用户名: 密码: 验证码:
玉米抗甘蔗花叶病毒QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米矮花叶病是一种世界性病害,也是我国玉米产区的主要病害之一。培育抗病品种是防治玉米矮花叶病和减轻危害的最经济最有效的途径,而抗病育种的成效取决于对抗源和抗性遗传机制的认识。采用分子标记技术发掘我国主要玉米种质中的抗甘蔗花叶病毒基因及其连锁分子标记,为建立高效率抗病育种及种质改良技术提供理论依据。本研究以玉米自交系X178(抗)和B73(感)组配的F_2和F_3群体为作图和抗病性评价群体,采用SSR和AFLP分子标记构建遗传连锁图谱,在北京分春播和夏播二个时期,采用人工接种方法对216个F_3家系在苗期、拔节期、抽雄期和成株期分别进行玉米矮花叶病的抗性鉴定。应用复合区间作图法分析抗病QTL及基因效应。主要研究结果如下:
     (1) 以X178×B73的F_2分离群体(234个单株)为作图群体,构建了含有134个SSR位点和119个AFLP位点的遗传连锁图,覆盖玉米基因组的1659.3 cM,标记间平均距离为6.58 cM,标记间图距小于20cM的比例为88.9%。
     (2)通过分子数量遗传学分析,发现植株抗病性与多个基因的遗传控制有关,在各个不同发育时期玉米抗甘蔗花叶病毒的遗传力较高,变幅为69.2%~80.0%。相关分析表明,各个时期的病株率或病情指数之间呈高度正相关;但随植株生长发育,各个时期病株率或病情指数的相关性略有降低。
     (3)将216个F_3家系在北京地区分春、夏两个时期播种,进行抗甘蔗花叶病毒鉴定,采用复合区间作图法进行QTL定位分析。在春播的苗期、拔节期、抽雄期和成株期共检测到5个QTL,分别位于第3、4、5、6、8染色体上,解释的表型变异为4.5%~32.6%。在夏播的苗期、拔节期、抽雄期和成株期共检测到5个QTL,分别位于第2、3、5、6、9染色体上,解释的表型变异为4.3%~40.5%。
     (4)玉米对我国矮花叶病的抗性QTL与发育阶段有关,抗病QTL数目和位置在不同发育阶段的表现有差异。在春播玉米苗期共检测到3个QTL,分别位于第3、6、8染色体上;在拔节期也检测到3个QTL,位于第3、5、6染色体上;在抽雄期比拔节期多检测到一个QTL,位于第8染色体上;在成株期检测到4个QTL,分别位于第3、4、5、6染色体上。在夏播玉米苗期1和苗期2,分别于第3、5、6和9染色体上检测到4个QTL;在拔节期1于第3、6染色体上检测到QTL;在拔节期2,于第3、6、9染色体上共检测到3个QTL;抽雄期检测到的QTL数目与拔节期2相同,均在第3、6、9染色体上找到了QTL;在成株期检测到4个QTL,分别位于第3、5、6、9染色体。
Maize dwarf mosaic disease caused by sugarcane mosaic virus (SCMV) is a worldwide disease and is also one of the most important diseases in the China corn belt. Developing disease-resistant varieties is the most economic and efficient approach to control the disease. To explore SCMV-resistant genes and the linked markers in Chinese maize germplasm by moleculer marker technology will offer useful information for setting strategy to facilitate disease-resistant breeding efforts efficiently. In this study, F2 and F3 populations derived from the cross (X178 X B73), were used for linkage map construction by molecular markers SSR and AFLP and evaluation of disease resistance, respectively. In spring and summer crops, the 216 F3 families were evaluated for SCMV resistance at seedling, elongation, anthesis and adult stages under artificial inoculation, respectively. The QTL relevant to disease resistance and effects were analyzed with composite interval mapping. The main results were summarized as follows:
    (1) A genetic linkage map was constructed with 134 SSR markers and 119 AFLP markers based on an F2 segregation population (234 individuals ) derived from (XI78 X B73), with a total length of 1659.3 cM and average distance between markers of 6.58 cM. The proportion less than 20 cM between markers accounted for 88.9%.
    (2) Based on molecular quantitative genetic analysis, the heritabilities of resistance to SCMV in maize were high in different developmental stages, ranged from 69.2% to 80.0%, which indicates that the resistance to diseases was controlled by multi-genes. Moreover, the correlation analysis presented that disease incidence and index of SCMV at different stages were highly positive correlated; and values became declined with the plant development.
    (3) Two hundred and sixteen F3 family lines were sown in Beijing for SCMV evaluation at two periods of spring and summer crops. Using composite interval mapping, 5 QTL were detected across seedling, elongation, anthesis and adult stages in spring crop, located on chromosomes 3, 4, 5, 6 and 8, respectively, expressing 4.5% to 32.6% of phenotypic variance. Five QTL were detected across four stages in summer crop, located on chromosomes 2, 3, 5, 6 and 9, respectively, expressing 4.3~40.5% of phenotypic variance.
    (4 ) The QTL mapping results for resistance to SCMV were related with developmental stages, and the number and location of QTL varied with different stages. For spring crop, 3 QTL of seedling stage were found on chromosomes 3, 6 and 8; 3 QTL on chromosomes 3, 5 and 6 at elongation stage; One more QTL was found on chromosome 8 at anthesis stage than elongation stage; 4 QTL were found on chromosomes 3, 4, 5 and 6 at adult stage. For summer crop, at seedling stage (1 and 2), 4 QTL were found on chromosomes 3, 5, 6 and 9; at elongation stage 1, 2 QTL were found on chromosomes 3 and 6; at elongation stage 2 and anthesis stage, 3 QTL were found on chromosomes 3, 6 and 9, respectively; at adult stage, 4 QTL were found on chromosomes 3, 5, 6 and 9.
