用户名: 密码: 验证码:
糖原合酶激酶3在阿尔茨海默病发病中的作用及干预措施探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病是(Alzheimer’s disease, AD)一种高发于老年人群的痴呆,其主要病理改变为tau蛋白过度磷酸化组成的细胞内神经纤维原缠结,过量产生的Aβ组成的细胞外老年斑,大量营养不良性神经炎导致的神经元丢失。AD的主要临床特征是进行性记忆能力下降,研究表明,突触可塑性能力的下降是引起学习记忆能力下降的根本原因。
     糖原合酶激酶3 (Glycogen synthase kinase-3, GSK-3)是一种在神经元的发育和成熟过程中非常重要的蛋白激酶,在引起AD样tau蛋白过度磷酸化,Aβ产生增加,导致AD样学习记忆障碍中起了重要作用,而对其引起AD样学习记忆障碍机制的研究尚缺乏。
     我们在本研究中重点探讨了GSK-3在突触可塑性中的作用,重点探讨了在我们已经报道的具有AD样学习记忆障碍的动物模型上GSK-3对长时程增强(Long term potentiation, LTP)的影响并且从突触前递质释放,轴突运输,突触后形态改变,蛋白合成变化等方面探索了其内在机制。主要结果如下:
     第一部分糖原合酶激酶3对突触可塑性的影响及其可能的机制
     阿尔茨海默病(Alzheimer’s disease, AD)是最常见的高发于老龄人群中的痴呆疾病,激活GSK-3可以引起AD的记忆能力下降,但是其机制并不明了。我们在本研究中发现通过wortmannin和瞬时转染野生型GSK-3β(wt-GSK-3β)的质粒可以抑制大鼠海马长时程增强(long term potentiation, LTP)的诱导,而同时用锂剂或者SB216763亦或转染显性负突变GSK-3β(dn-GSK-3β)可以逆转该损伤。随着GSK-3的激活,与LTP相关的突触结构也同时受损,包括突触前活性区域减少,突触间隙变宽,突触后致密物质减少。在突触前水平,GSK-3激活时,谷氨酸释放和synapsin I(一种对调节突触释放十分重要的蛋白)在其含量和聚集上也发生了改变。我们还发现synapsin I的这种改变是不依赖于LTP的。突触后水平,我们发现PSD93和NR2A/B含量明显降低。我们认为,激活GSK-3不仅损伤突触的形态而且损伤其功能,这可能是其导致记忆损伤的机制。
     第二部分糖原合酶激酶3激活阻碍钙依赖的胞吐及其机制
     糖原合酶激酶3(GSK-3)在神经元的发育和成熟过程中发挥了重要的作用,而其在对神经元基本生理功能的研究尚缺乏。我们在本研究中发现,过度表达野生型GSK-3β可抑制海马神经元的胞吐现象,而且主要是通过抑制囊泡以完全融合方式的胞吐。我们还发现,激活GSK-3可降低钙离子内流以及与突触囊泡释放密切相关的Synaptophysin I/VAMP2 (囊泡相关膜蛋白2)复合体的解离障碍,激活GSK-3促进P/Q型钙通道突触结合位点的磷酸化。据此,我们推测GSK-3激活可能通过磷酸化突触前钙通道蛋白,降低钙内流,从而引发突触囊泡相关蛋白的功能紊乱,最终抑制神经元的胞吐作用。
     第三部分糖原合酶激酶3激活对驱动蛋白轻链介导的VAMP2蛋白顺向轴突转运的抑制作用及其机制
     糖原合酶激酶3(GSK-3)是一种在在神经元的发育和成熟过程中发挥了重要的作用的蛋白激酶,前期的报道显示激活GSK-3可以通过磷酸化驱动蛋白轻链蛋白(KLC)来负性调节轴突运输。我们的研究中发现,过度表达GSK-3可以使VAMP2蛋白的轴突转运受到阻抑,从而使到达轴突远端的VAMP2蛋白含量降低。我们还发现,GSK-3这种对轴突运输的阻抑作用可能是通过其对KLC的蛋白表达的抑制引起的。因此,我们推测GSK-3可能通过降低KLC的量进而阻滞其介导的顺向轴突转运。
     第四部分雌激素对糖原合酶激酶3激活引起的tau蛋白过度磷酸化的保护作用
     雌激素水平的降低与阿尔茨海默病(AD)的高发性密切相关。阿尔茨海默病(AD)是最常见的与年龄相关的痴呆病之一,其病理学特征为神经原纤维缠结(NFTs)和老年斑(SP)。过度磷酸化的微管相关蛋白和β样淀粉蛋白(Aβ)分别构成了神经纤维缠结和老年斑的主要成分。先前有研究表明雌激素能有效缓解Aβ引起的细胞毒性。然而,雌激素是否同样影响tau蛋白磷酸化?其潜在的机制又如何呢?在这篇文章中,我们给予wortmannin (Wort)和GF-109203X (GFX)处理neuro2A (N2a)细胞,以激活糖原合成激酶-3(GSK-3),诱导出tau蛋白过度磷酸化模型。在这个实验中,我们发现17β-雌二醇(βE2)能够缓解Wort/GFX-诱导的与众多AD-相关位点上的tau蛋白的过度磷酸化,如Ser396/404,Thr231,Thr205,Ser199/202。同时,βE2还能使非活性形式的GSK-3β(Ser9位磷酸化)增加。βE2对GSK-3β的作用通过瞬时过度表达GSK-3β得到确证。为了证明βE2对GSK-3β和tau蛋白磷酸化的保护作用是否通过GSK-3的上游因子之一----蛋白激酶B(Akt)?我们在N2a细胞上瞬时转染了显性负突变Akt质粒(dn-Akt)。结果显示,βE2对Wort/GFX-诱导的GSK-3β的激活和tau蛋白的过度磷酸化的缓解作用是不依赖于Akt的。这就提示βE2通过直接作用于GSK-3β来减少AD样tau蛋白的过度磷酸化。
Alzheimer’s disease (AD) is the most popular dementia in aged people. The main pathological hallmarks in AD are the formation of intracellular neurofibrillary tangles consisted of hyperphosphorylated tau, extracellular senile plaques consisted ofβ-amyloid (Aβ) peptide, neuronal loss caused by dystrophic neuritis. The main character of AD in clinical is progressive memory loss. Previously studies had revealed that the dysfunction of synaptic plasticity is the primary reason for learning/memory deficits in AD.
     Glycogen synthase kinase-3 (GSK-3) is a crucial protein kinase which is necessary for the development and maturity of neuron. It is also known that GSK-3 plays an important role in the pathogenesis of AD, such as induces tau hyperphosphorylation, increases the production of Aβand leads to AD-like learning/memory deficits. However, the mechanisms of GSK-3 induce AD-like learning/memory deficits is still unknown.
