用户名: 密码: 验证码:
BYDV-GPV与GAV混合侵染蚜传专化性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦黄矮病是麦类作物的重要病害之一。普通小麦种质资源中未筛选到抗性材料,基因工程育种是培育抗病品种的手段之一。病毒的外壳蛋白(CP)基因介导的抗病性在抗病毒基因工程育种中研究最早、应用最广泛的。我国也已获得抗BYDV-GPV的小麦转CP基因的材料,但抗病毒转CP基因植物带来的病毒外壳蛋白的异源装配及RNA重组等生态安全性问题也越来越受到关注。本研究对大麦黄矮病毒(Barly Yellow Dwarf Vires,BYDV)GAV与GPV之间混合侵染的蚜传特异性与分子变异进行探索,旨在为小麦抗病毒基因工程的生态安全性评价体系建立一种可能的模式。
     以我国麦区的大麦黄矮病毒流行株系GAV、GPV为材料,利用它们的蚜传特异性,将由禾谷缢管蚜(Rhopalosiphum padi L., Rp)传播、麦长管蚜(Sitobion avenae F.,Ma)不能传播的GPV和由麦长管蚜传播、禾谷缢管蚜不能传播的GAV混合侵染到岸黑燕麦上,观察发病情况。对混合侵染的病株再用禾谷缢管蚜和麦长管蚜继代传毒,系统观察介体专化性的变异。蚜传实验结果表明:在获得的93株独立的混合侵染蚜传体系中,有16株在继代传毒中发生了蚜传专化性的改变,占总数的17.2%。蚜传表现型的变化说明可能存在异源包装现象。
     采用DAS-ELISA法对混合侵染后代进行了测定,结果表明:69个混合侵染后代样品均与美国的MAV抗血清有强烈的特异性反应,无论麦长管蚜传毒株还是禾谷缢管蚜传毒株,均传播的是GAV。进一步证明了存在异源包装现象。
     根据已报道的大麦黄矮病毒GAV、GPV和PAV的外壳蛋白基因序列、通读蛋白(RTP)基因序列设计了六对特异性引物,用RT-PCR技术对12个混合侵染后代的检测结果表明:用GAV的CP基因引物扩增均获得了目的基因:用GAV的RTP基因引物从其中6株中扩增出了目的基因片段;而用GPV的CP与RTP基因的引物均未能扩增出目的片段。Rp传毒株可扩增出GAV的目的基因,而检测不到GPV,说明在所测定的混合侵染后代中存在异源包装。部分侵染后代的CP和RTP核苷酸序列比较发现不论是麦长管蚜传毒株还是禾谷缢管蚜传毒株,均未发现异常序列,仅有几个碱基的差异。初步认为所测定的混合侵染后代中没有发生基因重组现象。
     本文还探讨了大麦黄矮病毒GAV、GPV两种株系抗血清的制备及地高辛标记探针的核酸斑点杂交检测技术。
Barley yellow dwarf virus (BYDV) is the most important virus disease of cereal crops worldwide. To develop and plant resistant cultivars is one of the best ways for controlling the disease, but no natural resistance genes have been identified in oat, barley or wheat so far. In recent years, To transfer foreign genes, especially the viral coat protein (CP) gene into the genome of crops to develop resistance against BYDV was the most common strategy. Several transgenic lines showing resistance to BYDV-GPV have been developed in China. However, questions concerning the potential ecological impact of CP-mediated Virus-resistant transgenic plants have been raised, such as Heterocapsidation, RNA recombination. The aim of this study is to make clear the aphid vector specificity following double infection with GPV and GAV and study molecular mechanism of interaction between GPV and GAV. Technologies developed in the study are also expected to be used as a possible model of evaluation system for biological security o
    f transgenic wheat against virus.
    In general, GPV is transmitted by Rhopalosiphumpadi Z,.(Rp), but not by Sitobion avenae F. (Ma) and GAV is transmitted by Ma, but not by Rp. In our experiments, the seedlings of Coast-black oats were inoculated with GPV and GAV of BYDV, by means of Rp and Ma, respectively. Among the 93 mixing infected plants, 16 plants altered aphid vector specificity. The data suggested that the heterocapsidation occurred in some plants mixed infection with GPV and GAV, and phenotypic mixing occurred in high proportion in these cases.