引文
1.安德荣,魏宁生,慕小倩.玉米矮花叶病毒源鉴定和受侵叶片的超微结构.西北农业大学学报,1992,20(2):67~72
    2.曹如槐,王晓玲,任建华.玉米对矮花叶病抗性遗传的初步研究.植物病理学报,1988,17(2):119-120
    3.曹如槐等.玉米品种资源对玉米矮花叶病抗病性鉴定.作物品种资源,1984,4:29
    4.陈翠霞,邢全华,梁春阳,于元杰,梁凤山,王洪刚,王振林,王斌.南方玉米锈病抗病基因的定位及不同遗传背景对基因标记的比较分析.遗传学报,2003(4):341-344
    5.陈雨天,郭满库,朱小阳,高卫东,戴法超,李林.玉米种质资源抗玉米矮花叶病鉴定.植物保护,1996,22(2):13-15
    6.陈雨天,郭满库,朱福成,钟诚.玉米种子带矮花叶病毒田间调查简报.甘肃农业科技,1996,9:37-38
    7.陈志杰,张淑莲,张美荣,吴云峰.陕西玉米病毒病及流行因素研究.植物病理学报,1999,29(4):333-338
    8.程晔,陈炯,陈剑平.一个引起玉米矮花叶病的甘蔗花叶病毒基因组全序列测定及其结构分析.中国科学(C辑),2001,31(6):497-504
    9.邓汀钦.玉米矮化嵌纹病毒B型系统之鉴定与抗病鉴定.中华农业研究,1985,34:195-206
    10.范在丰,陈红运,李怀方.玉米矮花叶病毒原北京分离物的分子鉴定.农业生物技术学报,2002,9(1):12
    11.范在丰,李怀方,李向东,裘维蕃.中国玉米矮花叶病毒6K1基因的克隆及序列分析.植物病理学报.2000,30(1):95
    12.方宣钧,吴为人,唐纪良编.作物DNA标记辅助育种.北京,科学出版社,2001
    13.盖钧镒,章元明,王建康.QTL混合遗传模型扩展至2对主基因+多基因时的多世代联合分析.作物学报,2000,26(4):385-391
    14.盖钧镒,王建康.利用回交或F2:3世代鉴定主基因和多基因的混合遗传模型.作物学报,1998,24(4):402-409
    15.盖钧镒,管荣展,王建康.植物数量性状QTL体系检测的遗传实验方法.世界科技研究与发展,1999,21(1):34-40
    16.高文臣.玉米矮花叶病毒株系的研究.[博士学位论文].陕西:西北农业大学,1997
    17.高文臣,魏宁生.玉米矮花叶病研究进展.西北农业大学学报,2000,28(1):86-90
    18.高文臣,魏宁生.玉米矮花叶病毒原的生物学鉴定.2000,4,36(2):250-254
    19.惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较作物学报.1997,23:129-136
    20.贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10
    21.姜华,白元俊,赵延明,刘维志.东北地区部分玉米品种资源抗玉米矮花叶病鉴定研究.玉米科学,2002,10(1):84-87
    22.蒋军喜,周雪平,洪健.杭州地区甘蔗花叶病病原鉴定.农业生物技术学报.2002,10(4):377-380
    23.李建雄.一个优良杂交组合的杂种优势遗传成因的分子标记分析.[博士学位论文].武汉:华中农业大学,1998
    24.李新海,韩晓清,张锦芬,张世煌.玉米矮花叶病毒抗性资源鉴定的研究.华北农学报,2001,16(2):38-42
    25.李新海,张世煌,傅骏骅.玉米抗病虫基因的染色体定位研究进展.玉米科学,2000,8(1):15-18
    26.林鸿宣,钱惠荣,熊振民,闵绍楷,郑康乐.几个水稻品种抽穗期主效基因与微效基因的定位研究.遗传学报,1996,23:205-213
    27.林肯恕.玉米矮花叶病抗性鉴定的研究.中国农业科学,1989,22(1):57-61
    28.黎裕,贾继增,王天宇.分子标记的种类及其发展.生物技术通报.1999,4:19-22
    29.刘纪麟主编.玉米育种学(第二版).中国农业出版社,2000
    30.马占鸿.玉米矮花叶病害问题探讨-中国MDMV的株系,花粉,种子带毒及品种抗病性.[博士后研究工作报告].北京:中国农业科学院,1999
    31.马占鸿,李怀方,裘维蕃.玉米矮花叶病毒种子传毒率检测.植物病理学报,1997,27(1):36
    32.马占鸿,李怀方,裘维蕃.几种蚜虫对MDMV传毒效率及其口针中病毒附着位点(VAS)的免疫荧光标记.植物病理学报,1998,28(1):25-28
    
    
    33.毛传澡,程式华.水稻农艺性状QTL定位精确性及其影响因素的分析(综述).农业生物技术学报,1999,7(4):386-394
    34.苗洪芹,邸垫平,吴和平.玉米不同生育期接种玉米矮花叶病毒后对种子带毒率和寄主抗性水平的影响.河北农业大学学报,1998,21(1):27-29
    35.莫惠栋.质量-数量性状的遗传分析.Ⅰ.遗传组成和主基因基因型鉴别.作物学报,1993,19:1-6
    36.莫惠栋.质量-数量性状的遗传分析.Ⅱ.世代平均数和遗传方差.作物学报,1993,19:193-200
    37.赛吉庆等.MDMV外壳蛋白基因的克隆及其在大肠杆菌中的表达.中国科学(B辑),1994,24(10):1060-1066
    38.尚佑芬,赵玖华,都森烈,路兴波,王升吉,孙红炜,杨崇良.玉米推广品种与品种资源抗病毒病苗期鉴定初报.山东农业科学,2001,4:3-5
    39.石秀清,王富荣,石银鹿,王文静,王建军,史海萍.玉米种质资源抗矮花叶病鉴定.植物遗传资源学报.2003,4(4):338-340
    40.石银鹿,张琦,王富荣.玉米矮花叶病毒的株系鉴定.植物病理学报,1986,16(2):99-104
    41.史春霖,徐绍华.北京玉米和高粱上的玉米矮花叶病毒.植物病理学报,1979,9(1):35-40
    42.谭震波,沈利爽,陆朝福,陈英,朱立煌,周开达,袁祚廉.水稻再生能力和头季稻产量性状的QTL定位及其遗传效应分析.作物学报,1997,23(3):289-295
    43.王凤格,刘贤德,王振华,张世煌,李新海,袁力行,韩晓清.李明顺.玉米抗甘蔗花叶病毒QTL的初步研究.作物学报,2003,29(1):69-74
    44.王凤格.利用SSR标记进行抗玉米矮花叶病的QTL分析.[硕士学位论文].北京:中国农业科学院研究生院,2001
    45.王建康,盖钧镒.混合模型的理论及其应用.生物数学学报,1995,10(4):8-9
    46.王天宇,黎裕.玉米分子图谱的构建和遗传多样性评价.玉米科学,2000,8(2):18-23
