用户名: 密码: 验证码:
流固耦合作用下呼吸流涡结构演化及与气溶胶扩散转捩关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体上呼吸道是呼吸系统的重要组成部分,是人体与外界环境进行气体交换的主要通道。随着国际生物恐怖威胁的增加、大气环境的不断恶化以及卫生防护防疫技术的发展,人体上呼吸道内气流运动与气溶胶扩散研究的重要性已越来越为人们所关注。当遭遇生物恐怖袭击时,大量的病毒气溶胶通过上呼吸道进入人体内,对人体造成极大危害;具有生物污染物防护功能的卫生舱室虽然能够对绝大部分病毒气溶胶进行有效过滤,但仍有少量有毒气溶胶进入舱室,并通过上呼吸道对人体造成危害;空气污染所导致的呼吸系统疾病的发病率逐年增加,其复杂性和严重性也日益突出,严重影响了人们的生活质量。
     本文通过构建人体上呼吸道三维规范模型,采用数值模拟和PIV流场可视化实验研究相结合的方法,对流固耦合作用下稳态呼吸和瞬态循环呼吸过程中上呼吸道规范模型内的气流组织、涡结构演化以及气溶胶颗粒扩散沉积进行了数值仿真研究,并进行了实验验证。主要工作及研究结果如下:
     构建了人体上呼吸道三维规范几何模型。运用三维重建技术和高级图像处理技术,通过上呼吸道CT扫描、个体上呼吸道三维重建、个体模型归一化处理、个体模型切片、切片图像融合处理、模型规范化处理等步骤,构建了人体上呼吸道三维规范模型,并对其进行了定性与定量分析,结果表明:与以往的简化模型相比,规范模型在几何形状真实性、结构特征完备性方面与真实人体上呼吸道更接近,在科学研究方面具有更高的应用价值。
     分析了人体上呼吸道内的流固耦合作用。通过构建和运用人体上呼吸道流固耦合力学模型,分析了流固耦合作用下人体上呼吸道壁面的形变状况和呼吸道内的气流组织特征,结果表明:
     流固耦合作用下,呼吸流量越大,呼吸道形变越大,对气流的缓冲能力越强;吸气时,咽喉部位及气管处向后方移动,咽喉部位受到气流运动的作用,出现扩张现象;呼气阶段,咽喉部位及气管处向前运动,咽喉部位受到气流运动的作用,出现收缩现象。
     循环吸气过程中,气流分别在咽部和喉部形成两个速度增长点,在咽部气流发生分离现象;在声门位置受到几何结构的限制,产生湍流喷射的现象;声门处的喷射致使气流在气管前壁处形成高速气流,气管后方形成流动分离现象;随着与声门距离的增加,气管前、后壁气流速度差逐渐减少。循环呼气过程中,口腔顶部贴近软腭和硬腭部位的气流速度要高于口腔底部,且在口腔顶部发生流动分离现象,形成分离区;在支气管的分叉处,气流发生交汇现象,交汇造成分叉中心处形成低速区,而交汇气流使上一级支气管中产生暂时的两个气流高速点,随后逐步合并。
     模拟了流固耦合作用下人体上呼吸道内的涡结构演化过程。运用大涡模拟和流固耦合数值仿真方法,对人体上呼吸道内涡结构演化过程进行了分析,结果表明:
     吸气过程中,气流进入口腔,硬腭部位气体与入口气流发生“互搓”,加上口腔中舌苔的阻碍,致使气流在口腔中部以及舌苔上部形成了多个涡管结构,随后受到咽部复杂结构的强烈干扰以及气道的转向,入口气流发生转捩;气流在声门部位形成强烈的射流,射流沿着气管的前壁向前发展,受到气管前壁形状的影响,在气管前壁处出现了类似于马蹄形状的“马蹄涡”。
     呼气过程中,气流在气管支气管的分叉处发生交汇现象,在气管的底部产生了较为复杂的涡结构,随着气流在气管内的融合,气管内的涡量逐步减弱,只剩一个能量较大的涡管沿着气道不断伸长;气流在声门处的强烈喷射以及会厌部位的阻碍使咽喉部位产生了较为复杂的涡结构,在咽喉后壁处射流受到阻碍,形成了“拱状涡”;进入口腔时,气流受到软腭阻碍、气道转向以及截面缩小的影响,一方面导致咽腔内的大的涡结构发生破裂,另一方面致使气流在咽部再次发生喷射,射流朝向口腔上部,口腔内并没有较大的涡结构产生。
     研究了流固耦合作用下人体上呼吸道内的气溶胶扩散沉积行为。借助Lagrangian随机轨道模型,对规范模型内的气溶胶颗粒扩散沉积进行了仿真分析,结果表明:
     吸气过程中,0.3m的气溶胶颗粒比6.5m的气溶胶颗粒更容易通过上呼吸道,进入更深层次的支气管中;0.3m的气溶胶颗粒更容易受到涡结构的影响,喉部后侧以及气管后部具有螺旋状轨迹的气溶胶颗粒数量更多;大多数的气溶胶颗粒将在上呼吸道模型中的涡量集中区通过。呼气过程中,部分进入上呼吸道模型的颗粒在呼出气流的夹带下,在气道中折返、回旋、沉积,而有些则从口腔中呼出,在折返的过程中,由于颗粒对于呼出气流的跟随性较好,折返的轨迹主要集中呼吸气阶段涡量集中的区域。
     呼吸流量30L/min和60L/min时粒径分别为0.3m和6.5m的气溶胶颗粒在喉部及气管内沉积较多,但在口腔内的沉积较少;6.5m的气溶胶颗粒在上气道不同部位的沉积率要明显高于0.3m气溶胶;在考虑流固耦合作用时,两种粒径的气溶胶颗粒在咽喉部位的沉积率均有所下降;粒径为6.5m气溶胶的主要沉积机理是惯性碰撞,而粒径为0.3m的气溶胶的沉积却主要受到湍流扩散及涡流夹带的影响。
     开展了人体上呼吸道内气流组织、涡结构演化及气溶胶沉积的可视化实验。利用激光固化快速成型(Stereolithography,SL)技术制备了人体上呼吸道三维规范实物模型,并运用流场可视化测试(Particle Image Velocity,PIV)技术对其内部气流组织、涡结构演化及气溶胶沉积进行了实验测量,将实验测量结果与仿真结果进行对照,从而验证了数值仿真方法的正确性,结果表明:实验测量结果与仿真结果整体气流组织形式较为一致,实验中最大速度为10.24m/s,仿真中最大速度为9.55m/s,且测量数值与仿真数值误差最大不超过8%,气溶胶颗粒在人体上呼吸道内各部位的沉积趋势基本一致,吻合较好,从而说明数值仿真方法的准确性。
Human upper respiratory tract is an important part of respiratory system andthe main exchange channel for gas between the body and the outside environment.With the increase in threat of international bioterrorism, the development of sanitaryprotection and epidemic prevention technology and the deterioration of atmosphericenvironment, the importance of the research on airflowment and particle diffusionin human upper respiratory tract have gradually aroused more attention. Whenbioterrorism attacks happen, a large number of virus aerosols entered and do harmto human body via upper respiratory tract. Although most of virus aerosols can befiltered effectively by sanitary cabin with the function of biological protection, thelittle can also entered the cabin and accumulated in human body, which also candamage human health. The incidence of respiratory diseases caused by atmospherepollution increased year by year, and the complexity and severity of the diseases isincreasingly outstanding, which has seriously influenced the quality of life.
     The standardized model of human upper respiratory tract was constructed, andthe methods of integrating numerical simulation with PIV experimental researchwere used to study the airflowment, vortex evolution and aerosol deposition in thestandardized model under the effect of fluid-solid interaction both in steady andcyclic respiratory pattern. The main conclusions of the present work aresummarized as followed:
     The3D standardized model of human upper respiratory tract wasconstructed. The technology of3D reconstruction and sophisticated imageprocessing was used to construct3D standardized model of human upperrespiratory tract by the processes of CT scanning for upper respiratory tracts,3Dreconstruction of individual upper respiratory tract, normalization of individualmodels, slicing individual models, fusion of slicing image and standardization ofthe model, and then the difference between standardized model and the previousmodel was analyzed qualitatively and quantitatively. The results show that:compared to the simplified model, the standardized model is more similar to the realhuman upper respiratory tract in the completeness of structural characteristics andthe reality of geometry, and it possesses more application value in scientificresearch.
     The fluid-solid interaction was analyzed in human upper respiratory tract. The fluid solid interaction mechanics model is built and used to simulate airflowmovement in human upper respiratory tract model, and the shape change of themodel wall and the airflow in the model were analyzed. The results show that:
     Under the effect of fluid-solid interaction, the larger the respiratory flow is, thegreater the shape of respiratory tract changes, and the stronger the buffer effectworks on the airflow. In the phase of inhalation, the throat and trachea movebackward, the anterior wall was stretched, and the posterior wall was compressed,meanwhile airflow movement causes the expansion of throat. In the phase ofexhalation, the throat and trachea moves forward, the anterior wall was compressed,and the posterior wall was stretched, meanwhile airflow movement causes theshrinkage of throat.
     In the phase of cyclic inhalation, high velocity zone is created in pharynx andlarynx, and the phenomenon of airflow separation appeared in the pharynx. Aturbulence jet appears in the glottal region because of the restriction of geometricstructure, and the airflow separates in the downstream of the glottis with theseparation zone appearing near the posterior wall of the upper part of the trachea,and with high velocity zone appearing near the anterior wall. With the increase inthe distance with glottis, the velocity difference between the anterior and posteriorwall of the trachea gradually decreases. In the phase of cyclic exhalation, thevelocity of airflow near the hard palate and soft palate is higher than that on thebottom of mouth, and the phenomenon of airflow separation appears on the top. Theairflow streams converge at the bifurcation of trachea and bronchi, which causes thevelocity in the center of the bifurcation is lower. Meanwhile the confluence alsocauses two temporary airflow streams with higher velocity appear in the superiorbronchus, and then converges gradually.
     The vortex evolution in human upper respiratory tract under the effect offluid-solid interaction was simulated. Large eddy simulation and fluid-solidinteraction mechanics was used to simulate the process of vortex evolution and theresults show that:
     In the phase of inhalation, several vortex tubes were formed in the central ofmouth because the air near the hard palate rubs against the inlet airflow streams andwith the barrier of tongue coating some vortex tubes also appear on the surface oftongue coating. Then, transition occurred in the pharynx with disturbance of softpalate and the turning of airway. A turbulence jet ejected towards to the anteriorwall of the trachea appeared in the glottal regional. Affected by the barrier of thetrachea wall, the “horseshoe vortexes” which are similar to horseshoe appeared onthe anterior wall of the trachea.
     In the phase of exhalation, the airflow streams converged at the bifurcation of trachea and bronchi, and the confluence caused the complex vortex structure on thebottom of the trachea. With the airflow streams converging, the vorticity in thetrachea decreased, and only a stronger vortex tube was extended along with thetrachea. The intense jet in the glottal regional and the barrier of epiglottis causedcomplex vortex structures in throat, and “arch vortex” are formed on the posteriorwall of throat. When the airflow entered the mouth, the vortex structures broke upand a jet was ejected towards to the top of mouth because of the barrier of softpalate, turning of the airway and the shrinkage of cross-section in pharynx, in themeanwhile, there were no big vortex structure in the mouth.
