用户名: 密码: 验证码:
西藏中拉萨地块申扎岩浆岩的年代学和地球化学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拉萨地块中北部地区发育大量中生代火山岩和相关花岗岩类,其岩石成因和形成的构造背景一直存在争议。本文报道了中拉萨地块中部申扎地区的则弄群火山岩和相关花岗岩类的地质年代学、全岩地球化学和锆石Hf同位素,试图为这一问题的解决提供更多的答案。
     申扎地区的岩浆岩包括侵入岩和火山岩两种类型。侵入岩主要包括寄主花岗闪长岩、辉长质包体、闪长质包体。火山岩主要为白垩系则弄群的玄武岩-安山岩-英安岩系列,且以英安岩为主,玄武岩很少。
     锆石U-Pb LA-ICP-MS和SHRIMP法定年结果显示:侵入岩中花岗闪长质寄主岩年龄为113 Ma,闪长质包体为111 Ma;火山岩中瓦昂错西北两件英安岩样品年龄分别为117 Ma和111 Ma,申扎县城西南则弄群一件英安岩样品年龄为112 Ma,格仁错西岸则弄群两件英安岩样品年龄均为114 Ma。全部样品均为早白垩世年龄,且对拉萨地块中北部中生代已有岩浆岩的年龄统计显示,拉萨地块中北部存在~113 Ma的岩浆作用峰期。
     申扎地区岩浆岩的地球化学特征显示出明显的分组性。全部侵入岩样品和绝大多数火山岩样品均为钙碱性-高钾钙碱性系列偏铝质岩石。全部岩石样品均显示轻稀土富集、重稀土亏损、弱至明显的负铕异常;Rb、Th、U等元素富集,Ba、Nb、Ta、Ti、Sr等亏损。中酸性岩石相对中基性岩石表现出了更强的富集或亏损特征,所有样品均明显区别于岛弧环境岩浆岩的微量元素地球化学特征。Sr-Nd同位素方面,中酸性岩石大多显示富集的同位素特征(εNd (t)值为-13.6~-9.1),可能代表了中拉萨地块古老地壳基底重熔的产物,而中基性岩石大多表现出相对亏损的特征(εNd (t)值为-4.1~﹢0.6),可能为古老壳源物质中混入了幔源组分或新生地壳物质。锆石Hf同位素样品全部为中酸性岩石样品,所有样品均给出了负的εHf (t)值(-13.9~-3.7)和相对古老的Hf模式年龄(1440~2057 Ma)。结合区域Hf同位素对比,表明以申扎地区为代表的中拉萨地块具有太古代的地壳结晶基底。
     申扎地区岩浆岩为新生地壳或幔源组分与古老地壳混合成因。以申扎岩浆岩为代表的拉萨地块中北部的大规模早白垩世(~113 Ma)岩浆作用是在班公湖-怒江洋洋壳岩石圈向南俯冲,在早白垩世时折返继而断离( slab break-off ),引起软流圈上涌的背景下产生的。申扎地区岩浆岩中的基性岩石普遍具有板内玄武岩的地球化学特征很好的符合了板片断离这一模型。
There are manny Mesozoic volcanic rocks and associated granitoids in the north and central Lhasa area, their petrogenesis and geological setting is is still ongoing debate up to now. This dissertation reports the data of chronology, bulk-rock major element, trace element and Sr-Nd-Hf isotopes of the magmatic rocks in the Xainza region of Central Lhasa Terrane, Tibet, aiming to provide more answers for the solving of this question.
     The magmatic rocks in the Xainza region include two types, intrusive rocks and volcanic rocks. The intrusive rocks include granodiorite, gabbroic enclaves and dioritic enclaves. The volcanic rocks mainly are basalt - andesite– dacite in Cretaceous Zeno group, and dacite have a majority, basalt are less.
     The result of zircon U-Pb LA-ICP-MS and SHRIMP dating indicate: the age of host granodiorite is 113 Ma and dioritic enclave is 111 Ma; the age of two dacite sample which located northwest of Waang Lake are 117 Ma and 111 Ma respectively, and the age of one dactie sample which located sourtheast of Xainza town is 112 Ma, and the age of two dacite sample which located the west shore of Geren Lake are both 114 Ma. All the age of the samples are Early Cretaceous, we collect the ages of the present Mesozoic magmatic rocks, and the statistical result indicates that the magmatic flare-up at~113 Ma occurred in the central and northern Lhasa Terrane.
     The geochemistry feature of the Xainza magmatic rocks divided into significant two groups. All the intrusive rocks and most of the volcanic rocks are metaluminous, medium- to high-K calc-alkaline rocks. All the samples are enriched in light REE and depleted in heavy REE,most samples show well-developed to weak negative Eu anomalies; Rb, Th, U are enriched and Ba, Nb, Ta, Ti, Sr are depleted. Intermediate-acidic rocks have stronger enriched and depleted feature compar to intermediate-basic rocks. Most intermediate-acidic rocks display enriched Sr-Nd isotopic feature (εNd (t) values are -13.6~-9.1) which may represent the anatexis of the ancient Central Lhasa basement, and most intermediate-basic rocks display relative depleted feature (εNd (t) values are -4.1~﹢0.6) which may represent the ancient crust basement that mixed with mantle materials or juvenile crust materials. All the zircon Hf isotopic samples are intermediate-acidic rocks, all samples indicate negativeεHf (t) values (-13.9~-3.7) and relative old Hf modal ages (1440~2057 Ma). Combined with regional Hf isotopic date, central Lhasa Terrane have an Archean crust basement.