    47.王振华,李新海,袁力行,张世煌.Genetic diversity of elite maize germplasm for resistance to SCMV. Acta Agronomica Sinica(作物学报),2003,29(3):391-396
    48.王振华.玉米抗矮花叶病遗传分析及数量性状基因定位.[博士学位论文].哈尔滨:东北农业大学,2002
    49.吴建宇,盖钧镒.玉米矮花叶病毒抗性资源的鉴定.作物杂志,1998,增刊:109-113
    50.吴建宇.玉米对矮花叶病抗性的鉴定和遗传研究.[博士学位论文].南京:南京农业大学,1997
    51.吴建宇,席章营,盖钧镒.玉米抗病遗传育种的研究进展.玉米科学,1999,7(2):6-11
    52.吴为人,唐定中,李维明.数量性状的遗传剖析.作物学报,2000,26(4):501-507
    53.邢永忠.用分子标记剖析水稻重要农艺性状的遗传基础.[博士学位论文].武汉:华中农业大学,1999
    54.徐云碧,朱立煌编.分子数量遗传学.1994,北京:中国农业出版社
    55.严建兵.玉米杂种优势遗传基础及玉米与水稻比较基因组研究.[博士学位论文].武汉:华中农业大学,2003
    56.杨家秀,李晓,杨晓容.四川玉米矮花叶病毒株系及其分布的研究.四川农业大学学报,1993,11(4):574-578
    57.袁力行.分子标记在玉米杂种优势群划分研究中的应用.[硕士学位论文].北京:中国农业科学院,1999
    58.张成和,刘爱国,周进保.河北省玉米自交系和杂交种对玉米矮花叶病的抗性鉴定.河北农业科学,1992,3:13-16
    59.章履孝,颜伟,周益军,程兆榜.玉米矮花叶病及其抗性遗传研究进展(二).江苏农业科学,1999,1:31-33
    60.章元明,盖钧镒.利用DH或RIL群体检测QTL体系并估计其遗传效应.遗传学报,2000,27(7):634-640
    61.周广和,杜志强,高云霞.玉米种质资源抗耐玉米矮花叶病的调查.植物保护,1996,22(4):22-23
    62.郑康乐,黄宁.标记辅助选择在水稻改良中的应用前景.遗传,1997,19(2):40-44
    63.朱福成,陈雨天,张惠芳.玉米矮花叶病的初步研究.植物病理学会,1981年论文摘要集,1981b,146
    64.朱福成,陈雨天,蔡永宁.玉米矮花叶病毒株系和相关病毒侵染玉米的分离鉴定.甘肃农业科技,1986,12:24-27
    65.朱军.复杂数量性状基因定位的混合线性模型方法[A].王连铮,戴景瑞主编:全国作物育种学术讨论会论文集.北京:中国农业科技出版社,1998,11-20
    66.朱新产,张涌,廖祥儒.PCR技术战略.生物技术通报,1998,3:29-33
    
    
    67. Agama H A S, Moussa M E. Identification of RAPD markers tightly linked to the dwarf mosaic virus resistance gene in maize. Maydica, 1996, 41:205-210
    68. Agama H A S, Zacharia A G, Said M, Tuinstra M. Identification of quantitative trait loci for nitrogen use efficiency in maize. Maydica, 1999, 41:205-210
    69. Anzola S D, Romaine C P, Gregory L V. Disease response of sweet corn hybrids derived from corn resistance to maize dwarf mosaic virus. Phytopathology, 1982, 72:601-604
    70. Apuya N R, Frazier B L, Keim P, Roth E J, Lark K G. Restriction fragment length polymorphisms as genetic markers in soybean, Glycine max (L) Merrill. Theor. Appl. Genet., 1988, 75:889-901
    71. Bentolila S, Guitton C, Bouver N, Sailland A, Nykaza S, Freyssient G. Identification of an RFLP marker tightly linked to the htl gene in maize. Theor Appl Genet, 1991, 82:393-398
    72. Brewbaker J L, Lu X W. Molecular mapping of QTLs conferring resistance to Sphacelotheca reiliana (Kühn) Clint. Maize Genetics Cooperation Newsletter (MNL), 1999, 73:36
    73. Brown A F, Juvik J A, Pataky J K. Quantitative trait loci in sweet corn associated with partial resistance to stewart's wilt, northern corn leaf blight, and common rust. Phytopathology, 2001, 91:293-300
    74. Bubeck D M, Goodman M M, Beavis W D, Grant D. Quantitative trait loci controlling resistance to gray leaf spot in maize. Crop Sci, 1993, 33:838-847
    75. Burr B, Burr F A, Thompson K H, Albertson M C, Stuber C W. Gene mapping with recombinant inbreds in maize. Genetics, 1988, 118:519-526
    76. Causse M A, Fulton T M, Yong G C, Sang N A, Julapark C, Wu K S, Xiao J H, Yu Z H, Ronald P C, Harrington S E, Gerard S, McCouch S R, Tanksley S D. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994, 138:1251-1274