     The diffusion and deposition of aerosol particles in human upper respiratorytract under the effect of fluid-solid interaction was studied. The lagrangianstochastic trajectory model and fluid-solid interaction mechanics were used tosimulate the deposition and diffusion of the aerosol particles, and the results showthat:
     In the phase of inhalation, the aerosol particles with size of0.3mwere morelikely to pass through upper respiratory tract and get to the lower bronchus than theparticles with size of6.5m. Easily affected by the vortex structures, more aerosolparticles with size of0.3mwith the helicoidally trajectories appeared on theposterior wall of larynx and trachea, and most of particles passed through theregions with higher airflow vorticity. In the phase of exhalation, the aerosolparticles entrained by the exhalation flow returned, convoluted and deposited in thetract. And some of the aerosol particles were taken out of mouth during this process.The trajectories of the reentrant particles were congregated in regions with higherairflow vorticity due to the good following performance of the particles.
     Both under the conditions that the respiratory flow are30L/min and60L/min,the deposition fraction of the aerosol particles with sizes of0.3mand6.5minthroat and trachea was high, and that in the mouth was low. And the depositionfraction of the aerosol particles with size of6.5min different zones of the upperrespiratory tract is obviously higher than that with size of0.3m. With the effect offluid-solid interaction, the deposition fractions of the sizes of0.3mand6.5min the throat will decrease. The main mechanism of deposition for the particles withsize of6.5mis inertial impaction, and the deposition for the particles with size of0.3mis more likely to be effected by turbulent dispersion and entrainment ofeddy current.
     The visualization experiment researches on airflow movement, vortexevolution and aerosol deposition were performed. The Stereolithography (SL)technology was used to construct the replica of human upper respiratory tract for experiment, and the Particle Image Velocity (PIV) technology was applied tomearsure the airflow movement, vortex evolution and aerosol deposition. The resultfrom the experiment was contrasted with that from simulation, which vertified theaccuracy of the simulation method. The results show that: the result of experimentis consistent with that of simulation in the air distribution mode. The maximumvelocity in the simulation is10.24m/s, and that in the experiment is9.55m/s. Themaximum error of the velocity between the two results is not over8%, and the trendof the aerosol deposition in the parts of human upper respiratory tract wasconsistent, which both verified that the numerical simulation methods are accurateand reasonable.
引文
[1]温占波,于龙,李劲松,等.负压救护车排风净化装置病毒气溶胶过滤效率测试评价方法的研究[J].中国消毒学杂志,2011,28(3):291-294
    [2]徐新喜,韩浩,赵秀国,等.气体污染物进入超压防护舱室后的运动状态数值模拟[J].暖通空调,2007,37(8):38-41
    [3]徐新喜,刘亚军,王太勇,等.方舱式机动医疗系统超压集体防护的技术研究[J].军事医学科学院院刊,2005,29(6):547-549
    [4] Ahuja M.S.,Paskind J.J.,Houck J.E.,et al.Design of a study for thechemical and size characterization of particulate matter emissions from selectedsources in California [C]. Receptor models in air resources management,Pittsburgh:Air&Waste Management Association,1989:145-158
    [5] Houck J.E.,Goulet J.M.,Chow J.C.,et al.Chemical characterizationof emission sources contributing to light extinction[C].Visibility and fine particles,Pittsburgh:Air&Waste Management Association,1989:145-158
    [6] X.G.Cui,E.Gutheil.Large eddy simulation of the unsteady flow-field in anidealized human mouth–throat configuration[J].Journal of Biomechanics,2011,44(16):2768–2774
    [7] Zhe Zhang,Clement Kleinstreuer.Computational analysis of airflow andnanoparticle deposition in a combined nasal–oral–tracheobronchial airwaymodel[J].Journal of Aerosol Science,2011,42(3):174-194
    [8]徐新喜,赵秀国,谭树林,等.循环呼吸模式口喉模型内气流运动特性数值模拟[J].力学学报,2010,42(2):182-190
    [9]赵秀国,徐新喜,刘亚军,等.循环呼吸模式对人体气管支气管内气流运动影响的仿真分析[J].军事医学科学院院刊,2009,33(2):161-165
    [10] Geng Tian,P.Worth Longest,Guoguang Su,et al.Development of a stochasticindividual path (SIP) model for predicting the tracheobronchial deposition ofpharmaceutical aerosols: Effects of transient inhalation and sampling theairways[J].Journal of Aerosol Science,2011,42(11):781–799
    [11] Pejman Farhadi Ghalati,Erfan Keshavarzian,Omid Abouali,et al.Numericalanalysis of micro-and nano-particle deposition in a realistic human upperairway[J].Computers in Biology and Medicine,2012,42(1):39-49
    [12] Weibel ER.Morphometry of the human lung[M].New York: AcademicPress,1963:1-3
    [13] Horsfield K,Dart G,Olson DE.Models of the human bronchial tree[J].Journalof Applied Physiology,1971,21(2):207
    [14] Grgic B,Finlay WH,Heenan AF.Regional aerosol deposition and flowmeasurements in an idealized mouth and throat[J].Journal of Aerosol Science,2004,35(1):21-32
