鸭副黏病毒病诊断与同源疫苗的研制及初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新城疫是由新城疫病毒引起的一种高死亡率高传染性的疾病,为世界卫生组织公布的必报类动物疫病之一,每年都给养禽业造成严重的经济损失。虽然新城疫病毒只有一个血清型,但根据种系发生的重建,新城疫病毒被分成两个组,classI和class II,class I有9个基因型而class II有10个基因型,并且随着外界环境中的种种压力因素,新城疫病毒也在不断进化。实践中,鸡源新城疫疫苗用来预防鸭源新城疫效果不理想,亟需同源疫苗的创制。所以通过临床及病理解剖等综合诊断来提前快速确诊新城疫非常必要,可以有效的控制新城疫的发展,做到尽早预防,防止新城疫病毒的进一步扩散,把损失降到最低点。
     由于新城疫疫苗种类繁多,疫苗使用操作方法不一,往往会因疫苗的选择和使用不当造成免疫失败,给养禽业带来极大的经济损失。DNA疫苗是一种基因工程的疫苗,是通过肌肉注射或者皮下注射含有目的基因的质粒。这个转基因编码来自一个病原的目的蛋白的序列,并存在于真核表达启动子的控制下。基因工程类疫苗比传统的疫苗有很多优势,包括安全性,制作简单,稳定性等方面。DNA疫苗可以诱导长效的细胞免疫应答和体液免疫应答,并且不恢复成强毒株,在安全性上有了保障,所以DNA疫苗是今后疫苗发展的一个重要方向。
     本研究以吉林省吉林市经济技术开发区四方养殖场饲养的1500只蛋鸭临床病例为基础,首先通过临床剖检来进行新城疫的初步诊断,然后将疑似病料进行系统的实验室检测,包括细菌学鉴定和病毒学鉴定。对新城疫的初步临床诊断结果显示,该病例为新城疫。通过细菌学鉴定,该病例混有大肠杆菌感染。通过病毒学鉴定,新城疫病毒被分离出来,该病例为新城疫病毒同致病性大肠杆菌混合感染。由于分离毒株与本实验室保存的DP1/02株鸭源副黏病毒株遗传距离相近,均为强毒株,本试验研制了DP1/02株鸭源副黏病毒灭活疫苗,并进行了初步应用研究。
     根据本实验室分离的鸭源副黏病毒DP1/02株F基因序列,设计引物,克隆F基因到真核表达载体pCI-neo中,构建重组真核表达质粒pCI-F,并进行分子生物学相应的鉴定。结果表明,表达鸭源副黏病毒F基因的重组真核表达质粒构建成功。将构建好的重组真核表达质粒进行动物免疫试验,通过攻毒保护性试验,运用血凝抑制试验和酶联免疫吸附试验来分别测定体液免疫应答水平和细胞免疫应答的水平,进而来评价免疫效果。血凝抑制试验结果显示,pCI-F重组质粒诱导机体产生较高水平的体液免疫应答反应,ELISA试验结果显示,pCI-F重组质粒可以诱导机体产生较高的细胞免疫应答反应。攻毒保护性试验结果显示,pCI-F重组质粒对NDV强毒的攻击具有一定的保护作用,其保护率为73%。
     综上所述,根据实验室诊断证实了临床诊断的有效性,通过临床症状可以提前对感染新城疫的病禽进行隔离、扑杀,对新城疫的早期诊断和防控有非常重要的意义。成功构建的重组真核表达质粒pCI-F可以有效的诱导机体产生细胞免疫和体液免疫,攻毒保护性试验证明该质粒可以有效的保护NDV的攻击。研制了DP1/02株鸭源副黏病毒灭活疫苗,该疫苗免疫保护率为100%。该研究为防控鸭新城疫体系的完善提供了理论基础。
Newcastle disease (ND) is a viral disease of poultry caused by a single-strand,nonsegmented, negative-sense RNA virus known as Avian paramyxovirus1(APMV-1). The disease is present worldwide and affects many species of birds causing severelosses in the poultry sector. Although all NDV isolates belong to a single serotype(APMV-1), there is great genetic variability among different strains. Based uponphylogenetic reconstruction, NDV can be divided into2classes (I and II), each ofthose respectively subdivided into9and10genotypes.Since the environment whichvirus exist become worse and worse, the virus generate genetic variability to accom--modate the new environments. The coinfection between virus and bacteria has beenobserved. The NDV vaccine from chicken can not protect the duck resist NDVinfection, it is necessary to prepare homologous vaccine. The clinical diagnosis notonly identifies the disease in earlier period but also limits the shedding of the virus. Sothe clinical diagnosis is very important.