    77. Chaba Jampatong, Michael D, Mcmullen, Dean Barry B, Larry L, Darrah, Patrick F, Heike Kross. Quantitative trait loci for first-and second-generation European corn borer resistance derived from the maize inbred Mo47. Crop Sci, 2002, 42:584-593
    78. Charmer G, Cadalen T, Sourdille P, Bernard M. An extension of the 'marker regression' method to interactive QTL. Molecular Breeding, 1998, 4:67-72
    79. Chittenden L M, Schertz K F, Lin Y, Wing R A, Paterson A H. RFLP mapping of a cross between sorghum bicolor and S. Propinquum, suitable for high density mapping, suggests ancestral duplication of sorghum chromosomes. Theor. Appl. Genet. 1994, 87:925-930
    80. Clements M J, Dudley J W, White D G. Quantitative trait loci associated with resistance to gray leaf spot of corn. Phytopathology, 2000, 90:1018-1025
    81. Darvasi A, Weller JI. On the use of the moments method of estimation to obtain approximate maximum likelihood estimates of linkage between a genetic marker and a quantitative locus. Heredity, 1992, 68:43-46.
    82. Delaney D E, Webb C A, Hulbert S H. A novel rust resistance gene in maize showing overdominance. MPMI, 1998, 11: 242-245
    83. Dingerdissen A L, Geiger H H, Lee M, Scheehert A, Welz-H G. Interval mapping of genes for quantitative resistance of maize to Setosphaeria turcica, cause of northern leaf blight, in a tropical environment. Mol Breed, 1996, 12:143-156
    84. Donini P, Elias M L, Bougourd S M, Koebner R M D. AFLP fingerprinting reveals pattern differences between template DNA extracted from different plants. Genome. 1997, 40:521-526
    85. Freymark P J, Lee M, Woodman W L, Martinson C A. Quantitative and qualitative trait loci affecting host-plant response to Exserohilum turcium in maize (Zea mays L): Components of resistance. Theor Appl Genet, 1993, 87:537-544
    86. Freymark P, Lee M, Martinson C, Woodman W. Molecular-marker-facilitated investigation of host-plant response to Exserohilum turcium in maize (Zea mays L): Components of resistance. Theor Appl Genet, 1994, 88:305-313
    
    
    87. Fulton T M, Berk Bunn T, Emmatty D, Eshed Y, Lope Z J, Petiard V, Uhlig J, Zamir D, Tanksley S D. QTL analysis of an advanced backcross of lycoperslean peruvianum to the cultivated tomato and comparisons with QTLs found in other elite species. Theor. Appl. Genet., 1997, 95:881-894
    88. Gingery R E, Gordon D T, Nault L R, Bradfute O E. Handbook of Plant Virus Infections and Comparative Diagnosis. North Holland Biomedical Press, 1981, 19
    89. Gudauskas, R T, Ford, R E. Physiology of disease. In Virus and viruslike diseases of maize in the United States. D. T. Gordon, J. K. Knoke, and G E. Scott (eds.). Ohio. EE.UU. Southern Cooperatives Series Bulletin 1981,247:85-87
    90. Gupta M, Chyi Y S, Romero Severson J R, Owen J L. Amplification of DNA markers from evolutionarily diverse genomes using single primer sequence repeats. Theor. Appl. Genet., 1994, 89:998-1006