     In the present study, we aimed to investigate the role of GSK-3 in synaptic plasticity, especially on the effect of GSK-3 activation to LTP in our previously reported animal model with AD-like learning/memory deficits. We also explore the underlying mechanisms through the changing of presynaptic neurotransmitter releasing, axonal transport, morphological changes in post-synpase and protein synthesis. The main results are as following:
     Part I Activation of glycogen synthase kinase-3 inhibits long term potentiation with synapse-associated impairments
     Activation of glycogen synthase kinase-3 (GSK-3) can cause memory deficits as seen in Alzheimer’s disease (AD), the most common age-associated dementia, but the mechanism is not understood. Here, we found that activation of GSK-3 by wortmannin or transient overexpression of wild type GSK-3β(wt-GSK-3β) could suppress the induction of long term potentiation (LTP) in rat hippocampus, while simultaneous inhibition of GSK-3 by lithium or SB216763 or transient expression of a dominant negative GSK-3βmutant (dn-GSK-3β) preserved the LTP. With activation of GSK-3, prominent LTP-associated synapse impairments including less presynaptic active zone, thinner postsynaptic density (PSD) and broader synaptic cleft were observed in the hippocampal slices after high frequency stimulation (HFS). In presynaptic level, the release of glutamate and the expression/clustering of synapsin I, a synaptic vesicle protein playing an important role in neurotransmitter release, decreased markedly upon upregulation of GSK-3. In vitro studies further demonstrated that GSK-3 inhibited the expression of SynI independent of HFS. In postsynaptic level, the expression of PSD93 and NR2A/B proteins decreased significantly when GSK-3 was activated. These synaptic impairments were attenuated when GSK-3 was simultaneously inhibited by LiCl or SB216763 or transient expression of dnGSK-3. We conclude that upregulation of GSK-3 impairs the synaptic plasticity both functionally and structurally, which may underlie the GSK-3-involved memory deficits.
     Part II Activation GSK-3 retards calcium dependent exocytosis and the dissociation of synaptophysin I/VAMP2 complex
     GSK-3 plays an important role in the development and maturation of neurons, but it is still not clear about its role in neuronal physiological functions. We found in this study that overexpressing wild type GSK-3β(wt-GSK-3β) inhibits the exocytosis in hippocampus neurons, and this inhibition mainly on the full-fusion style of vesicles. We also found that upregulation of GSK-3 phosphorylated the synprint site of P/Q calcium channel and reduced the calcium influx to trigger exocytosis. Moreover, the reduction in calcium concentration in presynapse retarded the dissociation of synaptophysin I/VAMP2 complex, which might be the molecular mechanism of exocytosis inhibition by GSK-3 activation. We conclude that upregulation GSK-3 can inhibit exocytosis through phosphorylating calcium channel in presynapse and decreasing calcium influx, indicating dysfunction of vesicle associated proteins.
     Part III Activation GSK-3 inhibits anterograde axonal transport of VAMP2 mediated by kinesin light chain and its underlying mechanisms
     GSK-3 is one of important kinase which is crucial in the development and mature in the neurons. Previously study had revealed that activated GSK-3 negative regulation axonal transport through phosphorylation kinesin light chain. We found in this study that overexpressing GSK-3 retards the axonal transport of VAMP2 and decreases the level of VAMP2 in distal axon. We also found that the inhibition of GSK-3 to axonal transport mainly on the inhibition to expression of KLC. We conclude that GSK-3 retards anterograde axonal transport via decreasing the expression of KLC
     Part IV 17β-estradiol attenuates tau hyperphosphorylation through glycogen synthase kinase-3βinhibition independent of protein kinase B
     Decline of estrogen is associated with a higher incidence of Alzheimer’s disease (AD), the most common age-associated dementia characterized pathologically with formation of numerous neurofibrillary tangles and senile plaques. The major components in the tangles and plaques are respectively the hyperphosphorylated microtubule-associated protein tau andβ-amyloid (Aβ). Previous studies have demonstrated that estrogen can efficiently attenuate Aβ-induced toxicities. However, the effect of estrogen on tau phosphorylation and the underlying mechanisms are elusive. Here, we treated the neuro2A (N2a) cells with wortmannin (Wort) and GF-109203X (GFX) to activate glycogen synthase kinase-3 (GSK-3) and thus to induce tau hyperphosphorylation. We found that 17β-estradiol (βE2) could attenuate Wort/GFX-induced tau hyperphosphorylation at multiple AD-related sites, including Ser396/404, Thr231, Thr205, Ser199/202. Simultaneously, it increased the level of the Ser9-phosphorylated (inactive) GSK-3β. The effect ofβE2 on GSK-3βwas confirmed by transient overexpression of GSK-3β. To study whether the protective effect ofβE2 on GSK-3β and tau phosphorylation involves protein kinase B (Akt), an upstream effector of GSK-3, we transiently expressed the dominant negative Akt (dnAkt) in the cells. The results showed thatβE2 could attenuate Wort/GFX-induced GSK-3βactivation and tau hyperphosphorylation with Akt-independent manner. It is suggested thatβE2 may arrest AD-like tau hyperphosphorylation through directly targeting GSK-3β.
引文
1. Sloane PD, Zimmerman S, Suchindran C, Reed P, Wang L, Boustani M, Sudha S. The public health impact of Alzheimer's disease, 2000-2050: potential implication of treatment advances. Annu Rev Public Health. 2002;23:213-31.
    2. King ME. Can tau filaments be both physiologically beneficial and toxic? Biochim Biophys Acta. 2005 Jan 3;1739(2-3):260-7.
    3. Ghoshal N, Garcia-Sierra F, Wuu J, Leurgans S, Bennett DA, Berry RW, Binder LI. Tau conformational changes correspond to impairments of episodic memory in mild cognitive impairment and Alzheimer's disease. Exp Neurol. 2002 Oct;177(2):475-93.
    4. Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol. 2001 Nov;65(4):391-426.
    5.朱铃强,王建枝。糖原合酶激酶-3—阿尔茨海默病药物开发的新靶点。国外医学·分子生物学分册. 2003, 25(S):97-98.
    6. Wang JZ, Wu Q, Smith A, Grundke-Iqbal I, Iqbal K. Tau is phosphorylated by GSK-3 at several sites found in Alzheimer disease and its biological activity markedly inhibited only after it is prephosphorylated by A-kinase. FEBS Lett. 1998 Sep 25;436(1):28-34.
    7. Yu J, Deng YQ, Yang Y, Zhang JY, Zhang YP, Zhang SH, Wang JZ. Activation of glycogen synthase kinase 3 induces Alzheimer-like hyperphosphorylation of cytoskeleton protein and cell damage. Prog. Biochem. Biophys. 2004,31:532-537.
    8. Liu SJ, Zhang AH, Li HL, Wang Q, Deng HM, Netzer WJ, Xu H, Wang JZ. Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J Neurochem. 2003 Dec;87(6):1333-44.
    9. Hernandez F, Borrell J, Guaza C, Avila J, Lucas JJ. Spatial learning deficit in transgenic mice that conditionally over-express GSK-3beta in the brain but do not form tau filaments. J Neurochem. 2002 Dec;83(6):1529-33.
    10. Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973 Jul;232(2):331-56.
    11. Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000;23:649-711.
    12. Chapman PF, White GL, Jones MW, Cooper-Blacketer D, Marshall VJ, Irizarry M, Younkin L, Good MA, Bliss TV, Hyman BT, Younkin SG, Hsiao KK. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci. 1999 Mar;2(3):271-6.
    13. Larson J, Lynch G, Games D, Seubert P. Alterations in synaptic transmission and long-term potentiation in hippocampal slices from young and aged PDAPP mice. Brain Res. 1999 Sep 4;840(1-2):23-35.