     Since the great genetic variability among different NDV strains and the methodof operation Newcastle Disease vaccine has difference, the failure of immune oftenappear and cause severe losses in the poultry industry.Genetic vaccines havenumerous advantages over traditional vaccines in terms of safety, ease ofmanufacturing and stability. Possibly the best current vaccine platform that inducesboth humoral and cellular immune responses is the use of live-attenuated pathogens;however, this also poses important safety concerns with the risk of reversion of thepathogen to a more virulent form. DNA vaccines can also induce both long-lastingcellular and humoral immune responses but do not revert into virulence, and thereforeraise fewer safety concerns. In addition, clinical trials with DNA vaccines have shownfewer incidences of systemic adverse effects such as redness, swelling, fever and headache. So the research of DNAvaccine is a important purpose in the future.
     First of all, clinical diagnosis has been applied on the base of economic technicaldevelopment area JiLin city JiLin province si fang duck nursery for identification theNewcastle Disease. Subsequently, the borderline cases are identified by virusdiagnosis and bacteria diagnosis in laboratory. The result of bacteria diagnosisanalysis shows that the borderline cases are infected by Bacillus coli. The result ofvirus diagnosis analysis shows that the borderline cases are infected by NewcastleDisease Virus. So the ducks are infected by Bacillus coli and Newcastle Disease Virus.In addition, inactivated vaccine of Duck Newcastle Disease Virus were prepared andidentified.
     According to the sequence of Duck Newcastle Disease Virus F gene which wasisolated from duck by our laboratory, the F gene primers are designed by primer5.0.The F gene is cloned into eukaryotic expression vector pCI-neo named pCI-F. pCI-Fis identified by molecular biology method as PCR and indirect immunofluorescence.The identification shows that pCI-F is constructed successfully.
     Animal immune experiment is performed with pCI-F. In order to assess thecellular immune respond level and the humoral immune respond level, the F geneantibody level and γ-IFN level are measured by HI assay and ELISA. Subsequent, theanimal protection experiment is performed. The HI assay and ELISA results show thatpCI-F induced F gene antibody level less than inactivated vaccine and pCI-F inducedγ-IFN level more than inactived vaccine and similar with attenuated vaccine. Theanimal protection experiment result shows that pCI-F can protect velogenic viruschallenge and the protection rate is73%, the protection rate of inactivated vaccine ofDuck Newcastle Disease Virus is100%.
     This research is a basis of the duck NDV DNA vaccine for prevention in thefuture.
引文
[1] Lamb R, Collins PL, Kolakofsky D, et al.The negative sense single stranded RNAviruses. In: Virus taxonomy,ed. Fauquet CM, Mayo MA, Maniloff J, et al.,Elsevier Academic, San Diego, CA.2005, pp.607–738.
    [2]Czegledi, A., Ujvari, D., Somogyi, et al. Third genome size category of avianparamyxovirus serotype1(Newcastle disease virus) and evolutionaryimplications. Virus Res.2006,120,36–48.
    [3]De Leeuw OS, Koch G, Hartog L, et al. Virulence of Newcastle disease virus isdetermined by the cleavage site of the fusion protein and by both the stem regionand globular head of the haemagglutinin-neuraminidase protein. J Gen Virol2005,86:1759–1769.