    91. Haley C S, Knott S A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity, 1992, 69:315-324.
    92. Hamada H, Petrino M G, Kakunaga T. A novel repeated element with Z-DNA forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc.Natl.Acad.Sci.USA, 1982,79:6465-6469
    93. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin S Y, Antonio B A, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush G S, Sasaki T. A high-density rice genetic linkage map with 2275 makers using a single F2 population. Genetics, 1998, 148:179-191
    94. Havukkala I J. Cereal genome analysis using rice as a model. Curr Opin Genet Dev. 1996, 6:711-714
    95. Helentjaris T, Weber D, Wright S. Identification of the genomic location of duplicated nueleotide sequences in maize by analysis of restriction fragament length polymorphisrns. Genetics, 1986, 118:353-363
    96. Hill J H, Zeyen R J, Morrison R H. The occurrence of maize dwarf mosaic virus in Minnesota. Plant Dis. Repor., 1977, 61(11):968-969
    97. Hill J H, Ford R E, Benner H I. Purification and partial characterization of maize dwarf mosaic virus strain B. Journal of General Virology, 1973, 30(3): 327-339
    98. Holland J B, Uhr D V, Jeffers D, Goodman M M. Inheritance of resistance to southern corn rest in tropical-by-corn-belt maize populations. Theor Appl Genet, 1998, 96:232-241
    99. Huang N, Angeles E R, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel Bennett J, Khush G S. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor. Appl. Genet., 1997, 95:313-320
    100. Hyne V, Kearsey M J. QTL analysis: further uses of'marker regression'. Theor. Appl. Genet., 1995, 91:471-476
    101. Ignjatouic D, Ivanovic D, Tadic B. Association of isozymes marker genes on chromsome 6 with resistance to maize dwarf mosaic virus in maize. Agronomic, 1995, 15:487-490
    102. Jansen R C. Controlling the type Ⅰ and type Ⅱ errors in mapping quantitative trait loci. Genetics, 1994, 138:871-881
    103. Janson B F, Ellett C W. A new corn disease in Ohio. Plant Dis. Reptr.,1963, 47:1107-1108
    104. Jarjees M M, Uyemoto J K. Serological relatedness of strains of maize dwarf mosaic and sugarcane mosaic virus as determined by microprecipitin and enzyme-Linked immunosorbent assay. Annals of Applied Biology. 1984, 104(3):497-501
    105. Jayakar S D. On the detection and estimation of linkage between a locus infuencing a quantitative character and a marker locus. Biometrics, 1970, 26:451-464
    106. Jensen J. Estimation of recombination parameters between a quantitative trait locus(QTL) and two marker gene loci. Theor. Appl. Genet., 1989, 78:613-618
    107. Jiang C J, Zeng Z B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics, 1995, 140:1111-1127
    108. Johnson G R. Analysis of genetic resistance to maize dwarf mosaic virus disease. Crop Sci., 1971, 11:23-24
    
    
    109. Josephson L J, Naidu B. Reaction in dialled crosses of corn inbreds to maize dwarf mosaic virus. Crop Sci., 1971, 11:664-667
    110. Jung M, Weldekidan T, Schaff D, Paterson A, Tingey S, Hawk J. Generation-means analysis and quantitative trait locus mapping of anthracnose stalk rot genes in maize. Theor Appl Genet, 1994, 89:413-418
    111. Kao C H, Zeng Z B. General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm. Biometrics, 1997, 53:653-665
    112. Kearsey M J, Hyne V. QTL analysis: a simple 'marker-regression' approach. Theor. Appl. Genet., 1994, 89:698-702
    113. Kearsey M J. The principles of QTL analysis (a minimal mathematics approach). Exp. Bot., 1998, 49:1619-1623
    114. Keim P, Schupp J M, Travis S E, Clayton K, Zhu T. A high-density soybean genetic map based on AFLP markers. Crop Sci. 1997, 37:537-543
    115. Kerns M R, Dudley J W, Rufener G K. QTL for resistance to common ruat and smut in maize. Maydica, 1999, 44:37-45
    116. Knapp S J, Bridges W C (Jr), Birkes D. Mapping quantitative trait loci using molecular marker linkage maps. Theor. Appl. Genet., 1990,79:583-592
    117. Krass C J, Ford R E. Ultrastructure of corn systemically infected with maize dwarf mosaic virus. Phytopathology, 1969, 59:431
    118. Kuhn C W, Smith T H. Effectiveness of a disease index system in evaluating corn for resistance to maize dwarf mosaic virus. Phytopathology, 1977, 67:288-291
    119. Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antoni B A, Shomura A, Shimizu T, Hayasaka K, Miyao A, Monna L, Zhong H S, Tamura Y, Wang Z X, Momana T, Umehara Y, Yano M, Sasaki T, Minobe Y. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genetics, 1994a, 8:365-376
    120. Kyetere D T, Ming R, McMullen M D, Pratt R C, Brewbaker J, Musket T. Genetic analysis of tolerance to maize streak virus in maize. Genome, 1999, 42:20-26
    121. Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121:185-199
    122. Lei J D, Agrios G N. Mechanisms of resistance in corn to maize dwarf mosaic virus. Phytopathology, 1986, 76(10): 1034~1041
    123. Lincoln S, Daly M, Lander E. Constructing genetic maps with mapmaker/exp 3.0. Whitehead Institute Technical Report. 3rd edition. 1992.