    14. Engel T, Hernandez F, Avila J, Lucas JJ. Full reversal of Alzheimer's disease-like phenotype in a mouse model with conditional overexpression of glycogen synthase kinase-3. J Neurosci. 2006 May 10;26(19):5083-90.
    15. Plattner F, Angelo M, Giese KP. The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J Biol Chem. 2006 Sep 1;281(35):25457-65.
    16. Rockenstein E, Torrance M, Adame A, Mante M, Bar-on P, Rose JB, Crews L, Masliah E. Neuroprotective effects of regulators of the glycogen synthase kinase-3beta signaling pathway in a transgenic model of Alzheimer's disease are associated with reduced amyloid precursor protein phosphorylation. J Neurosci. 2007 Feb 21;27(8):1981-91.
    17. Son H, Yu IT, Hwang SJ, Kim JS, Lee SH, Lee YS, Kaang BK. Lithium enhances long-term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus. J Neurochem. 2003 May;85(4):872-81.
    18. Lucas FR, Salinas PC. WNT-7a induces axonal remodeling and increases synapsin Ilevels in cerebellar neurons. Dev Biol. 1997 Dec 1;192(1):31-44.
    19. Lucas FR, Goold RG, Gordon-Weeks PR, Salinas PC. Inhibition of GSK-3beta leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium. J Cell Sci. 1998 May;111 ( Pt 10):1351-61.
    20. Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, Lo E, Wu D, Saule E, Bouschet T, Matthews P, Isaac JT, Bortolotto ZA, Wang YT, Collingridge GL. LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron. 2007 Mar 1;53(5):703-17.
    21. Hooper C, Markevich V, Plattner F, Killick R, Schofield E, Engel T, Hernandez F, Anderton B, Rosenblum K, Bliss T, Cooke SF, Avila J, Lucas JJ, Giese KP, Stephenson J, Lovestone S. Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J Neurosci. 2007 Jan;25(1):81-6.
    22. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Academic Press, San Diego, 1998.
    23. Rabenstein RL, Addy NA, Caldarone BJ, Asaka Y, Gruenbaum LM, Peters LL, Gilligan DM, Fitzsimonds RM, Picciotto MR. Impaired synaptic plasticity and learning in mice lacking beta-adducin, an actin-regulating protein. J Neurosci. 2005 Feb 23;25(8):2138-45.
    24. Kaech S, Banker G. Culturing hippocampal neurons. Nat Protoc. 2006;1(5):2406-15.
    25. Meberg PJ, Miller MW. Culturing hippocampal and cortical neurons. Methods Cell Biol. 2003;71:111-27.
    26. Liu SJ, Zhang JY, Li HL, Fang ZY, Wang Q, Deng HM, Gong CX, Grundke-Iqbal I, Iqbal K, Wang JZ. Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brain. J Biol Chem. 2004 Nov 26;279(48):50078-88.
    27. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248-54.
    28. McGahon B, Lynch MA. The synergism between metabotropic glutamate receptor activation and arachidonic acid on glutamate release is occluded by induction oflong-term potentiation in the dentate gyrus. Neuroscience. 1996 Jun;72(3):847-55.
    29. Ordronneau P, Abdullah LH, Petrusz P. An efficient enzyme immunoassay for glutamate using glutaraldehyde coupling of the hapten to microtiter plates. J Immunol Methods. 1991 Sep 13;142(2):169-76.
    30. Nichols RA, Chilcote TJ, Czernik AJ, Greengard P. Synapsin I regulates glutamate release from rat brain synaptosomes. J Neurochem. 1992 Feb;58(2):783-5.
    31. Chi P, Greengard P, Ryan TA. Synapsin dispersion and reclustering during synaptic activity. Nat Neurosci. 2001 Dec;4(12):1187-93.
    32. Hilfiker S, Pieribone VA, Czernik AJ, Kao HT, Augustine GJ, Greengard P. Synapsins as regulators of neurotransmitter release. Philos Trans R Soc Lond B Biol Sci. 1999 Feb 28;354(1381):269-79.
    33. Langnaese K, Seidenbecher C, Wex H, Seidel B, Hartung K, Appeltauer U, Garner A, Voss B, Mueller B, Garner CC, Gundelfinger ED. Protein components of a rat brain synaptic junctional protein preparation. Brain Res Mol Brain Res. 1996 Nov;42(1):118-22.
    34. Richter-Levin G, Segal M. The effects of serotonin depletion and raphe grafts on hippocampal electrophysiology and behavior. J Neurosci. 1991 Jun;11(6):1585-96.
    35. Marr D. Simple memory: a theory for archicortex. Philos Trans R Soc Lond B Biol Sci. 1971 Jul 1;262(841):23-81.
    36. Morris RGM, Mcnaughton BL Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci 1987;10: 408–414.
    37. Treves A, Rolls ET. Computational analysis of the role of the hippocampus in memory. Hippocampus. 1994 Jun;4(3):374-91.
    38. Berger TW, Yeckel M (1991) Long-term potentiation of entorhinal afferents to the hippocampus: enhanced propagation of activity through the trisynaptic pathway, In: Baudry, M, Davis, JL, Editors, Long-Term Potentiation: A Debate of the Current Issues, pp327–356. Cambridge: MIT Press.
    39. Do VH, Martinez CO, Martinez JL Jr, Derrick BE. Long-term potentiation in direct perforant path projections to the hippocampal CA3 region in vivo. J Neurophysiol. 2002 Feb;87(2):669-78.
    40. Bortolotto ZA, Fitzjohn SM, Collingridge GL. Roles of metabotropic glutamate receptors in LTP and LTD in the hippocampus. Curr Opin Neurobiol. 1999Jun;9(3):299-304.
    41. Luscher C, Malenka RC, Nicoll RA. Monitoring glutamate release during LTP with glial transporter currents. Neuron. 1998 Aug;21(2):435-41.
    42. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993 Jan 7;361(6407):31-9.
    43. Canevari L, Richter-Levin G, Bliss TV. LTP in the dentate gyrus is associated with a persistent NMDA receptor-dependent enhancement of synaptosomal glutamate release. Brain Res. 1994 Dec 19;667(1):115-7.
    44. Lynch MA, Errington ML, Clements MP, Bliss TV, Redini-Del Negro C, Laroche S. Increases in glutamate release and phosphoinositide metabolism associated with long-term potentiation and classical conditioning. Prog Brain Res. 1990;83:251-6.
    45. Kelly A, Lynch MA. Long-term potentiation in dentate gyrus of the rat is inhibited by the phosphoinositide 3-kinase inhibitor, wortmannin. Neuropharmacology. 2000 Feb 14;39(4):643-51.
    46. Greengard P, Valtorta F, Czernik AJ, Benfenati F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science. 1993 Feb 5;259(5096):780-5.
    47. Pieribone VA, Shupliakov O, Brodin L, Hilfiker-Rothenfluh S, Czernik AJ, Greengard P. Distinct pools of synaptic vesicles in neurotransmitter release. Nature. 1995 Jun 8;375(6531):493-7.
    48. Melloni RH Jr, Hemmendinger LM, Hamos JE, DeGennaro LJ. Synapsin I gene expression in the adult rat brain with comparative analysis of mRNA and protein in the hippocampus. J Comp Neurol. 1993 Jan 22;327(4):507-20.