    [4] Huang Y, Wan HQ, Liu HQ, et al.Genomic sequence of an isolate of Newcastledisease virus isolated from an outbreak in geese: a novel six nucleotide insertionin the non-coding region of the nucleoprotein gene. Arch Virol2004,149:1445–1457.
    [5] Mebatsion T, Verstegen S, De Vaan LT, et al.A recombinant Newcastle diseasevirus with low-level V protein expression is immunogenic and lackspathogenicity for chicken embryos.J Virol2001,75:420–428.
    [6]Miller PJ, Decanini EL, Afonso CL. Newcastle disease: evolution of genotypes andthe related diagnostic challenges. Infect Genet Evol2010,10:26–35.
    [7]Liu H, Wang Z, Wang Y, et al. Characterization of Newcastle disease virusisolated from waterfowl in China. Avian2008, Dis52:150–155.
    [8] Wan H, Chen L, Wu L, et al. Newcastle disease in geese: natural occurrence andexperimental infection. Avian Pathol2004,33:216–221.
    [9]Zou J, Shan S, Yao N, et al. Complete genome sequence and biologicalcharacterizations of a novel goose paramyxovirus-SF02isolated in China. VirusGenes2005,30:13–21.
    [10] Alexander DJ. Newcastle disease and other avian paramyxoviruses. In: Alaboratory manual for the isolation, identification and characterization of avianpathogens, ed. Swayne DE, Glisson JR, Jackwood MW, et al.,1998,4th ed., pp.156–163.
    [11]Alexander DJ. Newcastle disease, other avian paramyxoviruses, and pneumovirusinfection. In: Disease of poultry, ed. Shaif YM, Barnes HJ, Glisson JR, et al.,2003,12th ed., pp.75–100.
    [12] World Organization for Animal Health (OIE): Chapter2.3.14In: Manual ofdiagnostic tests and vaccines for terrestrial animals, OIE, Paris, France.6th ed.,2008, pp.576–589.
    [13]Pearson JE, Senne DA, Alexander DJ, et al. Characterization of Newcastledisease virus (avian paramyxovirus-1) isolated from pigeons. Avian1987, Dis31:105–111.
    [14]Alexander DJ, Parsons G. Protection of chickens against challenge with thevariant virus responsible for Newcastle disease in1984by conventionalvaccination. Vet Rec1986,118:176–177.
    [15] Alexander DJ: Newcastle disease, other avian paramyxoviruses, andpneumovirus infection. In: Disease of poultry,2003,12th ed., pp.75–100.
    [16]Abdul-Aziz TA, Arp LH. Pathology of the trachea in turkeys exposed by aerosolto lentogenic strains of Newcastle disease virus. Avian1983, Dis27:1002–1011.
    [17] Alexander DJ. Newcastle disease in countries of the European Union. AvianPathol1995,24:3–10.
    [18] Alexander DJ, Senne DA. Newcastle disease and other avian paramyxoviruses.In: A laboratory manual for the isolation, identification and characterization ofavian pathogens,ed.American Association of Avian Pathologists,Athens, GA.2008, pp.135–141.
    [19] Kotani T, Odagiri Y, Nakamura J, et al. Pathological changes of tracheal mucosain chickens infected with lentogenic Newcastle disease virus. Avian1987Dis31:491–497.
    [20]Brown C, King DJ, Seal BS. Pathogenesis of Newcastle disease in chickensexperimentally infected with viruses of different virulence. Vet Pathol1999,36:125–132.
    [21] Kommers GD, King DJ, Seal BS, Brown CC. Pathogenesis of chicken-passagedNewcastle disease viruses isolated from chickens and wild and exotic birds.Avian2003, Dis47:319–329.
    [22] Kommers GD, King DJ, Seal BS, et al.Pathogenesis of six pigeon-origin isolatesof Newcastle disease virus for domestic chickens. Vet Pathol2002,39:353–362.