    124. Liu Y G, Tsunewaki K. Restriction fragment length polymorphism (RFLP) analysis in wheat. Ⅱ. Linkage maps of the RFLP sites in common wheat. Jpn J Genet. 1991, Oct, 66(5):617-33
    125. Loesch P J, Zuber M S. Inheritance of resistance to maize dwarf mosaic virus. Crop Sci., 1972, 12(3): 350-352
    126. Lou Z W, Woolliams J A. Estimation of genetic parameters using linkage between a marker gene and a locus underlying a quantitative character in F2 populations. Heredity, 1993, 70:245-253
    127. Louie R, Findley W R, Knoke J K. Genetic basis of resistance in maize to five maize dwarf mosaic virus strains. Crop Sci., 1991, 31(1): 14-18
    128. Louie R, Knoke J K. Strains of maize dwarf mosaic virus. Plant Disease Reporter. 1975, 59(6):518-522
    129. Luo Z W, Kearsey M J. Maximum likelihood estimation of linkage between a marker gene and a quantitative locus Heredity, 1989, 63:401-408
    130. Lu X W, Brewbaker J L. Molecular mapping of QTLs conferring resistance to Sphacelotheca reiliana (Kühn) Clint. Maize Genetics Cooperation Newsletter (MNL), 1999, 73:36
    131. Lu X W, Brewbaker J L, Nourse S M, Moon H G, Kim S K, Klairallah M. Mapping quantitative trait loci conferring resistance to maize streak virus. Maydica, 1999, 44:313-318
    132. Lübberstedt T, Melchinger A E, Klein D. Comparative quantitative trait loci mapping of partial resistance to Puccinia sorghi across four populations of European flint maize. Phytopathology, 1998a, 88:1324-1329
    
    
    133. Lübberstedt T, Xia X C, Tan G, Liu X, Melchinger A E. QTL mapping of resistance to Sphacelotheca reiliana in maize. Theor Appl Genet, 1999, 99:593-598
    134. Marcon A, Kaeppler S W, Jensen S G. Resistance to systemic spread of high plains virus cosegregates in two F_2 maize populations inoculated with both pathogens. Crop Sci, 1997, 37:1923-1927
    135. Marcon A, Kaeppler S M, Jensen S G, Senior L, Stuber C. Loci controlling resistance to high plains virus and wheat streak mosaic virus in a B73×Mo17 population of maize. Crp Sci, 1999, 39:1171-1177
    136. Martinez O, Cumow R N. Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor. Appl. Genet., 1992, 85:480-488
    137. Mackenzie D R, Wemham C C, Ford R E. Difference in maize dwarf mosaic virus isolates of the northeastern united states. Plant Disease Reporter, 1966, 50:814~818
    138. McDaniel L L, Gordon D T. Identification of a new strain of maize dwarf mosaic virus. Plant Disease. 1985, 69:602-607
    139. Mckem N M, Skukla D D, Toler R W. Confirmation that the sugarcane mosaic virus subgroup consists of four distinct potyviruses by using peptide profiles of coat proteins. Phytopathology, 1991, 81:1025-1029
    140. Mcmullen M D, Jones M W, Simcox K D, Louie R. Three genetic loci control resistance to wheat streak mosaic virus in the maize inbred Pa405. Mol Plant-Microbe Interact, 1994, 7:708-712
    141. Mcmullen M D, Louie R. The linkage of molecular marker to a gene controlling the symptom response in maize to maize dwarf mosaic virus. Mol Plant-Microbe Interact, 1989, 2:309-314
    142. McMullen M D, Louie R. Restriction fragment length polymorphism mapping of a gene for resistance to maize dwarf mosaic virus. Phytopathology, 1988, 78(12):1543
    143. Mcmullen M D, Louie R. Identification of a gene for resistance to wheat streak mosaic virus in maize. Phytopathology, 1991, 81:624-627
    144. McMullen M D, Simcox K D. Genomic organization of disease and insect resistance genes in maize. Molecular plant-microbe interactions, 1995, 8(6):811-815
    145. Melchinger A E, Kuntze L, Gumber R K, Lubberstedt T, Fushs E. Genetic basis of resistance to sugarcane mosaic virus in European maize germplasm. Theor. Appl.Genet., 1998, 96:1151-1161
    146. Messieha M. Aphid transmission of maize dwarf mosaic virus. Phytopathology, 1967, 57:856~959
    147. Ming R, Brewbaker J L, Moon H G, Musket T A, Holley R N, Pataky J K, McMullen M D. Identification of RFLP markers linked to a major gene, swl, conferring resistance to Stewart's wilt in maize. Maydica, 1999, 44:319-323
    148. Ming R, Mcmullen M D, Brewbaker J L, Pratt R C, Moon H G, Musket T, Holley R. RFLP mapping of genes conferring resistance to Erwinia stewartii. Maize Genet Crop Newsl, 1995, 69:60
    149. Ming R, Brewbaker J L, Moon H G, Musket T A, Holley R N, Pataky J K, McMullen M D. Identification of RFLP markers linked to a major gene, swl, conferring resistance to Stewart's wilt in maize, Maydica, 1999, 44:319-323
    150. Moore G, Devos K M, Wang Z, Gale M D. Grasses, line up and form a circle. Current Biology. 1995, 5:737-739
    151. Naidu B, Josephson L M. Genetic analysis of resistance to corn virus disease complex. Crop Sci., 1976, 16(2):167-172.
    152. Nelson J C, Van Deynze A E, Autrique E, Sorrells M E, Lu Y H, Merlino M, Atkinson M, Leroy P. Molecular mapping of wheat. Homoeologous group 2. Genome, 1995b, 38:517-524
    153. Nelson J C, Van Deynze A E, Autrique E, Sorrells M E, Lu Y H, Merlino M, Atkinson M, Leroy P. Molecular mapping of wheat. Homoeologous group 3. Genome, 1995b, 38:525-533.