    [15] Cheng Yung-Sung,Zhou Yue,Chen Bean T.et al.Particle deposition in a castof human oral airways[J].Journal of Aerosol Science and Technology,1999,31:286-300
    [16]Zhang Z,Kleinstreuer C,Kim CS.Micro-particle transport and deposition ina human oral airway model[J].Journal of Aerosol Science,2002,33(12):1635-1652
    [17]于驰,刘迎曦,孙秀珍,等.鼻/咽声反射仪在人体上呼吸道三维重建模型中的应用[J].生物医学工程学杂志,2009,26(6):1255-1259
    [18] Franz Chouly,Annemie Van Hirtum,Pierre-Yves Lagrée,et al.Numerical andexperimental study of expiratory flow in the case of major upper airwayobstructions with fluid–structure interaction[J].Journal of Fluids and Structures,2008,24(2):250–269
    [19] Nithiarasu P.,Hassan O.,Morgan K.,et al.Steady flow through a realistichuman upper airway geometry[J].International Journal for Numerical Methods inFluids,2008,57(5):631~651
    [20] S.T.Jayaraju,M.Brouns,S.Verbanck,et al.Fluid flow and particle depositionanalysis in a realistic extrathoracic airway model using unstructuredgrids[J].Journal of Aerosol Science,2007,38:494-508
    [21] Sun XZ,Yu C,Wang YF,Liu YX.Numerical simulation of soft palatemovement and airflow in human upper airway by fluid-structure interactionmethod[J].Acta Mech Sin.2007,23:359–367
    [22] Fresconi Frank E,Prasad Ajay K.Secondary velocity fields in the conductingairways of the human lung[J].ASME Journal of Biomechanical Engineering,2007,129:722-732
    [23]赵秀国,徐新喜,谭树林,等.人体上呼吸道内稳态气流运动特性的PIV初步试验研究[J].实验流体力学,2009,23(4):60-64
    [24]徐新喜,赵秀国,刘亚军,等.循环吸气支气管内瞬态气流运动特性的仿真研究[J].中国生物医学工程学报.2008,27(6):887-893
    [25] Liu Y,So RMC,Zhang CH.Modeling the bifurcating flow in an asymmetrichuman lung airway[J].Journal of Biomechanics,2003,36(7):951-959
    [26] Nithiarasu P,Liu CB,Massarotti N.Laminar and turbulent flow calculationsthrough a model human upper airways using unstructuredmeshes[J].Communications in Numerical Methods Engineering,2007,23(12):1057-1069
    [27]徐新喜,赵秀国,谭树林,等.人体上呼吸道内气流运动特性的数值模拟分析[J].计算力学学报,2010,27(5):881-886
    [28] Wang Ying,Liu Yingxi,Sun Xiuzhen,et al.Numerical analysis of respiratoryflow patterns within human upper airway[J].Acta Mecheanica Sinica,2009,25(6):737-746
    [29] Wolfgang A.Wall,Timon Rabczuk.Fluid-structure interaction in lowerairways of CT-based lung geometries[J].International Journal for NumericalMethods in Fluids,2008,57:653-675
    [30] Jong-Hoon Lee,Yang Na,Sung-Kyun Kim,et al.Unsteady flow characteristicsthrough a human nasal airway[J].Respiratory Physiology&Neurobiology,2010,172(3):136-146
    [31] Nelson B.Powell,Mihai Mihaescu,Goutham Mylavarapu,et al.Patterns inpharyngeal airflow associated with sleep-disordered breathing [J].Sleep Medicine,2011,12(10):966-974
    [32] Mihai Mihaescu,Goutham Mylavarapu,Ephraim J.Gutmark,NelsonB.Powell.Large Eddy Simulation of the pharyngeal airflow associated withObstructive Sleep Apnea Syndrome at pre and post-surgical treatment[J].Journal ofBiomechanics,2011,44(12):2221-2228
    [33] T.Gemci,V.Ponyavin,Y.Chen,et al.Computational model of airflowin upper17generations of human respiratory tract [J].Journal of Biomechanics,2011,41(9):2047-2054
    [34]Haribalan Kumar,Merryn H.Tawhai,Eric A.Hoffman,et al.The effectsof geometry on airflow in the acinar region of the human lung [J].Journal ofBiomechanics,2009,42(11):1635-1642
    [35] Min-Yeong Kang,JeongeunHwang,Jin-WonLee,et al.Effect of geometricvariations on pressure loss for a model bifurcation of the human lung airway[J].Journal of Biomechanics,2011,44(6):1196-1199
    [36] Jian Hua Zhu,Heow Pueh Lee,Kian Meng Lim,et al.Evaluation andcomparison of nasal airway flow patterns among three subjects from Caucasian,Chinese and Indian ethnic groups using computational fluid dynamics simulation[J].Respiratory Physiology&Neurobiology,2011,175(1):62-69
    [37] Kleinstreuer C.,Zhang Z.Airflow and Particle transport in the humanrespiratory system.Annual Review of Fluid Mechanics,2010,42:301-334
    [38]林江,胡桂林,曾敏捷,等.人体上呼吸道模型内气流和颗粒沉积的大涡模拟[J].浙江大学学报(工学版),2007,41(9):1582-1586.
    [39] Nazridoust Kambiz,Asgharian Bahman.Unsteady-State airflow and particledeposition in a three-generation human lung geometry[J].Inhalation Toxicology,2008,20(6):595-610.
    [40]张楚华.深呼吸时三级支气管内吸气流动特性的数值研究[J].生物医学工程研究,2007,25(4):197-201.
    [41] Choi L.T.,Tu J.Y.,Li H.F.,et al.Flow and particle deposition patternsin a realistic human double bifurcation airway model[J].Inhalation Toxicology,2007,19(2):117-131.
    [42] Hounam RF,Black A,Walsh M.Deposition of aerosol particles in thenasopharyngeal region of the human respiratory tract[J]. Journal of AerosolScience,1971,2:341–352.
    [43] Lippman M,Albert RE.The effect of particle size on the regional deposition ofinhaled aerosols in the human respiratory tract[J].American Industrial HygieneAssociation Journal,1969,30:257-275.
    [44] Wiesmiller K,Keck T,Leiacker R,Sikora T,et al.The impact of expirationon particle deposition within the nasal cavity[J].Clinical Otolaryngology andApplied Sciences,2003,28:304-307.