    49. Sato K, Morimoto K, Suemaru S, Sato T, Yamada N. Increased synapsin I immunoreactivity during long-term potentiation in rat hippocampus. Brain Res. 2000 Jul 28;872(1-2):219-22.
    50. Chin LS, Li L, Ferreira A, Kosik KS, Greengard P. Impairment of axonal development and of synaptogenesis in hippocampal neurons of synapsin I-deficient mice. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9230-4.
    51. Ferreira A, Chin LS, Li L, Lanier LM, Kosik KS, Greengard P. Distinct roles of synapsin I and synapsin II during neuronal development. Mol Med. 1998 Jan;4(1):22-8.
    52. Rosahl TW, Spillane D, Missler M, Herz J, Selig DK, Wolff JR, Hammer RE,Malenka RC, Sudhof TC. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature. 1995 Jun 8;375(6531):488-93.
    53. Terada S, Tsujimoto T, Takei Y, Takahashi T, Hirokawa N. Impairment of inhibitory synaptic transmission in mice lacking synapsin I. J Cell Biol. 1999 May 31;145(5):1039-48.
    54. Bloom O, Evergren E, Tomilin N, Kjaerulff O, Low P, Brodin L, Pieribone VA, Greengard P, Shupliakov O. Colocalization of synapsin and actin during synaptic vesicle recycling. J Cell Biol. 2003 May 26;161(4):737-47.
    1. Sudhof TC. The synaptic vesicle cycle. Annu Rev Neurosci 2004; 27: 509–547.
    2. Stevens CF. Neurotransmitter release at central synapses. Neuron. 2003 Oct 9;40(2):381-8.
    3. Schneggenburger R, Neher E. Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol. 2005 Jun;15(3):266-74.
    4. Harlow ML, Ress D, Stoschek A, Marshall RM, McMahan UJ. The architecture of active zone material at the frog's neuromuscular junction. Nature. 2001 Jan 25;409(6819):479-84.
    5. Pumplin DW, Reese TS, and Llinas R. Are the presynaptic membrane particles the calcium channels? Proc Natl Acad Sci USA 1981; 78: 7210–7213
    6. Serulle Y, Sugimori M, Llinas RR. Imaging synaptosomal calcium concentration microdomains and vesicle fusion by using total internal reflection fluorescent microscopy. Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1697-702.
    7. Llinas R, Steinberg IZ, Walton K.Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys J. 1981 Mar;33(3):323-51.
    8. Adler EM, Augustine GJ, Duffy SN, Charlton MP. Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J Neurosci. 1991 Jun;11(6):1496-507.
    9. Wheeler DB, Randall A, Tsien RW. Changes in action potential duration alter reliance of excitatory synaptic transmission on multiple types of Ca2+ channels in rat hippocampus. J Neurosci. 1996 Apr 1;16(7):2226-37.
    10. Reid CA, Clements JD, Bekkers JM. Nonuniform distribution of Ca2+ channel subtypes on presynaptic terminals of excitatory synapses in hippocampal cultures. J Neurosci. 1997 Apr 15;17(8):2738-45.
    11. Kim DK, Catterall WA. Ca2+-dependent and -independent interactions of the isoforms of the alpha1A subunit of brain Ca2+ channels with presynaptic SNARE proteins.Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14782-6.
    12. Yokoyama CT, Sheng ZH, Catterall WA. Phosphorylation of the synaptic protein interaction site on N-type calcium channels inhibits interactions with SNARE proteins. J Neurosci. 1997 Sep 15;17(18):6929-38.
    13. Tomizawa K, Ohta J, Matsushita M, Moriwaki A, Li ST, Takei K, Matsui H. Cdk5/p35 regulates neurotransmitter release through phosphorylation and downregulation of P/Q-type voltage-dependent calcium channel activity. J Neurosci. 2002 Apr 1;22(7):2590-7.
    14. Edelmann L, Hanson PI, Chapman ER, Jahn R. Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machine. EMBO J. 1995 Jan 16;14(2):224-31.
    15. Bacci A, Coco S, Pravettoni E, Schenk U, Armano S, Frassoni C, Verderio C, De Camilli P, Matteoli M. Chronic blockade of glutamate receptors enhances presynaptic release and downregulates the interaction betweensynaptophysin-synaptobrevin-vesicle-associated membrane protein 2. J Neurosci. 2001 Sep 1;21(17):6588-6596.
    16. Khvotchev MV, Sudhof TC. Stimulus-dependent dynamic homo- and heteromultimerization of synaptobrevin/VAMP and synaptophysin.Biochemistry. 2004 Nov 30;43(47):15037-43.
    17. Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3βin cellular signaling. Prog Neurobiol 65:391–426.\
    18. Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci. 2004 Feb;29(2):95-102.
    19. Gould TD, Zarate CA, Manji HK. Glycogen synthase kinase-3: a target for novel bipolar disorder treatments. J Clin Psychiatry. 2004 Jan;65(1):10-21.
    20. Kozlovsky N, Belmaker RH, Agam G. GSK-3 and the neurodevelopmental hypothesis of schizophrenia. Eur Neuropsychopharmacol. 2002 Feb;12(1):13-25.
    21. Nithianantharajah J, Hannan AJ. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci. 2006 Sep;7(9):697-709.
    22. Blennow K, Davidsson P, Gottfries CG, Ekman R, Heilig M. Synaptic degeneration in thalamus in schizophrenia. Lancet. 1996 Sep 7;348(9028):692-3.
    23. Zubieta JK, Huguelet P, Ohl LE, Koeppe RA, Kilbourn MR, Carr JM, Giordani BJ, Frey KA. High vesicular monoamine transporter binding in asymptomatic bipolar I disorder: sex differences and cognitive correlates. Am J Psychiatry. 2000 Oct;157(10):1619-28.
    24. Scarpini E, Scheltens P, Feldman H. Treatment of Alzheimer's disease: current status and new perspectives. Lancet Neurol. 2003 Sep;2(9):539-47.
    25. Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius HJ; Memantine Study Group. Memantine in moderate-to-severe Alzheimer's disease. N Engl J Med. 2003 Apr 3;348(14):1333-41.
    26. De Sarno P, Bijur GN, Zmijewska AA, Li X, Jope RS. In vivo regulation of GSK3phosphorylation by cholinergic and NMDA receptors. Neurobiol Aging. 2006 Mar;27(3):413-22.
    27. Eldar-Finkelman H. Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol Med. 2002 Mar;8(3):126-32.
    28. Jiang H, Guo W, Liang X, Rao Y. Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell. 2005 Jan 14;120(1):123-35.
    29. Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K. GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell. 2005 Jan 14;120(1):137-49.
    30. Hooper C, Markevich V, Plattner F, Killick R, Schofield E, Engel T, Hernandez F, Anderton B, Rosenblum K, Bliss T, Cooke SF, Avila J, Lucas JJ, Giese KP, Stephenson J, Lovestone S. Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J Neurosci 2007 25:81-86.
    31. Reisinger C, Yelamanchili SV, Hinz B, Mitter D, Becher A, Bigalke H, Ahnert-Hilger G. The synaptophysin/synaptobrevin complex dissociates independently of neuroexocytosis. J Neurochem. 2004 Jul;90(1):1-8.
    32. Pennuto M, Dunlap D, Contestabile A, Benfenati F, Valtorta F. Fluorescence resonance energy transfer detection of synaptophysin I and vesicle-associated membrane protein 2 interactions during exocytosis from single live synapses. Mol Biol Cell. 2002 Aug;13(8):2706-17.