    154. Paterson A H, Lander S E, Hewitt J D, Peterson S, Lincoln H D, Tanksley S D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335:721-726
    155. Pe M E, Gianfranceschi L, Taramino G, Tarchini R, Angelini P, Dani M, Binelli G. Mapping quantitative trait loci (QTL) for resistance to Gibberella zeae infection in maize. Mol Gen Genet, 1993, 241:11-16
    
    
    156. Pernet A, Hoisington D, Franco J, Isnard M, Jewell D, Jiang C, Marchand J L, Reynaud B, Glaszmann J C, Gonzalez de Leon D. Genetic mapping of maize streak virus resistance from the Mascarene source Ⅰ. Resistance in line D211 and stability against different virus clones. Theor Appl Genet, 1999a, 99:524-539
    157. Pernet A, Hoisington D A, Dintinger J, Jewell D C, Jiang C, Khairalla M M, Letourmy P, Marchand J L, laszmann J C, Gonzlez de Len D. Genetic mapping of maize streak virus resistance from the Mascarene source Ⅱ. Resistance in line CIRAD 390 and stability across germplasm. Theor Appl Genet, 1999b, 99:540-553
    158. Powell W, Morgante M, Andre C, Hanafey M, Vogel J. The comparision of RFLP, RAPD, AFLP and SSR(microsatellite) markers for germplasm analysis. Mol. Breed. 1996, 2:225-238
    159. Redona E D, Mackill D J. Quantitative trait locus analysis for rice panicle and grain characteristics. Theor. Appl. Genet., 1998, 96:957-963
    160. Rder, M S, Korzyn V, Wendehake K, Plaschke J, Tixier H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics. 1998, Aug, 149(4): 2007-23
    161. Rodolphe F, Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics, 1993, 134:1277-1288
    162. Saghai M M A. Extraordinarily polumorphic rnicrosatellite DNA in barely:spcies diversity, chromosomal locations and population dynamics. Proc.Natl.Acad. Sci.USA, 1994, 91:5466-5470
    163. Saghai Maroof M A, Yue Y G, Xiang Z X, Stromberg E L, Rufener G K. Identification of quantitative trait loci controlling resistance to gray leaf plot disease in maize. Theor Appl Genet, 1996, 93:539-546
    164. Sanz-Alferez S, Richter T E, Hulbert S H, Bennettzen J L. The rp3 disease resistance gene of maize: mapping and characterization of introgressed alleles. Theor Appl Genet, 1995, 91: 25-32
    165. Sasaki T. The progress and the prospect of the rice genome research program. Rice Genome Research Program in Japan, 1997, 169-177
    166. Schechert A W, Welt H G, Geiger H H. QTL for resistance to Setosphaeria turcica in tropical African maize. Crop Sci, 1999, 39:514-535
    167. Scott G E, Nelson L R. Locating genes for resistance to maize dwarf mosaic virus in seedings by using chromosomal translocations. Crop Sci., 1971, 11:801-803
    168. Scott G E, Rosenkranz E. Use of chromosomal translocations to determination of maize genotypes for reaction to maize dwarf mosaic virus. Crop Sci., 1973, 13:724-725
    169. Scott G, Rosenkranz E, Nelson L R. Host reaction to maize dwarf mosaic virus from mississipppi and Ohio. Plant Dis. Rep, 1969, 53:933~935
    170. Senior M L, Chin E C L, Lee M, Smith J S C, Stuber C W. Simple sequence repeat markers developed from maize sequences found in the gene bank database:map construction. Crop Sci., 1996, 36:1676-1683
    171. Skukla D D, Tosic M, Jilka J. Taxonomy of potyviruses infecting maize, Sorghum and sugarance in Australia and the United State as determined by reactivities of polyclonal autibodies directed towards virus specific N-termini of coat proteins. Phytopathology, 1989, 79:223-229
    172. Skukla D D, Frenkel M L, Mckem N M. Present status of sugarcane mosaic subgroup of potyviruses. Archives of virology. 1992, (suppl 5):363-373
    173. Simcox K D, Bennetzen J L. The use of molecular markers to study Setosphaeria turcica resistance in maize. Phytopathology, 1993, 83:1326-1330
    174. Simcox K D, McMullen M D, Louie R. Co-segregation of the maize dwarf mosaic virus resistance gene, mdml, with the nucleolous organizer region in maize. Theor. Appl. Genet., 1995, 90:341-346
    175. Stuber C W. Mapping and manipulating quantitative traits in maize. Trends Genet, 1995, 11:477-481
    176. Tanksley S D, Ganai M W, Prince J C, de Vicente, Bonierbale M, Braun P, Fulton T M, Giovanonni J J, Grandillo S, Martin G B, Messeguer R, Miller J C, Miller L, Paterson A H, Pineda O, Roeder M, Wing R A, Wu W, Young N D. High density molecular linkage maps of the tomato and potato genomes: biological inferences and practical
    
    applications. Genetics, 1992, 132:1141-1160
    177. Tosic M, Ford R E, Shukla D D. Differentiation of sugarcane,maize dwarf Johnsougrass and Sorghum mosaic viruses based on reaction of oat and some sorghum cultivates. Plant Disease. 1990, 74:549-552
    178. Tu J C, Ford R E. Maize dwarf mosaic virus predisponses corn to rootrot infection. Phytopathology, 1971,61(7): 800~803
    179. Ullstrup A J. Identification and linkage of a gene determining resistance in maize to an American race of Puccinia polysora. Phytopathology, 1965, 55:425-428