    [45] Zhang Y,Finlay WH,Matida EA.Particle deposition measurements andnumerical simulation in a highly idealized mouth-throat[J].Journal of AerosolScience,2004,30:789-803
    [46] X.G.Zhao,X.X.Xu,SH.L.Tan,et al.Characteristic of Gas-SolidTwo-Phase Flow in the Human Upper Respiratory Tract Model[C].The3rdInternational Conference on Bioinformatics and Biomedical Engineering.2009,6
    [47] Kleinstreuer C,Zhang Z,Kim CS.Combined inertial and gravitionaldeposition of microparticles in small model airways of a human resporatorysystem[J].Aerosol Science,2007,38(10):1047-1061
    [48] Luo H.Y.,Liu Y.Modeling the bifurcating flow in a CT-scanned human lungairway[J].Journal of Biomechanics,2008,41(12):2681-2688.
    [49] Arpád Farkas,Imre Balásházy.Simulation of the effect of local obstructionsand blockage on airflow and aerosol deposition in central human airways[J].Journalof Aerosol Science,2007,38(8):865-884
    [50] H.Moghadas,O.Abouali,A.Faramarzi,et al.Numerical investigationof septal deviation effect on deposition of nano/microparticles in human nasalpassage [J].Respiratory Physiology&Neurobiology,2011,177(1):9-18
    [51]Jianhua Huang,Lianzhong Zhang.Numerical simulation of micro-particledeposition in a realistic human upper respiratory tract model during transientbreathing cycle [J].Particuology,2011,9(4):424-431
    [52] Xiangdong Li,Kiao Inthavong,Jiyuan Tu.Particle inhalation and depositionin a human nasal cavity from the external surrounding environment[J].Building andEnvironment,2012,47:32-39
    [53] Aleck H.Alexopoulos,Paraskevi Karakosta,Costas Kiparissides.Particletransfer and deposition using an integrated CFD model of the respiratorysystem[J].Computer Aided Chemical Engineering,2010,28:211-216
    [54] Maria Chiara Piglione,Daniela Fontana,Marco Vanni.Simulation of particledeposition in human central airways[J].European Journal of Mechanics-B/Fluids,2012,31:91-101
    [55] David M. Broday, Ravid Rosenzweig. Deposition of fractal-like sootaggregates in the human respiratory tract[J].Journal of Aerosol Science,2011,42(6):372-386
    [56] Jacob H.Scheckman,Peter H.McMurry.Deposition of silica agglomeratesin a cast of human lung airways: Enhancement relative to spheres of equal mobilityand aerodynamic diameter[J].Journal of Aerosol Science,2011,42(8):508-516
    [57] Zhe Zhang,Clement Kleinstreuer,Sinjae Hyun.Size-change and depositionof conventional and composite cigarette smoke particles during inhalation in asubject-specific airway model[J].Journal of Aerosol Science,2012,46:34-52
    [58] Calay RK,Kurujareon J,Holdo AE.Numerical simulation of respiratory flowpatterns within human lungs[J].Respiratory Physiology and Neurobiology2002,130:201-221
    [59] Yang XL,Liu Y,So RMC,Yang JM.The effect of inlet velocity profile onthe bifurcation copd airway flow[J].Computers in Biology and Medicine.2006,36:181-194
    [60] Martin A.Nagels,John E.Cater.Large eddy simulation of high frequencyoscillating flow in an asymmetric branching airway model[J].Medical Engineering&Physics,2009,31(9):1148~1153.
    [61]向屏,郭印诚.具有壁面射流激励的圆管内气相流动大涡模拟[J].计算力学学报,2006,23(1):87~92.
    [62]钱玉梅,陈丽萍,吴亚东,等.人体上呼吸道三维数值模型的建立与气体流场数值模拟分析[J].上海口腔医学,2010,19(3):310-314
    [63]张克呈,徐英进,王颖,等.CT测量气管及主支气管对双腔气管插管的意义[J].医学研究与教育,2009,26(4):51-52
    [64] Y.Liu,M.R.Johnson,E. A.Matida et al.Creation of a standardizedgeometry of the human nasal cavity[J]. Journal of Applied Physiology,2009,106(3):784–795
    [65]彭志远,陈险峰,钟志林,等.CR胸片支气管成像及其与左心房增大的相关性分析[J].现代医用影像学,2007,10(16):200-204
    [66]李树华,曲胜,董莘,等.正常成人上呼吸道CT测量及其意义[J].中国临床解剖学杂志,2002,20(6):447-450
    [67]刘昌盛,张端莲,罗志宏,等.中南地区正常成人上呼吸道的MRI测量及其临床价值[J].武汉大学学报,2006,27(4):481-484
    [68] K.M.范德赫拉夫,R.沃德里斯.人体解剖与生理学(第二版)[M].北京:科学出版社,2002:256-270
    [69]刘月华,曾祥龙,傅民魁,等.正常人群上气道结构的X线头影测量研究[J].口腔正畸学,1997,4(1):10-14
    [70]杜光祖,裴彩萍.喉、气管的解剖学研究[J].解剖学研究,1999,21(2):85-87
    [71]赵振美,葛兆茹,谷方.软腭的应用解剖[J].解剖学杂志,1998,21(4):300-303
    [72]彭玉成,谢允平,朱杭军,等.国人咽部解剖结构测量及解剖关系指数[J].中国临床解剖学杂志,2002,20(6):492
    [73]朱继明,李克赞,吕伯实.喉腔的解剖学研究[J].解剖学杂志,1990,13(4):313-316
    [74]余浩,曾永清,李薇,等.流-固耦合作用综述[J].西部探矿工程,2008,20(2):44-47
    [75]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38
    [76]张立翔,杨柯.流体结构互动理论[M].北京:科学出版社,2004
    [77] Bjorn Gruber, Volker Carstens. The impact of viscous effects on theaerodynamic damping of vibrating transonic compress or blades-a numericalstudy[J].Journal of Turbomachinery,2001,123(2):409-417