    33. Li R. Neuronal polarity: until GSK-3 do us part. Curr Biol. 2005: 29;15(6):R198-200.
    34. Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, Lo E, Wu D, Saule E, Bouschet T, Matthews P, Isaac JT, Bortolotto ZA, Wang YT, Collingridge GL (2007) LTP inhibits LTD in the hippocampus via regulation of GSK3β. Neuron 53:703-717.
    35. Chen P, Gu Z, Liu W, Yan Z. Glycogen Synthase Kinase 3 Regulates NMDAReceptor Channel Trafficking and Function in Cortical Neurons. Mol Pharmacol. 2007 Mar 30 Epub ahead of print
    36. Franco B, Bogdanik L, Bobinnec Y, Debec A, Bockaert J, Parmentier ML, Grau Y. Shaggy, the homolog of glycogen synthase kinase 3, controls neuromuscular junction growth in Drosophila. J Neurosci. 2004 Jul 21;24(29):6573-7.
    37. D. Pietrobon, Function and dysfunction of synaptic calcium channels: insights from mouse models, Curr. Opin. Neurobiol. 2005;15: 257–265
    38. Westenbroek, R., T. Sakurai, E.M. Elliott, J.W. Hell, T.V.B. Starr, T.P. Snutch & W.A. Catterall. Immunochemical identification and subcellular distribution of the
    1A subunits of brain calcium channels. J. Neurosci. 1995; 15: 6403-6418.
    39. Catterall WA. Interactions of presynaptic Ca2+ channels and snare proteins in neurotransmitter release.Ann N Y Acad Sci. 1999 Apr 30;868:144-59.
    40. Perin, M.S., V.A. Fried, G.A. Mignery, R. Jahn & T.C. Südhof. 1990. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345: 260-263.
    41. Edelmann, L., Hanson, P. I., Chapman, E. R., and Jahn, R. (1995) Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machine, EMBO J. 14, 224-231.
    42. Becher A, Drenckhahn A, Pahner I, Margittai M, Jahn R, Ahnert-Hilger G. The synaptophysin-synaptobrevin complex: a hallmark of synaptic vesicle maturation. J Neurosci. 1999 Mar 15;19(6):1922-31.
    43. Becher A, Drenckhahn A, Pahner I, Ahnert-Hilger G. The synaptophysin-synaptobrevin complex is developmentally upregulated in cultivated neurons but is absent in neuroendocrine cells. Eur J Cell Biol. 1999 Sep;78(9):650-6.
    44. Yelamanchili SV, Reisinger C, Becher A, Sikorra S, Bigalke H, Binz T, Ahnert-Hilger G. The C-terminal transmembrane region of synaptobrevin binds synaptophysin from adult synaptic vesicles. Eur J Cell Biol. 2005 Apr;84(4):467-75.
    45. Bacci A, Coco S, Pravettoni E, Schenk U, Armano S, Frassoni C, Verderio C, De Camilli P, Matteoli M. Chronic blockade of glutamate receptors enhances presynaptic release and downregulates the interaction between synaptophysin-synaptobrevin-vesicle-associated membrane protein 2. J Neurosci. 2001 Sep 1;21(17):6588-96.
    46. Hinz B, Becher A, Mitter D, Schulze K, Heinemann U, Draguhn A, Ahnert-Hilger G. Activity-dependent changes of the presynaptic synaptophysin-synaptobrevin complex in adult rat brain. Eur J Cell Biol. 2001 Oct;80(10):615-9.
    47. Pennuto M, Dunlap D, Contestabile A, Benfenati F, Valtorta F. Fluorescence resonance energy transfer detection of synaptophysin I and vesicle-associated membrane protein 2 interactions during exocytosis from single live synapses. Mol Biol Cell. 2002 Aug;13(8):2706-17.
    48. Reisinger C, Yelamanchili SV, Hinz B, Mitter D, Becher A, Bigalke H, Ahnert-Hilger G. The synaptophysin/synaptobrevin complex dissociates independently of neuroexocytosis.J Neurochem. 2004 Jul;90(1):1-8.
    1. Stokin GB, Goldstein LS. Axonal transport and Alzheimer's disease. Annu Rev Biochem. 2006;75:607-27.
    2. Friedman DS, Vale RD. Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain. Nat Cell Biol. 1999 Sep;1(5):293-7.
    3. Verhey KJ, Lizotte DL, Abramson T, Barenboim L, Schnapp BJ, Rapoport TA. Light chain-dependent regulation of Kinesin's interaction with microtubules. J Cell Biol. 1998 Nov 16;143(4):1053-66.
    4. Stock MF, Guerrero J, Cobb B, Eggers CT, Huang TG, Li X, Hackney DD. Formation of the compact confomer of kinesin requires a COOH-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity.J Biol Chem. 1999 May 21;274(21):14617-23.
    5. Cash AD, Aliev G, Siedlak SL, Nunomura A, Fujioka H, Zhu X, Raina AK, Vinters HV, Tabaton M, Johnson AB, Paula-Barbosa M, Avila J, Jones PK, Castellani RJ, Smith MA, Perry G. Microtubule reduction in Alzheimer's disease and aging is independent of tau filament formation.Am J Pathol. 2003 May;162(5):1623-7.
    6. Niewiadomska G, Baksalerska-Pazera M. Age-dependent changes in axonal transport and cellular distribution of Tau 1 in the rat basal forebrainneurons.Neuroreport. 2003 Sep 15;14(13):1701-6.
    7. Uchida A, Tashiro T, Komiya Y, Yorifuji H, Kishimoto T, Hisanaga S. Morphological and biochemical changes of neurofilaments in aged rat sciatic nerve axons.J Neurochem. 2004 Feb;88(3):735-45.
    8. Kamal A, Stokin GB, Yang Z, Xia CH, Goldstein LS. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I.Neuron. 2000 Nov;28(2):449-59.
    9. Gunawardena S, Goldstein LS. Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila.Neuron. 2001 Nov 8;32(3):389-401.
    10. Cras P, Kawai M, Lowery D, Gonzalez-DeWhitt P, Greenberg B, Perry G. Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein.Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7552-6.
    11. Takahashi RH, Almeida CG, Kearney PF, Yu F, Lin MT, Milner TA, Gouras GK. Oligomerization of Alzheimer's beta-amyloid within processes and synapses of cultured neurons and brain.J Neurosci. 2004 Apr 7;24(14):3592-9.
    12. Nakamura Y, Takeda M, Yoshimi K, Hattori H, Hariguchi S, Kitajima S, Hashimoto S, Nishimura T. Involvement of clathrin light chains in the pathology of Alzheimer's disease.Acta Neuropathol (Berl). 1994;87(1):23-31.
    13. Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling.Prog Neurobiol. 2001 Nov;65(4):391-426.
    14. Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3.Trends Biochem Sci. 2004 Feb;29(2):95-102.
    15. Mudher A, Shepherd D, Newman TA, Mildren P, Jukes JP, Squire A, Mears A, Drummond JA, Berg S, MacKay D, Asuni AA, Bhat R, Lovestone S. GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila.Mol Psychiatry. 2004 May;9(5):522-30.