    The progenies of mixing infection were tested by DAS-ELISA with MAV-antiserum. The results showed that the 69 plants of mixing infection , whether the infected plants transmitted by RP or Ma> have very strong reaction to MAV-antiserum. The data supported that that the heterocapsidation occurred in some materials of mixing infection.
    Based on the CP and RTF gene nucleotide sequence of GAV, GPV and PAV, six pairs of specific primer were designed. 12 of the progenies of mixing infection with GPV and GAV were tested by RT-PCR. The CP gene were obtained from all of 12 samples with the specific primer of GAV-CP, but no products with the specific primer of GPV-CP. The fragment of RTP gene were amplified from 6 of 12 samples with the specific primers of GAV-RTP, no product was obtained with the specific primer of GPV-RTP. The GAV-CP gene could be amplified from the total RNA of infected plants transmitted by Rp, so transcapsidation between GPV and GAV of BYDV was supposed. Sequence alignments showed that unusual sequence was not existed in the tested samples and the identity among the sequences was over 99%. The results suggested that there was no evidence to RNA recombination in the mixing infection materials.
    In addition, the DNA fragments of GAV, GPV and PAV of CP gene amplified by RT-PCR were cloned into the plasmid pGEM-T Easy, which were used to produce DIG-labeled probe for Nucleic acid spot hybridization(NASH) technique.
引文
1.常胜军.大麦黄矮病毒GAV株系ORF1-5基因的克隆、测序及通读蛋白基因的表达:[中国农科院博士学位论文].北京:中国农科院研究生院,1999
    2.成卓敏.我国小麦黄矮病毒的酶法提纯初步研究.植物保护学报,1983,10,64-66
    3.成卓敏,周广和.小麦黄矮病毒GPV株系的提纯及血清学研究.病毒学报,1986,2(3):275-278
    4.成卓敏,EM. Waterhouse,周广和等.用光生物素标记大麦黄矮病毒cDNA探针.病毒学报,1988,4,57-60
    5.成卓敏,Gerlach W L, Waterhouse P M等.大麦黄矮病毒(BYDV)cDNA的合成、克隆及初步应用.植物病理学报,1988,18(1):13-18
    6.成卓敏等.应用聚合酶链式反应方法检测大麦黄矮病毒的单头蚜虫.病毒学报,1992,8(1),80-83
    7.成卓敏,何小源,陈彩层等.大麦黄矮病毒外壳蛋白基因合成及用花粉管途径获得小麦转基因植株.自然科学进展-国家重点实验室通讯,1993,3(6):560-564
    8.成卓敏,何小源,陈彩层等.应用基因工程创造抗黄矮病毒转基因小麦新种质.植物保护,1996,22(3):18-20
    9.杜国英.烟草主要病毒的分子鉴定与检测技术:[中国农科院硕士学位论文].北京:中国农科院研究生院,2003
    10.杜国英,王锡锋,周广和.地高辛标记的cDNA探针检测烟草花叶病毒、黄瓜花叶病毒及马铃薯Y病毒.植物病理学报,2004,34(1):75-79
    11.杜志强.大麦黄矮病毒的比较诊断技术与应用:[中国农科院硕士学位论文].北京:中国农科院研究生院,1998
    12.贾力.大麦黄矮病毒外壳蛋白基因植物表达质粒的构建及小麦遗传转化:[中国农科院硕士学位论文].北京:中国农科院研究生院,1999
    13.J.萨姆布鲁克(美)等著.分子克隆实验指南(第二版).(金冬燕、黎孟风等译).科学出版社.1992.
