged 0-2. Chinese Journal of Child Health Care(中国儿童保健杂志),2001,9(4):236-238
    [10]Yan HQ(严惠琴),Chen YH, Ying CN.17933名0-2岁儿童先天性心脏病患病率调查Maternal and Child Health Care of China(中国妇幼保健),2006, 21(1):82-83
    [11]Li S(李松),Hong SX, Zhao P, et al.石家庄等四城市小婴儿先天性心脏病患病率研究.Chin J Pediatr(中华儿科杂志),1999,37(6):375-377
    [12]Gao BR(高秉仁),Yue FZ, The epidemiological investigation of congenital heart disease in Gansu province. Chinese Circulation Journal (中国循环杂志),2000,15(5):298-299
    [13]Liu RC(刘瑞昌),Wu TY,Ge RL,et al青海高原儿童先天性心脏病调查.Chin J Cardiol (中华心血管病杂志),1982,10(4):241-242
    [14]Fixler DE, Pastor P, Chamberlin M,, et al. Trends in congenital heart disease in Dallas county births. Circulation,1990,81(1):137-142
    [15]Zhang YM(张源明),Huang JL(黄建乐),Liu TY, et al.新疆锡伯族青少年及婴幼儿先天性心脏病的流行病学病学调查(摘要)Chin J Cardiol(中华心血管病杂志),1992,20(4).
    [16]Wang J(王军),Wang ZN, Li SZ, et al. Examination on conginital heart disease for 6500 students. Tibet's Science & Technology(西藏科技),2002,1:12-14
    [17]Kapusta L, Haagmans ML, Steegers EA, et al. Congenital heart defects and maternal derangement of homocysteine metabolism. J Pediatr,1999, 135(6):773-774
    [18]Li QY, Newbury-Ecob RA, Terrett JA, et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyuy T gene family. Nat Genet,1997,15(1):21-29
    [19]Basson CT, Bachinsky DR, Lin RC, et al. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome.. Nat Genet, 1997,15(1):30-35
    [20]Rupp RA, Fouad GT, Egelston CA, et al. Identification, genomic organization and mRNA expression of CRELD1, the founding member of a unique family of matricellular proteins. Gene,2002,293(1-2):47-57
    [21]Robinson SW, Morris CD, Goldmuntz E, et al. Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects. Am J Hum Genet,2003, 72(4):1047-1052
    [22]Kuo CT, Morrisey EE, Anandappa R, et al. GATA4 transcription factor is required for ventrial morphogenesis and heart tube formation. Genes Dev,1997, 11(8):1048-1060
    [23]Molkentin JD, Lin Q, Duncan SA, et al. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev,1997, 11(8):1061-1072
    [24]Garg V, Kathiriya IS, Barnes R, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature,2003, 424(6947):443-447
    [25]Jiao K, Kulessa H, Tompkins K, et al. An essential role of Smp4 in the atrioventricular septation of the mouse heart. Genes Dev,2003,17(19):2362-2367
    [26]Abdelwahid E, Rice D, Pelliniemi LJ, et al. Overlapping and differential localization of Bmp-2, Bmp-4, Msx-2 and apoptosis in the endocardial cushion and adjacent tissues of the developing mouse heart. Cell Tissue Res,2001, 305(1):67-78
    [27]Goldmuntz E. The epidemiology and genetics of congenital heart disease. Clin Perinatol,2001,28(1):1-10
    [28]Green EK, Priestley MD, Waters J, et al. Detailed mapping of a congenital heart disease gene in chromosome 3p25. J Med Genet,2000,37(8):581-587
    [29]Schardein JL. Chemically induced birth defects.2nd edition New York, NY: Marcel Dekker. Inc,1993
    [30]Johnson PD, Goldberg SJ, Mays MZ, et al. Threshold of trichloroethylene contamination in maternal drinking waters affecting fetal heart development in the rat. Environ Health Perspect,2003,111(3):289-292
    [31]Loffredo CA, Silbergeld EK, Ferencz C, et al. Association of transposition of the great ateries in infants with maternal exposures to herbicides and rodenticides. Am J Epidemiol,2001,153(6):529-536
    [32]Ritz B, Yu F, Fruin S, et al. Ambient air pollution and risk of birth defects in Southern California.Am J Epidemiol,2002,155(1):17-25
    [33]Smrcka V, Leznarova D. Environmental pollution and the occurrence of congenital defects in a 15-year period in a south Moravian district. Acta Chir Plast, 1998,40(4):112-114
    [34]Bove FJ, Fulcomer MC, Klotz JB, et al.Public drinking water contamination and birth outcomes. Am J Epidemiol,1995,141(9):850-890
    [35]Hwang BF, Magnus P, Jaakkola JJ. Risk of specific birth defects in relation to chlorination and the amount of natural organic matter in the water supply. Am J Epidemiol,2002,156(4):374-382