    16. Morfini G, Szebenyi G, Elluru R, Ratner N, Brady ST. Glycogen synthase kinase 3phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 2002 Feb 1;21(3):281-93.
    17. Morfini G, Pigino G, Beffert U, Busciglio J, Brady ST. Fast axonal transport misregulation and Alzheimer's disease.Neuromolecular Med. 2002;2(2):89-99.
    18. Yang Y, Yang XF, Wang YP, Tian Q, Wang XC, Li HL, Wang Q, Wang JZ. Inhibition of protein phosphatases induces transport deficits and axonopathy.J Neurochem. 2007 Apr 30.
    19. Sudhof TC. The synaptic vesicle cycle.Annu Rev Neurosci. 2004;27:509-47.
    20. Smith KD, Kallhoff V, Zheng H, Pautler RG. In vivo axonal transport rates decrease in a mouse model of Alzheimer's disease.Neuroimage. 2007 May 1;35(4):1401-8.
    21. Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, Goldstein LS. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science. 2005 Feb 25; 307(5713): 1282-8.
    22. Carson C, Saleh M, Fung FW, Nicholson DW, Roskams AJ. Axonal dynactin p150Glued transports caspase-8 to drive retrograde olfactory receptor neuron apoptosis.J Neurosci. 2005 Jun 29;25(26):6092-104.
    23. Mufson EJ, Kordower JH. Cortical neurons express nerve growth factor receptors in advanced age and Alzheimer disease.Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):569-73.
    24. Mufson EJ, Conner JM, Kordower JH. Nerve growth factor in Alzheimer's disease: defective retrograde transport to nucleus basalis. Neuroreport. 1995 May 9;6(7):1063-6.
    1. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. 1986a. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261: 6084-6089.
    2. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. 1986b. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83: 4913-4917.
    3. Lee VM, Balin BJ, Otvos LJ, Trojanowski JQ. 1991. A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 251: 675-678.
    4. Koh JY, Yang LL, Cotman CW. 1990. Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res 533: 315-320.
    5. Selkoe DJ. 1994. Alzheimer's disease: a central role for amyloid. J Neuropathol Exp Neurol 53: 438-447.
    6. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hugman BT. 1992. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42: 631-639.
    7. Featy MB, Dickson DW. 1996. Neurodegenerative disorders with extensive tau pathology: a comparative study and review. Annals of Neurology 40: 139-148.
    8. Braak H, Braak E, Bohl J, Reintjes R. 1996. Age, neurofibrillary changes, abeta-amyloid and the onset of alzheimer’s disease. Neurosci Lett 210: 87-90.
    9. Yamaguchi H, Ishiguro K, Uchida T, Takashima A, Lemere CA, Imahori K. 1996. Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3_ and cyclin-dependent kinase 5, a component of TPK II. Acta Neuropathologica (Berl.) 92: 232-241.
    10. Li X, Lu F, Tian Q, Yang Y, Wang Q, Wang JZ. 2006. Activation of glycogen synthase kinase-3 induces Alzheimer-like tau hyperphosphorylation in rat hippocampus slices in culture. J Neural Transm 113: 93-102.
    11. Wang JZ, Grundke-Iqbal I, Iqbal K. 2007. Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci 25: 59-68.
    12. Liu SJ, Zhang JY, Li HL, Fang ZY, Wang Q, Deng HM, Gong CX, Grundke-Iqbal I, Iqbal K, Wang JZ 2004. Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brain. J Biol Chem 279:50078-50088.
    13. Lucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J. 2001. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 20: 27-39.
    14. Liu SJ, Zhang AH, Li HL, Wang Q, Deng HM, Netzer WJ, Xu HX, Wang Z. 2003. Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J. Neurochem 87: 1333–1344.
    15. Hernandez F, Borrell J, Guaza C, Avila J, Lucas JJ. 2002. Spatial learning deficit in transgenic mice that conditionally over-express GSK-3βin the brain but do not form tau filaments. J. Neurochem 83: 1529–1533.
    16. Candore G, Balistreri CR, Grimaldi MP, Vasto S, Listi F, Chiappelli M, Licastro F, Lio D, Caruso C. 2006. Age-related inflammatory diseases: role of genetics and gender in the pathophysiology of Alzheimer's disease. Ann N Y Acad Sci 1089: 472-486.
    17. Gasparini L, Netzer WJ, Greengard P, Xu H. 2002. Does insulin dysfunction play a role in Alzheimer’s disease? Trends Pharmacol. Sci 23: 288–293.
    18. Henderson VW, Paganini-Hill A, Emanuel CK, Dunn ME, Buckwalter JG. 1994. Estrogen replacement therapy in older women. Comparisons between Alzheimer’s disease cases and nondemented control subjects. Arch Neurol 51: 896-900.
    19. Paganini-Hill A, Henderson VW. 1994. Estrogen deficiency and risk of Alzheimer'sdisease in women. Am J Epidemiol 140: 256-261.
    20. Tang MX, Jacobs D, Stern Y, Marder K, Schofield P, Gurland B, Andrews H, Mayeux R. 1996. Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 348: 429–432.
    21. Levin-Allerhand JA, Lominska CE, Wang J, Smith JD. 2002. 17Alpha-estradiol and
    17beta-estradiol treatments are effective in lowering cerebral amyloid-beta levels in AbetaPPSWE transgenic mice. J Alzheimers Dis 4: 449-457.
    22. Wen Y, Onyewuchi O, Yang S, Liu R, Simpkins JW. 2004. Increased beta-secretase activity and expression in rats following transient cerebral ischemia. Brain Res 1009: 1-8.
    23. Woolley CS. 1999. Effects of estrogen in the CNS. Curr Opin Neurobiol 9: 349-354.
    24. Cordey M, Gundimeda U, Gopalakrishna R, Pike CJ. 2003. Estrogen activates protein kinase C In neurons: role in neuroprotection. J Neurochem 84: 1340-1348.
    25. Kelly MJ, Qiu J, Wagner EJ, Ronnekleiv OK. 2002. Rapid effects of estrogen on G protein-coupled receptor activation of potassium channels in the central nervous system (CNS). J Steroid Biochem Mol Biol 83: 187-193.
    26. Singh M, Meyer EM, Millard WJ, Simpkins JW. 1994. Ovarian steroid deprivation results in a reversible learning impairment and compromised cholinergic function in female Sprague-Dawley rats. Brain Res 644: 305-312.
    27. Watters JJ, Campbell JS, Cunningham MJ, Krebs EG, Dorsa DM. 1997. Rapid membrane effects of steroids in neuroblastoma cells: effects of estrogen on mitogen activated protein kinase signalling cascade and c-fos immediate early gene transcription. Endocrinology 138: 4030-4033.
    28. Zhang L, Rubinow DR, Xaing G, Li BS, Chang YH, Maric D, Barker JL, Ma W. 2001. Estrogen protects against beta-amyloid-induced neurotoxicity in rat hippocampal neurons by activation of Akt. Neuroreport 12: 1919-1923.
    29. Alexaki VI, Charalampopoulos I, Kampa M, Vassalou H, Theodoropoulos P, Stathopoulos EN, Hatzoglou A, Gravanis A, Castanas E. 2004. Estrogen exerts neuroprotective effects via membrane estrogen receptors and rapid Akt/NOS activation. FASEB J 18: 1594-1596.