    [23] Susta L, Miller P, Afonso C, et al. Clinicopathological characterization inpoultry of three strains of Newcastle disease virus isolated from recent outbreaks.Vet Pathol. Epub ahead of print.2010,
    [24] Wakamatsu N, King DJ, Kapczynski DR, et al.Experimental pathogenesis forchickens, turkeys, and pigeons of exotic Newcastle disease virus from anoutbreak in California during2002–2003. Vet Pathol2006,43:925–933.
    [25] McDaniel HA, Orsborn JS Jr Diagnosis of velogenic viscerotropic Newcastledisease. J Am Vet Med Assoc1973,163:1075–1079.
    [26] Nakamura K, Ohta Y, Abe Y, et al. Pathogenesis of conjunctivitis caused byNewcastle disease viruses in specific-pathogen-free chickens. Avian Pathol2004,33:371–376.
    [27] Nakamura K, Ohtsu N, Nakamura T, et al. Pathologic and immunohistochemicalstudies of Newcastle disease (ND) in broiler chickens vaccinated with ND: severenonpurulent encephalitis and necrotizing pancreatitis. Vet Pathol2008,45:928–933.
    [28] Wakamatsu N, King DJ, Seal BS, et al. The pathogenesis of Newcastle disease: acomparison of selected Newcastle disease virus wild-type strains and theirinfectious clones. Virology2006,353:333–343.
    [29] Terregino C, Capua I. Conventional diagnosis of Newcastle disease virusinfection. In: Avian influenza and Newcastle disease, ed. Capua I, Alexander DJ,Springer Milan, Milan, Italy.2009, pp.123–125.
    [30] Kommers GD, King DJ, Seal BS, et al. Virulence of pigeon-origin Newcastledisease virus isolates for domestic chickens. Avian Dis2001,45:906–921.
    [31] Stevens JG, Nakamura RM, Cook ML, et al. Newcastle-disease as a model forparamyxo-virus-induced neurological syndromes—pathogenesis ofrespiratory-disease and preliminary characterization of ensuing encephalitis.Infect Immun1976,13:590–599.
    [32] Wilczynski SP, Cook ML, Stevens JG. Newcastle disease as a model forparamyxovirus-induced neurologic syndromes. II: Detailed characterization of theencephalitis. Am J Pathol1977,89:649–666.
    [33] Bhaiyat MI, Ochiai K, Itakura C, et al. Brain lesions in young broiler chickensnaturally infected with a mesogenic strain of Newcastle disease virus. AvianPathol1994,23:693–708.
    [34] El Tayeb AB, Hanson RP:2002, Interactions between Escherichia coli andNewcastle disease virus in chickens. Avian Dis46:660–667.
    [35] Susta L, Miller P, Afonso CL, et al. Pathogenicity evaluation of differentNewcastle disease virus chimeras in4-week-old chickens. Trop Anim HealthProd.2010,42:1785–1795.
    [36] Alexander DJ. Gordon Memorial Lecture. Newcastle disease. Br Poult Sci2001,42:5–22.
    [37] Zanetti F, Mattiello R, Garbino C, et al. Biological and molecularcharacterization of a pigeon paramyxovirus type-1isolate found in Argentina.Avian Dis2001,45:567–571.
    [38] Hamid H, Campbell RS, Lamichhane C. The pathology of infection of chickenswith the lentogenic V4strain of Newcastle disease virus. Avian Pathol1990,19:687–696.
    [39] Hooper PT, Russell GM, Morrow CJ, et al. Lentogenic Newcastle disease virusand respiratory disease in Australian broiler chickens. Aust Vet J1999,77:53–54.
    [40] Hooper PT, Hansson E, Young JG, et al. Lesions in the upper respiratory tract inchickens experimentally infected with Newcastle disease viruses isolated inAustralia. Aust Vet J.1999,77:50–51.
    [41] Mast J, Nanbru C, van den Berg T, Meulemans G:2005, Ultrastructural changesof the tracheal epithelium after vaccination of day-old chickens with the La Sotastrain of Newcastle disease virus. Vet Pathol42:559–565.
    [42] Gross WB:1963, Respiratory tract pathology of the B1strain of Newcastledisease in chickens. Avian Dis7:417–422.