    [36]Cedergren MI, Selbing AJ, Lofman O, et al. Chlorination byproducts and nitrate in drinking water and risk for congenital cardiac defects. Environ Res,2002, 89(2):124-130
    [37]Dolk H, Vrijheid M, Armstrong B, et al. Risk of congenital anomalies near hazardous-waste landfill sites in Europe:the EUROHAZCON study. Lancet,1998,352(9126):423-427
    [38]Kuehl KS, Loffredo CA.Population-based study of 1-transposition of the great arteries:possible associations with environmental factors. Birth Defects Res A Clin Mol Teratol,2003,67(3):162-167
    [39]Malik S, Schecter A, Caughy M, et al. Effect of proximity to hazardous waste sites on the development of congenital heart disease. Arch Environ Health,2004, 59(4):177-181
    [40]Grech V. Seasonality in live births congenital heart disease in Malta. Cardiol Young,1999,9(4):396-401
    [41]Wang XM(王晓明),Zhang GC, Han MY, et al. Detection of TORCH genom in the cardiac tissue of congenital heart disease. Chinese J Exp Clin Virol (中华实验和临床病毒学杂志),2001,15(2):176-178
    [42]Wang XM(王晓明),Zhang GC, Han MY. Study of Parvovirus B19 and other pathogenic infections in congenital heart disease. Chin J Microbiol Immunol(中华微生物学和免疫学杂志),2000,20(2):170-172
    [43]Schluter WW, Reef SE, Redd SC, et al. Changing epidemiolgy of congenital rubella syndrome in the United States. J Infect Dis,1998,178(3):636-641
    [44]Jones JL, Kruszon-Moran D, Wilson M, et al. Toxoplasmagondii infection in the United States:seroprevalence and risk factors. Am J Epidemiol,2001,154(4): 357-365
    [45]Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet,2004,363(9425):1965-1976
    [46]Wang XM(王晓明),Zhang GC(张国成),Han MY, et al. Study on the correlation of Toxoplasma gondii infection with congenital heart disease. Journal of the Fourth Military Medical University (第四军医大学学报),1999,20(9):790-792
    [47]Von Kaisenberg CS, Jonat W. Fetal parvovirus BI9 infection. Ultrasound Obstet Gynecol,2001,18:280-288
    [48]Al-Khan A, Caligiuri A, Apuzzio J. Parvovirus B-19 infection during pregnancy. Infect Dis Obstet Gynecol,2003,11(3):175-179
    [49]Loffredo CA, Silbergeld EK, Ferencz C, et al. Association of transposition of the great arteries in infants with maternal exposures to herbicides and rodenticides. Am J Epidemiol,2001,153(6):529-536
    [50]Gao LZ(高莉冶),Zhao ZT(赵仲堂),Li D, et al. Case- control study on environmental risk factors of congenital heart disease. Chinese Journal of Public Health (中国公共卫生),2005,21(2):161-162.
    [51]Botto LD, Lynbeng MC, Erickson JD. Congenital heart defects, maternal febrile illness, and multivitamin use:a population based study. Epidemiology,2001, 12(5):485-490
    [52]Zierler S. Maternal drugs and congenital heart disease. Obstet Cynecol,1985, 65(2):155-165
    [53]Zierler S, Rothman KJ. Congenital heart disease in relation to maternal use of Bendectin and other drugs in early pregnancy. N Engl J Med,1985,313(6): 347-352
    [54]Guo ZL(郭志良).浅谈先天性心脏病病因学Chinese Journal of Medicine(中国医刊),2003,38(5):11
    [55]Kallen BA, Otterblad Olausson P, Danielsson BR.Is erythromycin therapy teratogenic in humans? Reprod Toxicol,2005,20(2):209-214
    [56]Bupropion (amfebutamone):caution during pregnancy. Prescrire Int,2005, 14(80):225
    [57]Cedergren MI, Selbing AJ, Kallen BA. Risk factors for cardiovascular malformation-a study based on prospectively collected data. Scand J Work Environ Health,2002,28(1):12-17
    [58]Feucht M, Christ B, Wilting J. VEGF induces cardiovascular malformation and embryonic lethality. Am J Pathol,1997,151(5):1407-1416
    [59]Wang Y, Zhong T, Qian L, et al. Wortmannin induces zebrafish cardia bifida through a mechanism independent of phosphoinositide 3-kinase and myosin light chain kinase. Biochem Biophys Res Commun,2005,331(1):303-308
    [60]Camichael SL, Shaw GM, Yang W, et al. Maternal periconceptional alcohol consumption and risk for conotruncal heart defects. Birth Defects Res A Clin Mol Teratol,2003,67(10):875-878
    [61]Tikkanen J. Risk factors for ventricular septal defect in finland. Public Health, 1991,105(2),99-112
    [62]Steinberger EK, Ferencz C, Loffredo CA. Infants with single ventricle:a population-based epidemiological study. Teratology,2002,65(3):106-115