    14.晋治波.大麦黄矮病毒GAV基因组全序列分析及运动蛋白基因介导的抗病毒小麦研究:[中国农科院博士学位论文].北京:中国农科院研究生院,2003
    15.晋治波,王锡锋,常胜军等.大麦黄矮病毒GAV基因组全序列测定及其结构分析.中国科学(C辑),2003,33(6):505-513
    16.雷万里,方荣祥等.黄瓜花叶病毒互补型载体可与CP转基因发生重组.中国科学(C辑),2001,31(2):97-104
    17.田波,裴美云等.植物病毒研究方法.北京:科学出版社,1987
    18.田苗英.大麦黄矮病毒GPV株系缺失型复制酶基因的序列测定及其植物表达质粒的构建:[中国农科院硕士学位论文].北京:中国农科院研究生院,1997
    19.王汉中.蛋白质免疫印迹法及其应用.生物化学与生物物理进展,1988,15,260-265
    20.王均.检测烟草中烟草花叶病毒的RNA斑点杂交法.云南植物研究,1988,10(3):297-303
    
    
    21.王锡锋.麦蚜传播大麦黄矮病毒的机制研究:[中国农科院博士学位论文].北京:中国农科院研究生院,1998
    22.魏梅生,相宁,张作芳等.用生物素标记外壳蛋白cDNA探针检测葡萄扇叶及马铃薯Y病毒.植物病理学报,1995,25(4):331-334
    23.吴茂森.大麦黄矮病毒GPV株系复制酶基因介导的抗病毒转基因小麦的研究:[中国农业科学院博士研究生学位论文].北京:中国农科院研究生院,2000
    24.夏光敏,陈惠民,郭光沁等.微弹射击将大麦黄矮病毒外壳蛋白基因转入小麦获得可育植株.山东大学学报(自然科学版),1996,31(1):94-101
    25.辛志勇,徐惠君,陈孝等.应用生物技术向小麦导入黄矮病抗性的研究.中国科学(B辑),1991,(1):36-42
    26.徐惠君,庞俊兰,叶兴国等.基因枪介导法向小麦导入黄花叶病毒复制酶基因的研究.作物学报,2001,27(6):688-694
    27.许雷.大麦黄矮病毒GPV株系ORF5基因的克隆、表达载体构建及转基因研究:[中国农业科学院博士研究生学位论文].北京:中国农科院研究生院,2001
    28.张鹤龄.酶联免疫吸附测定(ELISA)及其在植物病毒鉴定中的应用.马铃薯,1983,4:35-41
    29.张秦风,赵玉侠,张荣等.小麦黄矮病毒(BYDV)主流株系GPV的鉴定及其提纯研究.病毒学杂志,1990,2,78-83
    30.张文蔚.根癌农杆菌介导的大麦黄矮病毒GPV株系复制酶基因转化小麦的研究:[中国农科院硕士学位论文].北京:中国农科院研究生院,2003
    31.周广和,张淑香,W F.罗乔等.一种由麦二叉蚜和麦长管蚜传播的小麦黄矮病毒株系的鉴定.植物病理学报,1986,16(1):17-22
    32.周广和,成卓敏,张向才等.麦类病毒病及其防治.上海:上海科学技术出版社,1987
    33.周广和,张淑香,钱幼亭等.小麦黄矮病毒4种株系鉴定与应用.中国农业科学,1987,20:7-12
    34.周广和.世界大麦黄矮病研究概况.世界农业,1989,7,36-38
    35. Brault, V., van den Heuvel, JFJM., et al. Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74.The EMBO Journal, 1995, 14, 650-659
    36. Chay, C.A., et al. Aphid transmission and systemic plant infection determinants of barley yellow dwarf Luteovirus-PAV are contained in the coat protein readthrough domain and 17-KD protein, respectively.Virology, 1996, 219:57-65
    37. Citovsky, V., Knorr, D., Schuster, C., et al.The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell, 1990, 60:637-647
    38. Citovsky, V., McLean, B. G., Zupan, J. R et al.Phosphorylation of tobacco mosaic virus cell to cell movement protein by a developmentally regulated plant cell wall-associated protein kinase.Cenes and Dev, 1993, 7:904-910
    39. Creamer R, Falk BW .Direct detection of transcapsidated barley yellow dwarf luteoviruses in doubly infected plants.J. Gen. Virol, 1990, 71:211-217
    40. Deom, C. M., M. J. Oliver, and R. N. Beachy.The 30-kilodalton gene product of tobacco mosaic
    
    virus potentiates virus movement. Science, 1987, 237:389-394
    41. Dhar A.K., Singh R.P. Improvement in the sensitiveity of PVYN detection by increasing the cDNA probe size. Journal of Virological Methods, 1994, 50(1-3):197-210
    42. Dinesh-Kumar, S. P., Brault, V., and Miller, W. A.Precise mapping and in vitro translation of a tfifunctional subgenomic RNA of barley yellow dwarf virus.Virology, 1992, 187:711-722
    43. Dodds, J.A, et al. Structrual interactions between viruses as a consequence of mixed infection.Adv.VirusRes., 1976, 20:33-86
    44. Falk BW, Duffus JE, Morris TJ. Transmission,host range,and serological properties of the viruses that cause lettuce speckles disease. Phytopathology, 1979, 69:612-616
    45. Filichkin S A, Lister R M, Mcgrath P F, et al. In vivo expression and mutational analysis of the barley yellow dwarf virus readthrough gene.Virology, 1994, 205:290-299
    46. Gildow, EE., and Gray, M. S., The aphid salivary gland basal lamina as a selective barrier associated with vector-specific transmission of barley yellow dwarf luteoviruses.Phytopathology, 1993, 83: 1283-1302.