    [43] Stewart AJ, Devlin PM. The history of the smallpox vaccine. J. Infect2006,52(5):329–334.
    [44] Ferrera F, La Cava A, Rizzi M, et al. Gene vaccination for the induction ofimmune tolerance. Ann. NY Acad. Sci2007,1110:99–111.
    [45] Romano M, Huygen K. DNA vaccines against mycobacterial diseases. ExpertRev. Vaccines2009,8(9):1237–1250.
    [46] Davidson AH, Traub-Dargatz JL, Rodeheaver RM, et al. Immunologic responsesto West Nile virus in vaccinated and clinically affected horses. J. Am. Vet. Med.Assoc2005,226(2):240–245.
    [47] Garver KA, LaPatra SE, Kurath G. Efficacy of an infectious hematopoieticnecrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha andsockeye O. nerka salmon. Dis. Aquat. Organ2005;64(1):13–22.
    [48] Bergman PJ, Camps-Palau MA, McKnight JA, et al. Development of axenogeneic DNA vaccine program for canine malignant melanoma at the AnimalMedical Center. Vaccine2006,24(21):4582–4585.
    [49] Thacker EL, Holtkamp DJ, Khan AS, et al. Plasmid-mediated growthhormonereleasing hormone efficacy in reducing disease associated withMycoplasma hyopneumoniae and porcine reproductive and respiratory syndromevirus infection. J. Anim. Sci2006,84(3):733–742.
    [50] Redding L, Weiner DB. DNA vaccines in veterinary use. Expert Rev. Vaccines2009,8(9):1251–1276.
    [51] Ito Y. A tumor-producing factor extracted by phenol from papillomatous tissue(Shope) of cottontail rabbits. Virology1960,12:596–601.
    [52] Atanasiu P, Orth G, Dragonas P.[Delayed specific antitumoral resistance in thehamster immunized shortly after birth with the polyoma virus]. CR Hebd SeancesAcad. Sci1962,254:2250–2252.
    [53] Kitsis RN, Buttrick PM, McNally EM, Kaplan ML, Leinwand LA. Hormonalmodulation of a gene injected into rat heart in vivo. Proc. Natl Acad. Sci. USA1991,88(10):4138–4142.
    [54] Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse musclein vivo. Science1990,247(4949Pt1):1465–1468.
    [55] Lin H, Parmacek MS, Morle G, Bolling S, Leiden JM. Expression ofrecombinant genes in myocardium in vivo after direct injection of DNA.Circulation1990,82(6):2217–2221.
    [56]Tang D-C, DeVit M, Johnston SA. Genetic immunization is a simple method foreliciting an immune response. Nature1992,356(6365):152–154.
    [57] Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection againstinfluenza by injection of DNA encoding a viral protein. Science1993,259(5102):1745–1749.
    [58] Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL. DNAvaccines: protective immunizations by parenteral, mucosal, and gene-guninoculations. Proc. Natl Acad. Sci. USA1993;90(24):11478–11482.
    [59] Wang B, Ugen KE, Srikantan V, et al. Gene inoculation generates immuneresponses against human immunodeficiency virus type1. Proc. Natl Acad. Sci.USA1993,90(9):4156–4160.
    [60] Xiang ZQ, Spitalnik S, Tran M, et al. Vaccination with a plasmid vector carryingthe rabies virus glycoprotein gene induces protective immunity against rabiesvirus. Virology1994,199(1):132–140.
    [61] Cox GJ, Zamb TJ, Babiuk LA. Bovine herpesvirus1: immune responses in miceand cattle injected with plasmid DNA. J. Virol1993,67(9):5664–5667.
    [62] Davis HL, Michel ML, Whalen RG. DNA-based immunization inducescontinuous secretion of hepatitis B surface antigen and high levels of circulatingantibody. Hum. Mol. Genet1993,2(11):1847–1851.
    [63] Kowalczyk DW, Ertl HC. Immune responses to DNA vaccines. Cell. Mol. LifeSci1999,55(5):751–770.