    [78] Weber S,Plater M F.A Navier-Stokes analysis of the stall fluttercharacteristics of the buffum cascade [J].Journal of Turbomachinery,2000,122(4):769-776·
    [79] Jeffrey P.Thomas,Earl H.Dowell,Kenneth C.Hall.Nonlinear in viscidaerodynamic effects on transonic divergence,flutter,and limit-cycle oscillations[J].AIAA Journal,2002,40(4):638-646
    [80] C.Bréard,M.Vahdati,A.I.Sayma,et al. An integrated time-domainaeroelasticity model for the prediction of fan forced response due to inlet distortion[J].Transactions of the ASME,2002,124(2):196-208
    [81] Deman Tang,Earl H.Dowell.Experimental and theoretical study of gustresponse for high-aspect-ratio wing[J].AIAA Journal,2002,40(3):419-429
    [82] J.M.Kennedy,T.Belytschko.A surver of computational methods forfluid-structure analysis of reactor safety[J].Nuclear Engineering and Design,1982,69:379-398
    [83] G. Dubini,R.Pietrabissa,F.M.Montevecchi.Fluid-structure interactionproblems in bio-fluid mechanics: a numerical study of the motion of an isolatedparticle freely suspended in channel flow[J].Medical Engineering&Physics,1995,17(8):609-617
    [84]刘志远,郑源,张文佳,等.ANSYS-CFX单向流固耦合分析的方法[J].水利水电工程设计,2009,28(2):29-31
    [85]钱若军,董石麟,袁行飞.流固耦合研究进展[J].空间结构,2008,14(1):3-15
    [86]曾娜,郭小刚.探讨流固耦合分析方法[J].重庆三峡学院学报,2008,24(3):126-130
    [87]王征,吴虎,贾海军.流固耦合力学的数值研究方法的发展及软件应用概述[J].机床与液压,2008,36(4):192-195
    [88]刘云贺,俞茂宏,陈厚群.流体固体动力耦合分析的有限元法[J].工程力学,2005,22(6):1-6
    [89] Josep S.,Antonio H.,Jean D.Arbitrary Lagrangian-Eulerian formulationfor fluid-rigid body interaction[J].Computer Methods in Applied Mechanics andEngineering,2001,190(24-25):3171-3188
    [90] Fabian D.,Raul G.,Srinivasan N.Arbitrary Lagrangian-Eulerian method forNavier-Stokes equations with moving boundaries[J].Computer Methods in AppliedMechanics and Engineering,2004,193(45-47):4819-4836
    [91] Wei X.H.,Soo J.S.,Hyung J.S.Simulation of flexible filaments in auniform flow by the immersed boundary method[J].Journal of ComputationalPhysics,2007,226(2):2206-2228
    [92] Dokyun K.,Haecheon C.Immersed boundary method for flow around anarbitrarily moving body[J].Journal of Computational Physics,2006,212(2):662-680
    [93] Zhao S.Y.,Xue M.S.A direct-forcing fictitious domain method forparticulate flows[J].Journal of Computational Physics,2007,227(1):292-314
    [94] Zhou Y.C.,Wei G.W.On the fictitious-domain and interpolationformulations of the matched interface and boundary (MIB) method[J].Journal ofComputational Physics,2006,219(1):228-246
    [95] Vuyst T.,Vignjevic R.,Campbell J.C.Coupling between meshless and finiteelement methods[J].International Journal of impact Engineering,2005,31(8):1054-1064
    [96] Idelsohn S.R.,Onate E.,Pin F.A lagrangian meshless finite element methodapplied to fluid-structure interaction problems [J].Computers andd Structures,2003,81(8-11):655-671
    [97] Hirt G.W.,Amsden A.A.,Cook J.L.An arbitrary Lagrangian-Euleriancomputing method for all flow speeds[J].Journal of Computational Physics,1974,14(3):227-253
    [98]吴迎春.基于Geomagic和UG的逆向工程造型与制造应用[J].机械制造与自动化,2010,40(5):120-121
    [99]张军,梁楚华.基于Geomagic的实体模型逆向重构[J].机械工程与自动化,2010,(5):192-194
    [100]尤荣开.人工气道建立与维护[M].北京:人民军医出版社.2002:18-19
    [101]秦廷权.气管切开术及护理[M].北京:人民卫生出版社.1958:4-5
    [102]阎承先.耳鼻咽喉科全书-气管食管学[M].上海:上海科学技术出版社.2001:7-8
    [103] Habib R H,Chalker R B,Suki B,et al.Airway geometry and wall mechanicalprosperities estimated from subglottal input impedance in humans [J].Journal ofApplied Physiology,1994,77(1):441-451
    [104] McKay K O,Wiggs B R,Pare PD,Kamm R D.Zero-stress state of intra-andextraparenchymal airways from human, pig, rabbit and sheep lung[J].Journal ofApplied Physiology,2002,92(3):1261-1266
    [105]李石德.计算流体力学网格划分方法的现状与发展[J].科技信息,2011,(18):198-199
    [106]张良,王伟,王仁人.面向涡轮增压器蜗壳内流动计算的网格划分[J].农业装备与车辆工程,2011,(5):50-52
    [107]卓卫东.应用弹塑性力学[M].北京:科学出版社.2005:4
    [108]黄筑平.连续介质力学基础[M].北京:高等教育出版社.2006:82-100
    [109]高玉臣,金明,兑关锁.弹性大变形问题中的应力状态描述、奇异性问题和余能原理[J].力学进展,2011,41(1):93-113
    [110] Luo X.Y.,Pedley T.J.A numerical simulation of steady flow in a2-Dcollapsible channel[J].Journal of Fluid and Structures,1995,9:149-174
    [111] Hazel A. L., Heil M. Steady finite-Reynold-number flows inthree-dimensional collapsible tubes[J].Journal of Fluid Mechanics,2003,486:79-103
    [112] Marzo A.,Luo X.Y.,Bertram C.D.Three-dimensional collapse and steadyflow in thick-walled flexible tubes[J].Journal of Fluids and Structures,2005,20:817-835