    47. Grumet R.Genetic engineering for crop virus resistance.Hortscience, 1995, 30:449-456
    48. Habili, N. and Symons, R. H.. Evolutionary relationship between luteoviruses and other RNA plant viruses based on sequence motifs in their putative RNA polymerases and nucleic acid helicases.Nucleic Acids Res, 1989, 17:9543-9548
    49. Jolly, C. A., and Mayo, M. A. Changes in the amino acid sequence of the coat protein readthrough domain of potato leafroll luteovirus affect the formation of an epitope and aphid transmission. Virology, 1994, 201, 182-185
    50. Kassanis, B. Eur. Potato J. 1961, 4:13
    51. Kelly L, Gerlach W L, Waterhouse, P M, et al, Characterisation of the subgenomie RNAs of an Australian isolate of barely yellow dwarf luteovirus.Virology, 1994, 202:565-573.
    52. Koev, G., et al. Extreme reduction of disease in oats transformed with the 5' half of the barley yellow dwarf virus-PAV genome. Phytopathology, 1998, 88:1013
    53. Koev G, Liu S, Beckett R, et al. The 3'-terminal structure required for replication of barley yellow dwarf virus RNA contains an embedded 3' end. Virology, 2002, 292:114-126
    54. Koonin, E.V. and Dolja, V.V. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol.Biol,1993, 28:375-430
    55. Kozak, M., et al. Regulation of protein synthesis in virus-infected animal cells.Adv. Virus Res,1986, 32:229-292
    56. Lai,M. M. C. RNA recombination in animal and plant viruses. Microbiological Reviews, 1992, 56, 61-79
    57. Lai,M. M. C.Recombination in large RNA viruses: coronaviruses.Seminars in Virology, 1996, 7: 381-388
    
    
    58. Lecoq, H., Ravelonandro, M., Wipf-Scheibel, C., et al. Aphid transmission of a non-aphid-transmissible strain of zucchini yellow mosaic potyvirus from transgenic plants expressing the capsid protein of plum pox potyvirus. Molecular Plant-Microbe Interactions 1993,6: 403-406
    59. Lister, R.M. and Ranieri, R.Distribution and economic importance of Barley Yellow Dwarf. 40 years of progress. Eds. D'Arcy, C. and P. Burnnett. A.P.S. Press, Minessota. pp, 1995, 29 -53
    60. MacFarlane SA, Mathis A, Bol J F. Heterologous encapsidation of recombinant pea early browning virus. J Gen Virol, 1994, Jun:75 (Pt 6):1423-1429
    61. Maiss, E., Koenig, R. and Lesemann, D.E. Heterologous encapsidation of viruses in transgenic plants and in mixed infections. In: Proceedings of the 3rd International Symposium on the Biosafety Results of Field Tests of Genetically Modified Plants and Microorganisms. Monterey, USA, 1994, November: 129-139
    62. Martin, R.R., Keese, P.K., Young, M.J , et al. Evolution and molecular biology of luteoviruses. Anniu. Rev. Phytopathol, 1990, 28:342-364
    63. Martin RR, D'Arcy CJ. Taxonomy of barley yellow dwarf viruses. In: D'Arcy CJ and Burnett PA (eds) Barley yellow dwarf: 40 years of progress. Am. Phytopathol. Soc. Press, St. Paul, MN, pp, 1995, 203-214
    64. Mayo, M.A., Ziegler-Graf V.Molecular biology of luteoviruses.Adv. Virus Res, 1996, 46:413-460
    65. McCarthy P.L., Hansen J., Shiel P.J., et al. Coat protein-mediated resistance to wheat streak mosaic and barley yellow dwarf viruses in soft white winter wheats. Presented at Int. Congr. Virol., Jerusalem,, 1996, 10:184
    66. Miller W A, and Lada R.Barley yellow dwarf viruses. Annuals of Review Phytopathology, 1997a, 35:167-190
    67. Miller, W. A., Waterhouse, P. M. and Gerlach, W. L., et al. Sequence and organization of barley yellow dwarf virus genomic RNA. Nucleic Acids Res, 1988a, 16:6079-6111
    68. Miller, W. A., Waterhouse, P. M., Kortt, A. A., et al. Sequence and identification of the barley yellow dwarf virus coat protein gene.Virology, 1988b, 165:306-309