    [64] Ritter T, Brandt C, Prosch S, et al. Stimulatory and inhibitory action of cytokineson the regulation of hCMV-IE promoter activity in human endothelial cells.Cytokine2000,12(8):1163–1170.
    [65] Xiang ZQ, He Z, Wang Y, Ertl HC. The effect of interferon-γ on geneticimmunization. Vaccine1997,15(8):896–898.
    [66]Vanniasinkam T, Reddy ST, Ertl HC. DNA immunization using a non-viralpromoter. Virology2006,344(2):412–420.
    [67] Shepherd CT, Scott MP. Construction and evaluation of a maize chimericpromoter with activity in kernel endosperm and embryo. Biotechnol. Appl.Biochem2009,52:233–243.
    [68] Seleem MN, Jain N, Alqublan H, Vemulapalli R, Boyle SM. Sriranganathan N.Activity of native vs. synthetic promoters in Brucella. FEMS Microbiol. Lett2008,288(2):211–215.
    [69] Tang CK, Pietersz GA. Intracellular detection and immune signaling pathways ofDNA vaccines. Expert Rev. Vaccines2009,8(9):1161–1170.
    [70]Capone S, Zampaglione I, Vitelli A, et al. Modulation of the immune responseinduced by gene electrotransfer of a hepatitis C virus DNA vaccine in nonhumanprimates. J. Immunol2006,177(10):7462–7471.
    [71] Lutz CS. Alternative polyadenylation: a twist on mRNA3′end formation. ACSChem. Biol2008,3(10):609–617.
    [72]Xu ZL, Mizuguchi H, Ishii-Watabe A, Uchida E, Mayumi T, Hayakawa T.Strength evaluation of transcriptional regulatory elements for transgeneexpression by adenovirus vector. J. Control. Release2002,81(1–2):155–163.
    [73] Ada G. Overview of vaccines and vaccination. Mol. Biotechnol2005,29(3):255–272.
    [74] Apostolopoulos V, Weiner DB. Development of more efficient and effectiveDNA vaccines. Expert Rev. Vaccines2009,8(9):1133–1134.
    [75]Tonheim TC, Bogwald J, Dalmo RA. What happens to the DNA vaccine in fish?A review of current knowledge. Fish Shellfish Immunol2008,25(1–2):1–18.
    [76] Kutzler MA, Weiner DB. DNA vaccines: ready for prime time? Nat. Rev. Genet2008;9(10):776–788.
    [77] Reyes-Sandoval A, Ertl HC. DNA vaccines. Curr. Mol. Med2001,1(2):217–243.
    [78] Nathanson N, Langmuir AD. The Cutter Incident. Poliomyelitis followingformaldehyde-inactivated poliovirus vaccination in the United States during thespring of1955. ii. Relationship of poliomyelitis to cutter vaccine. Am. J. Hyg1963,78:29–60.
    [79] Bellet JS, Prose NS. Skin complications of Bacillus Calmette-Guerinimmunization. Curr. Opin. Infect. Dis2005,18(2):97–100.
    [80]Cattamanchi A, Posavad CM, Wald A, et al. Phase I study of a herpes simplexvirus type2(HSV-2)DNA vaccine administered to healthy, HSV-2-seronegativeadults by a needle-free injection system. Clin. Vaccine Immunol2008,15(11):1638–1643.
    [81] Delavallee L, Assier E, Denys A, et al. Vaccination with cytokines inautoimmune diseases. Ann. Med2008,40(5):343–351.
    [82] Coban C, Koyama S, Takeshita F, et al. Molecular and cellular mechanisms ofDNA vaccines. Hum. Vaccin2008,4(6):453–456.
    [83] Tokuoka M, Tanaka M, Ono K, Takagi S, Shintani T, Gomi K. Codonoptimization increases steadystate mRNA levels in Aspergillus oryzaeheterologous gene expression. Appl. Environ. Microbiol2008,74(21):6538–6546.