    30. Ghisletti S, Meda C, Maggi A, Vegeto E. 2005. 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization.Mol Cell Biol 25: 2957-2968.
    31. Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK. 2000. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407: 538-541.
    32. Grimes CA, Jope RS. 2001. The multifaceted roles of glycogen synthase kinase 3βin cellular signaling. Prog Neurobiol 65: 391–426.
    33. Liu SJ, Zhang AH, Li HL, Wang Q, Deng HM, Netzer WJ, Xu HX, Wang Z. 2003. Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J. Neurochem 87: 1333–1344.
    34. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. 1995. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785-789.
    35. Pap M, Cooper GM. 1998. Role of glycogen synthase kinase-3I in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J Biol Chem 273: 19929-19932.
    36. Asthana S, Craft S, Baker LD, Raskind MA, Birnbaum RS, Lofgreen CP, Veith RC, Plymate SR. 1999. Cognitive and neuroendocrine response to transdermal estrogen in postmenopausal women with Alzheimer's disease: results of a placebo-controlled, double-blind, pilot study. Psychoneuroendocrinology 24: 657-677.
    37. Liu Z, Gastard M, Verina T, Bora S, Mouton PR, Koliatsos VE. 2001. Estrogens modulate experimentally induced apoptosis of granule cells in the adult hippocampus. J Comp Neurol 441: 1-8.
    38. Chae HS, Bach JH, Lee MW, Kim HS, Kim YS, Kim KY, Choo KY, Choi SH, Park CH, Lee SH, Suh YH, Kim SS, Lee WB. 2001. Estrogen attenuates cell death induced by carboxy-terminal fragment of amyloid precursor protein in PC12 through a receptor-dependent pathway. J Neurosci Res 65: 403-407.
    39. Chang D, Kwan J, Timiras PS. 1997. Estrogens influence growth, maturation, and amyloid beta-peptide production in neuroblastoma cells and in a beta-APP transfected kidney 293 cell line. Adv Exp Med Biol 429: 261-271.
    40. Ma ZG, Wang J, Jiang H, Xie JX, Chen L. 2005. C31 enhances voltage-gated calcium channel currents in undifferentiated PC12 cells. Neurosci Lett 382:102-105.
    41. O'Neill K, Chen S, Diaz Brinton R. 2004. Impact of the selective estrogen receptor modulator, tamoxifen, on neuronal outgrowth and survival following toxic insults associated with aging and Alzheimer's disease. Exp Neurol 188: 268-278.
    42. Shea TB, Ortiz D. 2003. 17 beta-estradiol alleviates synergistic oxidative stress resulting from folate deprivation and amyloid-beta treatment. J Alzheimers Dis 5: 323-327.
    43. Heikkinen T, Kalesnykas G, Rissanen A, Tapiola T, Iivonen S, Wang J, Chaudhuri J, Tanila H, Miettinen R, Puolivali J. 2004. Estrogen treatment improves spatial learning in APP + PS1 mice but does not affect beta amyloid accumulation and plaque formation. Exp Neurol 187:105-117.
    44. Nakayama T, Sawada T. 2002. Involvement of microtubule integrity in memory impairment caused by colchicine. Pharmacol Biochem Behav 71: 119-138.
    45. Alvarez-de-la-Rosa M, Silva I, Nilsen J, Perez MM, Garcia-Segura LM, Avila J, Naftolin F. 2005. Estradiol prevents neural tau hyperphosphorylation characteristic of Alzheimer's disease. Ann N Y Acad Sci 1052: 210-224.
    46. Goodenough S, Schleusner D, Pietrzik C, Skutella T, Behl C. 2005. Glycogen synthase kinase 3beta links neuroprotection by 17beta-estradiol to key Alzheimer processes. Neuroscience 132: 581-589.
    47. Reynolds CH, Betts JC, Blackstock WP, Nebreda AR, Anderton BH. 2000. Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and P38, and glycogen synthase kinase-3beta. J Neurochem 74: 1587-1595.
    48. Li X, Lu F, Tian Q, Yang Y, Wang Q, Wang JZ. 2006. Activation of glycogen synthase kinase-3 induces Alzheimer-like tau hyperphosphorylation in rat hippocampus slices in culture. J Neural Transm 113: 93-102.
    49. Wang JZ, Grundke-Iqbal I, Iqbal K. 2007. Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci 25: 59-68
    50. Grimes CA, Jope RS. 2001. The multifaceted roles of glycogen synthase kinase 3βin cellular signaling. Prog Neurobiol 65: 391–426.
    51. Liu SJ, Zhang AH, Li HL, Wang Q, Deng HM, Netzer WJ, Xu HX, Wang Z. 2003.Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J. Neurochem 87: 1333–1344.
    52. Cardona-Gomez GP, Mendez P, Garcia-Segura LM. 2002. Synergistic interaction of estradiol and insulin-like growth factor-I in the activation of PI3K/Akt signaling in the adult rat hypothalamus. Brain Res Mol Brain Res 107: 80-88.
    53. Wilson ME, Liu Y, Wise PM. 2002. Estradiol enhances Akt activation in cortical explant cultures following neuronal injury. Brain Res Mol Brain Res 102: 48-54.
    54. Znamensky V, Akama KT, McEwen BS, Milner TA. 2003. Estrogen levels regulate the subcellular distribution of phosphorylated Akt in hippocampal CA1 dendrites. J Neurosci 23: 2340-2347.
    55. D'Astous M, Mendez P, Morissette M, Garcia-Segura LM, Di Paolo T. 2006. Implication of the phosphatidylinositol-3 kinase/protein kinase B signaling pathway in the neuroprotective effect of estradiol in the striatum of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mice. Mol Pharmacol 69: 1492-1498.
    56. Cui QL, Zheng WH, Quirion R, Almazan G. 2005. Inhibition of Src-like kinases reveals Akt-dependent and -independent pathways in insulin-like growth factor I-mediated oligodendrocyte progenitor survival. J Biol Chem 280: 8918-8928.
    57. Shah BH, Neithardt A, Chu DB, Shah FB, Catt KJ. 2006. Role of EGF receptor transactivation in phosphoinositide 3-kinase-dependent activation of MAP kinase by GPCRs. J Cell Physiol 206: 47-57.
    58. Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harbison D, Ashworth A, Bownes M. 1997. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 7: 776-789.
    59. Downward J Mechanisms and consequences of activation of protein kinase B/Akt. 1998. Curr Opin Cell Biol 10: 262-267.
    60. Persad S, Attwell S, Gray V, Mawji N, Deng JT, Leung D, Yan J, Sanghera J, Walsh MP, Dedhar S. 2001. Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343. J Biol Chem 276: 27462-27469.
    1. Sloane P.D., Zimmerman S., Suchindran C., Reed P., Wang L., Boustani M. Sudha S. The public health impact of Alzheimer's disease, 2000-2050: potential implication of treatment advances. Annu. Rev. Public. Health. 2002,23: 213-231。
    2. Greenfield JP, Gross RS, Gouras GK, Xu H. Cellular and molecular basis of beta-amyloid precursor protein metabolism.Front Biosci. 2000 Jan 1;5:D72-83.
    3. Mi K, Johnson GV. The role of tau phosphorylation in the pathogenesis of Alzheimer's disease.Curr Alzheimer Res. 2006 Dec;3(5):449-63.