    69. Mohan, B. R., Dinesh-Kumar, S. P., and Miller, W.A. Genes and cis-acting sequences involved in replication of barley yellow dwarf virus-pav RNA. Virology, 1995, 212:186-195
    70. Murant, A E Complexes of transmission-dependent and helper viruses. Diagnosis of plant virus diseases.REF Matthews, ed.Boca Raton:CRC press, Boca Raton, F L.1993, 334-357
    71. Nass, P.H., L.L. Domier, B.P. Jakstys, et al. In situ localization of barley yellow dwarf virus-PAV 17 kDa protein and nucleic acids in oats. Phytopathology, 1998, 88:1031-1039
    72. Osbourne, JK, et al.Complementation of coat protein-defective TMV mutants in transgenie tobacco plants expressing TMV coat protein. Virology, 1990, 179:921-925
    73. Ouens, R.A., and Dioner, T.O. Detection potato spindle tuber viriod by dot blot hybridizaton. Science ,1981, 213-670
    
    
    74. Pelham, H. R. B,. Leaky UAG termination codon in tobacco virus RNA.Nature, 1978, 272, 469
    75. Querci M, Owens RA, Bartolini I. et al. Evidence for heterologous encapsidation of potato spindle tuber viroid in particles of potato leafroll virus. J Gen Virol, 1997 Jun, 78 (Pt 6):1207-1211
    76. Reutenauer, A., Ziegler-Graff, V., Lot, H. scheidecker, et al. Identification of beet western yellows luteovirus genes implicated in viral replication and partite morphogenesis.Virology, 1993, 195: 692-699
    77. Rizzo, T. M. and Gray, S. M., Localization of a surface domain of the capsid protein of barley yellow dwarf virus. Virol, 1992, 186:300-302
    78. Robinson D.J., Romero J., Sensitivity and specificity of nucleic acid probes for potato leafrol luteovirus detection. Journal of Virological Methods, 1991, Sep-Oct, 34(2):209-219
    79. Rochow, W. E Barley yellow dwarf virus. CMI/AAB Descriptions of Plant Viruses, 1970a, 32
    80. Rochow, W.E Barley yellow dwarf virus: phenotype mixing and vector specificity. Science, 1970b, 167:875-878
    81. Rochow, W. E, and Muller, I. A. Fifth variant of barley yellow dwarf virus in New York. Plant Disease, 1971, 55:874-877
    82. S.V.Reddy and P.Lava. Transmission and properties of a new luteovirus associated with chickpea stunt disease in India.current science, 2004, 8 (86):1157-1161
    83. Saldarelli P., Barbarossa L., Grieco F., et al. Digoxigenin-labelled riboprobes applied to sanitary certification of tomato in Italy. Plant Disease, 1996, 80:1343-1346
    84. Schmidt, I., Blanc, S. B. Interaction between the aphid transmission factor and virus particles is a part of the molecular mechanism of cauliflower mosaic virus aphid transmission. Proc. Natl. Acad. U. S. A., 1994, 91, 8885-8889
    85. Shepherd,R.J., Franaki,R.I.B., Hirth,L., et al. New groups of plant viruses approved by the International Committee on Taxonomy of viruses. September 1975. Intervirology, 1986, 6:181-184
    86. Singh M., Singh R.P., Moore L. Evaluation of NASH and RT-PCR for the detection of PVY in the dormant tubers and its comparison with ELISA in plants. Amer J of Potato Res, 1996, 76(2):61-66
    87. Syller J .Heterologous encapsidation in transmission of plant viral particles by aphid vectors. Acta MicrobiolPol, 2000, 49(1):5-18
    88. Tacke, E., Prufer, D., Salamini,E., and Rohde,W.J.Characterization of a Potato Leafroll Luteovirus subgenomic RNA: differential expression by internal translation initiation and UAG suppression. Gen.Virol., 1990, 71: 2265.
    89. Tacke, E., Prufer, D., Schmitz, G., and Rohde, W., The potato leafroll luteovirus 17K is a single-stranded nucleic acid-binding protein, J. Gen. Virol., 1991, 72: 2035.