    [63]Wasserman CR, Shaw GM, O'Malley CD, et al. Parental cigarette smoking and risk for congenital anomalies of the heart, neural tube, or limb. Teratology, 1996,53 (4):261-267
    [64]Kallen K. Maternal smoking and congenital heart defects. Eur J Epidemiol, 1999,15(8):731-733
    [65]Zhang CX(张成香),Cheng XS, Wei XQ介休地区先天性心脏病与其他畸形的调查报告.Chinese Journal of Birth Health and Heredity (中国优生与遗传杂志),1997,5(5):99-100
    [66]Carmichael SL, Nelson V, Shaw GM, et al. Socio-economic status and risk of conotruncal heart defects and orofacial clefts. Paediatr Perinat Epidemiol,2003, 17(3)264-271
    [67]Zhang ZF(张泽峰),Li Z.先天性心脏病的发病水平研究状况Chinese Journal of Healthy Birth & Child Care(中国优生优育),1997,8(4):179-181
    [68]Chen LB(陈林波),Peng BT(彭帮田).32860名儿童先天性心脏病患病率及危险因素调查分析Central Plains Medical Journal(中原医刊),1997,24(4):2-3
    [69]Carmichael SL, Shaw GM. Maternal life event stress and congenital anomalies. Epidemiology.2000,11(1):30-35
    [70]Liu SW, Ji JF. To explore the relation of maternal mental stress during early pregnancy and congenital heart disease. Modern Preventive Medicine (现代预防医学),2005,32(3):260-261
    [71]Zhan SY(詹思延),Lian ZH先天性心脏病危险因素的病例对照研究Chin J Prev Med(中华预防医学杂志),1992,26:178
    [72]Bronshtein M, Zimmer EZ, Blazer S. A characteristic cluster of fetal sonographic markers that are predictive of fetal Turner syndrome in early pregnancy. Am J Obstet Gynecol,2003,188(4):1016-1020
    [73]Papp C, Beke A, Mezei G, et al. Prenatal diagnosis of Turner Syndrome:report on 69 cases. J Ultrasound Med,2006,25(6):711-717
    [74]Azar GB, Snijders RJ, Gosden C, et al. Fetal nuchal cystic hygromata:associated malformations and chromosomal defects. Fetal Diagn Ther,1991,6(1-2):46-57
    [75]Nicolaides KH, Azar G, Snijders RJ,et al. Fetal nuchal oedema:associated malformations and chromosomal defects. Fetal Diagn Ther,1992,2 (7): 123-131
    [76]Baena N, De Vigan C, Cariati E, et al. Turner Syndrome:evaluation of prenatal diagnosis in 19 European registries. Am J Med Genet A.2004,129(1):16-20
    [77]Guariglia L, Rosati P. Transvaginal sonographic detection of embryonic fetal abnormalities in early pregnancy. Obstet Gynecol,2002,96(3):328-332
    [78]Huggon IC, Ghi T, Cook AC, et al. Fetal cardiac abnormalities identified prior to 14 weeks'gestation.Ultrasound Obstet Gynecol,2002,20(1):22-29
    [79]Warburton D, Kline J, Stein Z, et al. Monosomy X:A chromosomal anomaly associated with young maternal age. Lancet,1980,1(8161):167-169
    [80]Koeberl D, McGillivray B, Sybert V, et al.Postnatal diagnosis of 45, X/46, XX mosaicism and 45, X:implications for postnatal outcome. Am J Hum Genet, 1995,3(57):661-666
    [81]Gunther DF, Eugster E, Zagar AJ, et al. Ascertainment bias in Turner Syndrome: new insights from girls who were diagnosed incidentally in prenatal life. Pediatrics,2004,3(114):640-644
    [82]Huang B, Thangavelu M, Bhatt S, et al. Prenatal diagnosis of 45,X and 45,X mosaicism:the need for thorough cytogenetic and clinical evaluations. Prenat Diagn,2002,2(22):105-110
    [83]Griffiths M, Miller P, Stibbe H. A false-positive diagnosis of Turner Syndrome by amniocentesis. Prenat Diagn,1996,5(16):463-466
    [84]Simpson LL. Indications for fetal echocardiography from a tertiary-care obstetric sonography practice. J Clin Ultrasound,2004,32(3):123-128
    [85]Sharland G. Routine fetal cardiac screening:what are we doing and what should we do?. Prenat Diagn,2004,24(13):1123-1129
    [86]Gravholt CH, Juul S, Naeraa RW, et al. Prenatal and postnatal prevalence of Turner's syndrome:a registry study. BMJ,1996,312(7022):16-21
    [87]Hall S, Abramsky L, Marteau TM. Health professionals' reports of information given to parents following the prenatal diagnosis of sex chromosome anomalies and outcomes of pregnancies:a pilot study. Prenat Diagn,2003,7(23):535-538
    [88]Friedman AH, Kleinman CS, Copel JA.Diagnosis of cardiac defects:where we've been, where we are and where we're going. Prenat Diagn,2002,22(4): 280-284

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700