    [113] Ehtezazi T.,Horsfield M.A.,Barry P.W.,O’Callaghan C.Dynamic changeof the upper airway during inhalation via aerosol delivery devices[J].Journal ofAerosol Medicine-Deposition Clearance and Effects in the Lung,2004,17:325-334
    [114] Zhang Y.,Finlay W.H.Measurement of the effect of cartilaginous rings onparticle deposition in a proximal lung bifurcation model[J].Aerosol Science andTechnology,2005,39(5):394-39
    [115] Ley S,Mayer D,Brook BS,et al.Radiological imaging as the basis for asimulation soft-ware of ventilation in the trachea-bronchial tree[J].Eur Radiol,2002,12:2218-2228
    [116]王福军.计算流体动力学分析[M].北京:清华大学出版社.2004:119-138
    [117] J.G.Wissink.DNS of separating low Reynolds number flow in a turbinecascade with incoming wakes[J].International Journal of Heat and Fluid Flow,2003,24(4):626-635
    [118] A.A.Feiz,M.Ould-Rouis,G.Lauriat.Large eddy simulation of turbulenceflow in a rotating pipe[J].International Journal of Heat and Fluid Flow,2003,24(3):412-420
    [119] D.G.E.Grigoriadis,J.G.Bartzis,A.Goulas.Efficient treatment ofcomplex geometries for large eddy simulations of turbulent flows[J].Computersand Fluids,2004,33(2):201-222
    [120] P.Rollet-Miet,D.Laurence,J.Ferziger.LES and RANS of turbulent flowin tube bundles[J].International Journal of Heat and Fluid Flow,1999,20(3):241-254
    [121] Baldwin B S,Lomax H.Thin-layer approximation and algebraic model forseparated turbulent flows[R].AIAA Paper78-257,1978
    [122] Baldwin B S,Barth T J.A one-equation turbulence transport model for highReynolds number wall-bounded flows[R].AIAA Paper91-0610,1991
    [123] Spalart P.R,Allmaras S.R.A one-equation turbulence model foraerodynamic flows[R].AIAA Paper92-439,1992
    [124] Spalart P R.Shur M.On the sensitization of turbulence models to rotation andcurvature[J].Aerospace Science and Technology,1997,1(5):297-302
    [125] Aupoix B,Spalart P R.Extensions of the Spalart-Allmaras turbulence modelto account for wall roughness[J].International Journal of Heat and Fluid Flow,2003,24:454-462
    [126]杨强生,浦保荣.高等传热学(第二版)[M].上海:上海交通大学出版社,2001:217-219
    [127] V.Yakhot,S.A.Orzag.Renormalization group analysis of turbulence:basic theory[J].J Scient Comput,1986,1:3-11
    [128] Wilcox D C.Reassessment of the scale-determining equation for advancedturbulence models[J].AIAA Journal,1988,26(11):1299-1310
    [129]谢龙汉,赵新宇,张炯明.ANSYS CFX流体分析及仿真[M].北京:电子工业出版社,2012:14-15
    [130] Menter F.R.Two-equation eddy-viscosity turbulence models for engineeringapplications[J].AIAA Journal,1994,32(8):1598-1605
    [131] Menter F.R.Zonal k two equation turbulence models for aero-dynamicflow[R].AIAA1993-2906,1993
    [132] Spalart P R,Jou W H,Strelets M,et al.Comments on the feasibility of LESfor wings and on a hybrid RANS/LES approach[C].Liu C,Liu Z.1stAFOSR IntConf on DNS/LES in Advances in DNS/LES.Columbus:Greyden Press,1997:137
    [133] Gatski T B.Speziale C G.On explicit algebraic stress models for complexturbulent flows[J].Journal of Fluid Mechanics,1993,254:59-78
    [134] Gatski T.,Abid R.,Rumsey C.Prediction of non-equilibrium turbulent flowswith explicit algebraic stress models[J].AIAA Journal,1995,33(11):2026-2031
    [135] Gatski T B.,Wallin S.Extending the weak-equilibrium condition foralgebraic Reynolds stress models to rotating and curved flows[J].Journal of FluidMechanics,2004,518:147-155
    [136] Menter F. R., EgorovY. A scale-adaptive simulation model usingtwo-equation models[R].AIAA paper2005-1095,2005
    [137] Goutham Mylavarapu,Shanmugam Murugappan,Mihai Mihaescu,etal.Validation of computational fluid dynamics methodology used for human upperairway flow simulations[J].Journal of Biomechanics,2009,42(10):1553-1559
    [138]胡桂林,林江.人体上呼吸道中呼吸气流特性的研究[J].自然科学进展,2008,18(2):225-229
    [139] Green A.S.Modelling of peak-flow wall shear stress in major airways of thelung[J].Journal of Biomechanics,2004,37(5):661-667
    [140]符松,王亮.湍流转捩模式研究进展[J].力学进展,2007,37(3):409-416
    [141]杨中,杜建一,徐建中.基于湍流模型的转捩流动数值计算研究[J].工程热物理学报,2010,31(2):231-234
    [142]肖志祥,陈海昕,李启兵.湍流模式对转捩的初步研究[J].计算物理,2006,23(1):61-65
    [143]钟伟,王同光.转捩对风力机翼型和叶片失速特性影响的数值模拟[J].空气动力学学报,2011,29(3):385-390
    [144] Menter F.R.,Langtry R. B.,Likki S. R.,et al. A correlation basedtransition model using local variables Part1-Model Formulation [R].ASME2004-GT-53452