    [84] Li KB, Zhang XG, Ma J, et al. Codon optimization of the H5N1influenza virusHA gene gets high expression in mammalian cells. Bing Du Xue Bao2008,24(2):101–105.
    [85] Kim MS, Sin JI. Both antigen optimization and lysosomal targeting are requiredfor enhanced antitumour protective immunity in a human papillomavirusE7-expressing animal tumour model.Immunology2005,116(2):255–266.
    [86] Muthumani K, Lankaraman KM, Laddy DJ, et al. Immunogenicity of novelconsensus-based DNA vaccines against Chikungunya virus. Vaccine2008,26(40):5128–5134.
    [87] Besse F, Ephrussi A. Translational control of localized mRNAs: restrictingprotein synthesis in space and time. Nat. Rev. Mol. Cell. Biol2008,9(12):971–980.
    [88] Graf M, Deml L, Wagner R. Codon-optimized genes that enable increasedheterologous expression in mammalian cells and elicit efficient immuneresponses in mice after vaccination of naked DNA. Methods Mol. Med2004,94:197–210.
    [89] Kalwy S, Rance J, Young R. Toward more efficient protein expression: keep themessage simple. Mol. Biotechnol2006,34(2):151–156.
    [90] Olafsdottir G, Svansson V, Ingvarsson S, Marti E, Torsteinsdottir S. In vitroanalysis of expression vectors for DNA vaccination of horses: the effect of aKozak sequence. Acta Vet. Scand2008,50:44.
    [91] Kumagai Y, Takeuchi O, Akira S. TLR9as a key receptor for the recognition ofDNA. Adv. Drug Deliv. Rev2008,60(7):795–804.
    [92] Li JM, Zhu DY. Therapeutic DNA vaccines against tuberculosis: a promising butarduous task. Chin. Med. J.(Engl.)2006,119(13):1103–1107.
    [93] Klinman DM, Klaschik S, Sato T, et al. CpG oligonucleotides as adjuvants forvaccines targeting infectious diseases. Adv. Drug Deliv. Rev2009,61(3):248–255.
    [94] Klinman DM, Klaschik S, Tomaru K, Shirota H, Tross D, Ikeuchi H.Immunostimulatory CpG oligonucleotides: Effect on gene expression and utilityas vaccine adjuvants. Vaccine2010,28(8):1919–1923.
    [95] Angel JB, Cooper CL, Clinch J, et al. CpG increases vaccine antigen-specificcell-mediated immunity when administered with hepatitis B vaccine in HIVinfection. J. Immune Based Ther. Vaccines2008,6:4.
    [96]. Kindrachuk J, Potter J, Wilson HL, Griebel P, Babiuk LA, Napper S. Activationand regulation of Toll-like receptor9: CpGs and beyond. Mini Rev. Med. Chem2008,8(6):590–600.
    [97] Shedlock DJ, Weiner DB. DNA vaccination: antigen presentation and theinduction of immunity. J. Leukoc. Biol2000,68(6):793–806.
    [98]Verstrepen BE, Bins AD, Rollier CS, et al. Improved HIV-1specific T-cellresponses by short-interval DNA tattooing as compared to intramuscularimmunization in non-human primates. Vaccine2008,26(26):3346–3351.
    [99] Lori F, Calarota SA, Lisziewicz J. Nanochemistry-based immunotherapy forHIV-1. Curr. Med. Chem2007,14(18):1911–1919.
    [100] Watabe S, Xin K-Q, Ihata A, et al. Protection against influenza virus challengeby topical application of influenza DNA vaccine. Vaccine2001,9(31):4434–4444.
    [101] Xu J, Ding Y, Yang Y. Enhancement of mucosal and cellular immune responsein mice by vaccination with respiratory syncytial virus DNA encapsulated withtransfersome. Viral Immunol2008,21(4):483–489.
    [102] Fuller DH, Loudon P, Schmaljohn C. Preclinical and clinical progress ofparticle-mediated DNA vaccines for infectious diseases. Methods2006,40(1):86–97.