    90. Tacke, E., Schmitz, J., Prufer, D.et al. Mutational analysis of the nucleic acid-binding 17KDa phosphoprotein of potato leafroll luteovirus identifies an amphipathic α-helix as the domain for
    
    protein/protein interations.Virology, 1993, 197:274-282
    91. Tamada, T and Kusume, T. Evidence that the 75K rethrough protein of beet necrotic yellow vein virus RNA-2 is essential for transmission by the fungus Polymyxa betae. J.Gen. Virol, 1991, 72: 497
    92. Tomenius, K., Clapham, D., and Meshi, T. Localization by immunogold cytochemistry of the virus-coded 30K protein in plasmodesmata of leaves infected with tobacco mosaic virus. Virology, 1987, 160:363-371
    93. Ueng P P, Vincent J R, Kawata E E, et al. Nucleotide sequence analysis of genomes of the MAV-PS1 and P-PAV isolates of barley yellow dwarf virus.Journal of General Virology, 1992, 73:487-492
    94. Van der Wilk, E, Molthoff, J., van den Heuvel, J., et al, Transgenic potato pplants expressing PLRV ORF1, Ixth Int. Congr. Virol., Glasgow, 1993,341(Abstr.)
    95. Veldt, I., Lot, H., Leiser, M., et al. Nucleotide sequence of beet western yellow virus.virus. RNA. Nucleic Acids Res, 1988, 16:9917-9932
    96. Veidt, I., Bouzoubaa, S. E., Leiser, R. M., et al. Synthesis of full-length transcripts of beet western yellows virus RNA: messenger properties and biological activity in protoplasts, Viology, 1992, 186: 192-200
    97. Vincent, J. R., Ueng, P. P., Lister, R. M., et al. Nucleotide sequence of coat protein genes for three isolates of barley yellow dwarf virus and their relationships to the luteovirus coat protein sequences. J. Gen. Virol., 1990, 71:2791-2799
    98. Vincent J R, Lister R M, Larkins B A, et al.Nucleotide sequence analysis and genomie organization of NY-RPV isolate of barley yellow dwarf virus. Journal of General Virology, 1991, 72:2347-2355
    99. Wang S P, Guo L, Allen E, et al. A potential mechanism for selective control of cap-independent translation by a viral RNA sequence in cis and in trans. RNA, 1999, 5:728-738
    100. Wang S, Browning K S, Miller W A., et al. A viral sequence in the 3'-untranslated region mimics a 5'cap in facilitating translation of uncapped mRNA. EMBO Journal, 1997, 16(13):4107-4116
    101. Wang X, Chang S, Jin Z, et al. Nucleotide sequences of the coat protein and rcadthrough protein genes of the Chinese GAV isolate of barley yellow dwarf virus. Acta virologica, 2001, 45:249-252
    102. Waterhouse P M, Martin R R, Gerlach W., et al. Barley yellow dwarf virus PAV virions contain readthrough protein. Phytopathology, 1989, 79: 1215(Abstract)
    103. Waterhouse PM, et al.Further evidence on the nature of the dependence of carrot mottle virus on carrot red leaf virus for transmission by aphids. Ann Appl Biol, 1983, 103:455-464
    104. Waterhouse, P.M., Gildow F. E. and Johnstone, G.R. Luteovirus Group.NO.339 in: Description of Plant Viruses, Commonw. Myeol. Inst. Assoc. Appl. Biol., Kew, Surrey, England, 1988.
    105. Wen E, Lister RM. Heterologous encapsidation in mixed infections among four isolates of barley yellow dwarf virus. J. Gen. Virol, 1991, 72:2217-2223
    106. Wen F, Lister RM, Fattouh FA.Cross-protection among strains of barley yellow dwarf virus. J. Gen.
    
    Virol, 1991, 72:791-799
    107. Wolf S., Deom C.M., Beachy R.N., et al. Movement protein of tobacco mosaic virus modifies plasmodesmata size exclusion limit. Science, 1989, 246:377-379.
    108. Yamaya J. Yoshioka M, Meshi T, et al. Expression of tobacco mosaic virus RNA in transgenic plants.Mol.Gen.Genet. 1988a,, 211:520-525
    109. Yamaya J. Yoshioka M, Meshi T, et al. Cross protection in transgenic tobacco plants expressing a mild strain of tobacco mosaic virus. Mol. Gen. Genet. 1988b, 215:173-175
    110. Young, M. J. Kelly, L., Larkin, P. J, et al. Infectious in vitro transcripts from a cloned cDNA of barley yellow dwarf virus. Virology, 1991, 180:372-379

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700