    [145] Langtry R. B.,Menter F.R.,Likki S. R.,et al. A correlation basedtransition model using local variables Part2-Test Cases and IndustrialApplications[R].ASME2004-GT-53434
    [146]张兆顺,崔桂香,许春晓.湍流大涡数值模拟的理论和应用[M].北京:清华大学出版社,2008:72-76
    [147]傅德薰,马延文,李新亮,等.可压缩湍流直接数值模拟[M].北京:科学出版社,2010:254
    [148]童秉纲,尹协远,朱克勤.涡运动理论(第2版)[M].北京:中国科学技术大学出版社,2009:5-6
    [149] Hunt J.C.,Wray A.A.,Moin P.Eddies,streams and convergence zonesin turbulent flows[C].Proceedings of the Summer Program,Center for TurbulenceResearch,California:Stanford University,1988:193-208
    [150] Blackburn H.M.,Mansour N.N.,Cantwell B.J.Topology of fine-scalemotions in turbulent channel flow[J].Journal of Fluid Mechanics,1996,310:269-292
    [151] Jeong J,Hussain F.On the identification of a vortex[J].Journal of FluidMechanics,1995,285:69-94
    [152]刘玥,梁忠生,鲍锋.粒子成像测速—非介入式全场技术[J].中国科技信息,2010,13:37-40
    [153]栗鸿飞,宋文斌.PIV技术在流动测试与研究中的应用[J].西华大学学报(自然科学版),2009,28(5):27-31
    [154] Doorly,D.,Taylor D.J.,Franke P.,et al.Experimental investigation ofnasal airflow[J].Proceedings of the Institution of Mechanical Engineers,Part H:Journal of Engineering in Medicine222,2008:439-453
    [155] Emily J. Berg, Jessica L. Weisman, Michael J. Oldham, RisaJ.Robinson.Flow field analysis in a compliant acinus replica model using particleimage velocimetry (PIV)[J].Journal of Biomechanics,2010,43(6):1039-1047
    [156] K.Bauer,Ch.Brücker.The role of ventilation frequency in airwayreopening[J].Journal of Biomechanics,2009,42(8):1108-1113
    [157]张英朝,李杰,流畅,等.汽车风洞的PIV试验技术[J].吉林大学学报,2009,39:83-87
    [158] David Marr,Tanveer Khan,Mark Glauser.Particle Image Velocimetry (PIV)measurements in the breathing zone of a thermal breathing manikin[J].ASHRAETransactions,2005,(2):299-305
    [159] Kiao Inthavong,Lok-Tin Choi,Jiyuan Tu,et al.Micron particle depositionin a tracheobronchial airway model under different breathing conditions[J].MedicalEngineering&Physics,2010,32(10):1198–1212
    [160] Jianhua Huang,Lianzhong Zhang,Suyuan Yu.Modeling micro-particledeposition in human upper respiratory tract under steadyinhalation[J].Particuology,2011,9(1):39-43
    [161] Jinxiang Xi,Xiuhua Si,Jong Won Kim,et al.Simulation of airflow andaerosol deposition in the nasal cavity of a5-year-old child[J].Journal of AerosolScience,2011,42(3):156-173
    [162] L.Morawska,G.R.Johnson,Z.D.Ristovski,et al.Size distributionand sites of origin of droplets expelled from the human respiratory tract duringexpiratory activities[J].Journal of Aerosol Science,2009,40(3):256-269
    [163] B.Alf ldy,B.Giechaskiel,W.Hofmann,et al.Size-distribution dependentlung deposition of diesel exhaust particles[J].Journal of Aerosol Science,2009,40(8):652-663
    [164] Yuan Liu, Edgar A. Matida, Matthew R. Johnson. Experimentalmeasurements and computational modeling of aerosol deposition in theCarleton-Civic standardized human nasal cavity[J]. Journal of AerosolScience.2010,41(6):569-586
    [165] Thiago C.Carvalho,Jay I.Peters,Robert O.Williams III.Influence ofparticle size on regional lung deposition–What evidence is there?[J].InternationalJournal of Pharmaceutics,2011,406(1-2):1–10
    [166] Ali A.,Rostami.Computational modeling of aerosol deposition in respiratorytract:A review[J].Inhalation Toxicology,2009,21(4):262-290.
    [167] Longest P.W.,Xi J.Effectiveness of direct lagrangian tracking models forsimulating nanoparticle deposition in upper airways[J].Journal of Aerosol Scienceand Technology,2007,41(4):380-397
    [168] Huawei Shi,Clement Kleinstreuer,Zhe Zhang.Modeling of inertial particaltransport and deposition in human nasal cavities with wall roughness[J].Journal ofAerosol Science,2007,38:398-419
    [169] Gosman A.,Ioannides E.Aspects of computer simulation liquid-fuelledcombustor[R].AIAA Paper81-323,1981
    [170] Sommerfeld M.,Ando A.,Wennerberg D.Swirling,particle-laden flowsthrough a pipe expansion[J].ASME:Journal of Fluids Engineering,1992,114(4):648-656
    [171] Zheng Li,Clement Kleinstreuer,Zhe Zhang.Particle deposition in the humantracheobronchial airways due to transient inspiratory flow patterns[J].Journal ofAerosol Science,2007,38(6):625-643
    [172]赵秀国,徐新喜,孙栋,等.人体上呼吸道内气溶胶沉积的实验研究[J].中国生物医学工程学报,2011,30(6):904-908
    [173]徐新喜,孙栋,赵秀国,等.人体上呼吸道口喉呼吸流涡结构演化对病毒气溶胶扩散的影响研究[J].中国科学:生命科学,2011,41(10):1000-1007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700