    4. Yaari R, Corey-Bloom J. Alzheimer's disease.Semin Neurol. 2007 Feb;27(1):32-41.
    5. King ME Can tau filaments be both physiologically beneficial and toxic? Biochim Biophys Acta. 2005,1739:260-267.
    6. Koh JY, Yang LL, Cotman CW. 1990. Beta-amyloid protein increases thevulnerability of cultured cortical neurons to excitotoxic damage. Brain Res 533: 315-320.
    7. Selkoe DJ. 1994. Alzheimer's disease: a central role for amyloid. J Neuropathol Exp Neurol 53: 438-447.
    8. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. 1986a. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261: 6084-6089.
    9. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. 1986b. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83: 4913-4917.
    10. Lee VM, Balin BJ, Otvos LJ, Trojanowski JQ. 1991. A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 251: 675-678.
    11. Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3βin cellular signaling. Prog Neurobiol 65:391–426.
    12. Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci. 2003 Apr 1;116(Pt 7):1175-86.
    13. Harwood AJ. Regulation of GSK-3: a cellular multiprocessor.Cell. 2001 Jun 29;105(7):821-4.
    14. Noda S, Kishi K, Yuasa T, Hayashi H, Ohnishi T, Miyata I, Nishitani H, Ebina Y. Overexpression of wild-type Akt1 promoted insulin-stimulated p70S6 kinase (p70S6K) activity and affected GSK3 beta regulation, but did not promote insulin-stimulated GLUT4 translocation or glucose transport in L6 myotubes. J Med Invest. 2000 Feb;47(1-2):47-55.
    15. Wang QM, Vik TA, Ryder JW, Roach PJ. Phosphorylation and activation of p90rsk by glycogen synthase kinase-3.Biochem Biophys Res Commun. 1995 Mar 17;208(2):796-801.
    16. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995 Dec 21-28;378(6559):785-9.
    17. Liu F, Liang Z, Shi J, Yin D, El-Akkad E, Grundke-Iqbal I, Iqbal K, Gong CX. PKA modulates GSK-3beta- and cdk5-catalyzed phosphorylation of tau in site- and kinase-specific manners.FEBS Lett. 2006 Nov 13;580(26):6269-74.
    18. Kim L, Kimmel AR. GSK3 at the edge: regulation of developmental specification and cell polarization.Curr Drug Targets. 2006 Nov;7(11):1411-9.
    19. Cole A, Frame S, Cohen P. Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochem J. 2004 Jan 1;377(Pt 1):249-55.
    20. Sayas CL, Ariaens A, Ponsioen B, Moolenaar WH. GSK-3 is activated by the tyrosine kinase Pyk2 during LPA1-mediated neurite retraction. Mol Biol Cell. 2006 Apr;17(4):1834-44.
    21. Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature. 1999 Apr 8;398(6727):513-7.
    22. Phiel CJ, Wilson CA, Lee VM, Klein PS. GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides.Nature. 2003 May 22;423(6938):435-9.
    23. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001 May 24;411(6836):494-8.
    24. Siman R, Reaume AG, Savage MJ, Trusko S, Lin YG, Scott RW, Flood DG. Presenilin-1 P264L knock-in mutation: differential effects on abeta production, amyloid deposition, and neuronal vulnerability. J Neurosci. 2000 Dec 1;20(23):8717-26.
    25. Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU, Findlay KA, Smith TE, Murphy MP, Bulter T, Kang DE, Marquez-Sterling N, Golde TE, Koo EH. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity.Nature. 2001 Nov 8;414(6860):212-6.
    26. Bain J, McLauchlan H, Elliott M, Cohen P. The specificities of protein kinase inhibitors: an update. Biochem J. 2003 Apr 1;371(Pt 1):199-204.
    27. Garrido JL, Godoy JA, Alvarez A, Bronfman M, Inestrosa NC. Protein kinase C inhibits amyloid beta peptide neurotoxicity by acting on members of the Wnt pathway. FASEB J. 2002 Dec;16(14):1982-4. Epub 2002 Oct 18.
    28. Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, Sato K. Spherical aggregates of beta-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3beta.Proc Natl Acad Sci U SA. 2003 May 27;100(11):6370-5.
    29. Wang JZ, Wu Q, Smith A, Grundke-Iqbal I, Iqbal K. Tau is phosphorylated by GSK-3 at several sites found in Alzheimer disease and its biological activity markedly inhibited only after it is prephosphorylated by A-kinase.FEBS Lett. 1998 Sep 25;436(1):28-34.
    30. Liu SJ, Zhang AH, Li HL, Wang Q, Deng HM, Netzer WJ, Xu H, Wang JZ (2003) Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J Neurochem 87:1333-1344.
    31. Liu SJ, Zhang JY, Li HL, Fang ZY, Wang Q, Deng HM, Gong CX, Grundke-Iqbal I, Iqbal K, Wang JZ (2004) Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brain. J Biol Chem 279:50078-50088.
    32. Eldar-Finkelman H. Glycogen synthase kinase 3: an emerging therapeutic target.Trends Mol Med. 2002 Mar;8(3):126-32.
    33. Hartigan JA, Johnson GV. Transient increases in intracellular calcium result in prolonged site-selective increases in Tau phosphorylation through a glycogen synthase kinase 3beta-dependent pathway.J Biol Chem. 1999 Jul 23;274(30):21395-401.
    34. Pei JJ, Khatoon S, An WL, Nordlinder M, Tanaka T, Braak H, Tsujio I, Takeda M, Alafuzoff I, Winblad B, Cowburn RF, Grundke-Iqbal I, Iqbal K. Role of protein kinase B in Alzheimer's neurofibrillary pathology.Acta Neuropathol (Berl). 2003 Apr;105(4):381-92.
    35. Takashima A, Murayama M, Murayama O, Kohno T, Honda T, Yasutake K, Nihonmatsu N, Mercken M, Yamaguchi H, Sugihara S, Wolozin B. Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau.Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9637-41.
    36. Gantier R, Gilbert D, Dumanchin C, Campion D, Davoust D, Toma F, Frebourg T. The pathogenic L392V mutation of presenilin 1 decreases the affinity to glycogen synthase kinase-3 beta.Neurosci Lett. 2000 Apr 14;283(3):217-20.
    37. Jiang H, Guo W, Liang X, Rao Y. Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell. 2005 Jan 14;120(1):123-35.
    38. Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K. GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell. 2005 Jan 14;120(1):137-49.
    39. Hooper C, Markevich V, Plattner F, Killick R, Schofield E, Engel T, Hernandez F, Anderton B, Rosenblum K, Bliss T, Cooke SF, Avila J, Lucas JJ, Giese KP, Stephenson J, Lovestone S. Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J Neurosci 2007 25:81-86.
    40. Grimes CA, Jope RS. CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium. J Neurochem. 2001 Sep;78(6):1219-32.
    41. Bergmann MW, Rechner C, Freund C, Baurand A, El Jamali A, Dietz R. Statins inhibit reoxygenation-induced cardiomyocyte apoptosis: role for glycogen synthase kinase 3beta and transcription factor beta-catenin.J Mol Cell Cardiol. 2004 Sep;37(3):681-90.
    42. De Sarno P, Bijur GN, Zmijewska AA, Li X, Jope RS (2006) In vivo regulation of GSK3 phosphorylation by cholinergic and NMDA receptors. Neurobiol Aging 27:413-422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700