    180. Van Regenmortel MHV, Fauguet C M, Carstens E B. Virus taxonomy:introduction to the species concept in virus taxonomy. Seventh Reporter of the International Committee on Toxonomy of Viruses. USA, San Diego, California, 2000, 92101-4495
    181. Wang D G, Fan J B, Siao C J, Bemo A, Young P, Sapoisky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittrnann M, Morris M S, Shen N P, Kilbum D. Large-scale identification, mapping, and genotyping of single nucleotide polymorphisms in the human genome. Science, 1998, 280:1077-1082
    182. Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL×environment interaction. Theor. Appl. Genet., 1999, 99:1255-1264
    183. Weck E A, Beckman D, Mead D. Near-isogenic line localization of maize dwarf mosaic virus resistance to chromosome 6s. Maize Genetic Cooperation Newsletter, 1990a, 64:99-101
    184. Weller J I. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics, 1986, 42:627-640
    185. Welt H G, Geiger H H. Genes for resistance to Northern corn leaf blight in diverse maize populations. Plant Breeding, 2000, 119:1-14
    186. Welt, H G, Schechert A, Pemet A, Pixley K V, Geiger H H. A gene for resistance to the maize streak virus in the African CIMMYT maize inbred line CML202. Mol Breed, 1998, 4:147-154
    187. Welt H G, Schechert A W, Geiger H H. Dynamic gene action at QTLs for resistance to Setosphaeria turcica in maize. Theor Appl Genet, 1999a, 98:1036-1045
    188. Welt H G, Xia X C, Bassetti P, Melchinger A E, Lübberstedt T. QTLs for resistance to Setosphaeria turcica in an early maturing dent flint maize population. Theor Appl Genet, 1999b, 99:649-655
    189. Williams L E, Alexander L J. Maize dwarf mosaic, a new corn disease. Phytopathology 1965, 55:802-804
    190. Wu W R, Li W M. A new approach for mapping quantitative trait loci using complete genetic marker linkage maps. Theor. Appl. Genet., 1994, 89:535-539
    191. Xia X C, Melchinger A E, Kuntze L, Lübberstedt T. Quantitative trait loci mapping of resistance to sugarcane mosaic virus in maize. Phytopathology, 1999, 89(8): 660-667
    192. Xiao J, Li J, Yuan L, Tanksley S D. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor. Appl. Genet.,1996, 92:230-244
    193. Xu M L, Melchinger A E, Xia X C, Lüberstedt T. High-resolution mapping of loci conferring resistance to sugarance mosaic virus in maize using FRLP, SSR, and AFLP markers. Mol Gen Genet, 1999, 26:574-581
    194. Xu M L, Melchinger A E, Lüberstedt T. Origin of Scm2-two loci conferring resistance to sugarcane mosaic virus (SCMV) in maize. Theor Appl Genet, 2000, 100:934-941
    195. Xu S Z. A comment on the simple regression method for interval mapping. Genetics, 1995, 141:1657-1659
    196. Xu S Z. Further investihation in the regression method of mapping quantitative trait loci. Heredity, 1998, 80:64-373
    197. Yan J Q, Zhu J, He C X, Benmoussa M, Wu P. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics, 1998b, 150:1257-1265
    198. Yan J Q, Zhu J, He C X, Benmoussa M, Wu P. Quantitative trait loci analysis for developmental behavior of tiller
    
    number in rice (Oryza sativa L.). Theor. Appl. Genet., 1998a, 97:267-274
    199. Yang G P, Saghai M M A, Xu C G. Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Mol Cen Genet, 1994, 20:176-183
    200. Yano M, Harusbima Y, Nagaruma Y, Kurata N, Minore Y, Sasaki T. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map, Theor Appl. Genet., 1997, 95:1025-1032
    201. Zabeau M, Vos P. Selective Restriction Fragment Amplification:A General Method For DNA Fingerprinting. European Patent Application. 1993, 92402629.7(Public Number 0 534 858 AI)
    202. Zaitlin D, Demars S, Gupta M. Linkage of a second gene for NCLB resistance to molecular in maize. Maize Genet. Coop.Newsl, 1992, 66:69-70
    203. Zaitlin D, Demars S, Ma Y. Linkage of rhm, a recessive gene for resistance to southern corn leaf blight, to RFLP marker loci in maize (Zea mays) seedings. Genome, 1993, 36:555-564
    204. Zhang S H, Li X H, Wang Z H, George M L, Jeffers D, Wang F G, Liu X D, Li M S, Yuan L X. QTL mapping for resistance to SCMV in Chinese maize germplasm. Maydica, 2003, 48:307-312
    205. Zeng Z B.Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc. Natl. Acad. Sci. USA, 1993, 90:10972-10976
    206. Zhu J, Weir B S. Mixed model approaches for genetic analysis of quantitative traits. In:Chen L S,Ruan S G, and Zhu J(eds) Advanced topics in biomathematics:proceedings of international conference on mathematical biology. Singapore: world scientific publishing co, 1998, 321-330
    207. Zhuchenko A A, Korol A B, Andryushchenko V K. Linkage between loci of quantitative characters and marker loci. Genetika, 1979, 14:771-778
    208. Zuber M S, Hilderbrand E S, Loesch P J. Prediction of reactions to maize dwarf mosaic virus in double cross hybrids based upon single cross reaction. Crop Sci. 1973, 13(2): 172-175

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700