    [103] Kanazawa T, Takashima Y, Hirayama S, et al. Effects of menstrual cycle ongene transfection through mouse vagina for DNA vaccine. Int. J. Pharm2008,360(1–2):164–170.
    [104] Brave A, Hallengard D, Schroder U, et al. Intranasal immunization of youngmice with a multigene HIV-1vaccine in combination with the N3adjuvantinduces mucosal and systemic immune responses. Vaccine2008,26(40):5075–5078.
    [105] Guimaraes V, Innocentin S, Chatel JM, et al. A new plasmid vector for DNAdelivery using lactococci. Genet. Vaccines Ther.2009,7(1):4.
    [106] Zaharoff DA, Barr RC, Li CY, et al. Electromobility of plasmid DNA in tumortissues during electric field-mediated gene delivery. Gene Ther2002,9(19):1286–1290.
    [107] Chiarella P, Massi E, De Robertis M, et al. Electroporation of skeletal muscleinduces danger signal release and antigen-presenting cell recruitmentindependently of DNA vaccine administration. Expert Opin. Biol. Ther2008,8(11):1645–1657.
    [108] Escoffre JM, Portet T, Wasungu L, et al. What is (still not) known of themechanism by which electroporation mediates gene transfer and expression incells and tissues. Mol. Biotechnol.2009,41(3):286–295.
    [109] Rabussay D. Applicator and electrode design for in vivo DNA delivery byelectroporation. Methods Mol. Biol2008,423:35–59.
    [110] Draghia-Akli R, Khan AS, Brown PA, et al. Parameters for DNA vaccinationusing adaptive constantcurrent electroporation in mouse and pig models. Vaccine2008,26(40):5230–5237.
    [111] Hu H, Huang X, Tao L, Huang Y, Cui BA, Wang H. Comparative analysis ofthe immunogenicity of SARS-CoV nucleocapsid DNA vaccine administratedwith different routes in mouse model. Vaccine2009,27(11):1758–1763.
    [112] Lang KA, Yan J, Draghia-Akli R, et al. Strong HCV NS3-and NS4A-specificcellular immune responses induced in mice and Rhesus macaques by a novelHCV genotype1a/1b consensus DNA vaccine. Vaccine2008,26(49):6225–6231.
    [113] Rosati M, Valentin A, Jalah R, et al. Increased immune responses in rhesusmacaques by DNA vaccination combined with electroporation. Vaccine2008,26(40):5223–5229.
    [114] Hirao LA, Wu L, Khan AS, et al. Combined effects of IL-12andelectroporation enhances the potency of DNA vaccination in macaques. Vaccine2008;26(25):3112–3120.
    [115] Foldvari M, Babiuk S, Badea I. DNA delivery for vaccination and therapeuticsthrough the skin. Curr. Drug Deliv2006,3(1):17–28.
    [116] Prausnitz MR, Langer R. Transdermal drug delivery. Nat. Biotechnol.2008,26(11):1261–1268.
    [117]殷震,刘景华.动物病毒学(第一版),343-352.
    [118]焦旭.鹅副黏病毒灭活疫苗的研制.吉林大学硕士学位论文.2007
    [119]刘秀梵,胡顺林.我国新城疫病毒的分子流行病学及新疫苗研制.中国家禽2010,32,21.
    [120]吴乃虎.基因工程原理(第二版).1997.
    [121]楚琰,吴兴安. DNA疫苗及其免疫途径的研究进展.中国医药生物技术2010.8,(5)4.
    [122] pCI-neo Mammalian Expression Vector. Promega.2004.
    [123]费恩阁,李德昌,丁壮.动物疫病学.中国农业出版社,2004.506-513
    [124]胡慧珍,思汗.干扰素的研究进展.当代畜禽养殖业,2009.12
    [125] Giovanni Cattoli, Leonardo Susta, Calogero Terregino et al. Newcastle disease:a review of field recognition and current methods of laboratory detection. Journalof Veterinary Diagnostic Investigation.2011.23:637

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700