     The petrogenesis of the magmatic rocks in Xainza are juvenile crust or mantle materials mixing with the old crust. The Xainza magmatic rocks and the great Early Cretacesous magmatism at~113 Ma in the north and central Lhasa Terrane are formed in a setting of south subducton of Bangong-Nujiang sea floor and following slab rollback and break-off which caused the rising asthenosphere materials The basic rocks in Xainza magmatic rocks generally have the geochemical affinity of within-plate basalts, this feature is consistent with the modal of slab break-off.
引文
Allègre CJ and Ben OD. Nd-Sr isotopic relationship in granitoid rocks and continental crust development: A chemical approach to oro-genesis. Nature, 1980, 286: 335-342
    Allegre CJ, Courtillot V, Tapponnier P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 1984, 307: 17-22
    Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 2002, 192: 59-79
    Beloisova BA, Griffin WL and O’Reilly SY. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modeling: Examples from Eastern
    Australian granitoids. Journal of Petrology, 2006, 47: 329-353 Blichert-Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 1997, 148: 243-258
    Bolhar R, Weaver S D, Whitehouse M J, Palin JM, Woodhead JD and Cole JW. Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematics of plutonic zircons from the Cretaceous Separation Point Suite ( New Zealand ) . Earth Planet Science Letters, 2008, 268: 312-324
    Boynton WV. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P ( ed ) . Rare earth element geochemistry. Elsevier, 1984
    Cherniak DJ and Watson EB. Diffusion in zircon. In: Hanchar JM, Hoskin PWO ( eds. ) Zircon. Zircon Reviews of Mineralogy and Geochemistry, 2003, 53: 113-143
    Cherniak DJ, Hanchar JM and Watson EB. Diffusion of tetravalent cations in zircon. Contributions to Mineralogy and Petrology, 1997, 127: 383-390
    Chiu HY, Chung SL, Wu FY, Liu DY, Liang YH, Lin YJ, Iizuka Y, Xie LW, Wang B and Chu MF.. Zircon U–Pb and Hf isotope constraints fromeastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 2009, 477: 3-19
    Chu MF, Chung SL, Song BA, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 2006, 34: 745-748
    Chung SL, Chu MF, Zhang YQ, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 2005, 68: 173-196
    Chung SL, Liu DY, Ji JQ, et al. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 2003, 31: 1021-1024
    Coira B, Mahlburg Kay, S, Viramonte, J. Upper Cenozoic magmatic evolution of the Argentine Puna: A model for changing subduction geometry. International Geology Review, 1994, 35, 677-720.
    Coulon C, Maluski H, Bollinger C, et al. Mesozoic and cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters, 1986, 79: 281-302
    de Silva, SL, Zandt, G, Trumbull, R, Viramonte J. Large scale silicic volcanism– the result of thermal maturation of the crust. Chapter 21. In: Advances in Geosciences– Volume 1. Editor Chen Yun-Tai, World Scientific Press, 2006, 215-230.
    DePaolo DJ. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature 291, 1981, 193-196
    Didier J. The problem of enclaves in granitic rocks: A review of recent ideas on their origin. Science Press, 1984, 137-144
    Ding L, Kapp P, Yin A and Wang MD. Early Tertiary volcanism in the Qiangtang terrane of central Tibet: evidence for a transition from oceanic to continental subduction. Journal of Petrology, 2003, 44: 1833-1865
    Ding L, Kapp P, Zhong D, et al. Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction. Journal of Petrology, 2003, 44: 1833-1865
    Dong GC, Mo XX, Zhao ZD, et al. Geochronologic Constraints on the Magmatic Underplating of the GangdisêBelt in the India-Eurasia Collision: Evidence of SHRIMP II Zircon U-Pb Dating. Acta Geologica Sinica - English Edition, 2005, 79: 787-794
    Dong X, Zhang, ZM, Liu, F, Wang, W, Yu, F and Shen, K. Zircon U-Pb geochronology of the Nyainqêntanglha Group from the Lhasa terrane: New constraints on the Triassic orogeny of the south Tibet. Journal of Asian Earth Sciences, doi: 10.1016/j.jseaes.2011, 01.014.
    Ferrari L. Slab detachment control on mafic volcanic pulse and mantle heterogeneity in centralMexico. Geology, 2004, 32: 77-80
    Goolaerts A, Mattielli N, De Jong J, et al. Hf and Lu isotopic reference values for the zircon standard 91500 by MC-ICP-MS. Chemical Geology, 2004, 206: 1-9
    Griffin WL, Pearson NJ, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 2000, 64: 133-147
    Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS and Zhou XM. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 2002, 61: 237-269
    Guan Q, Zhu DC, Zhao ZD, Dong, GC, Zhang LL, Li XW. Crustal thickening prior to 38 Ma in southern Tibet: Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Research, 2011 in press
    Guo ZF, Wilson M, Liu JQ. Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust. Lithos, 2007, 96: 205-224
    Gutscher MA, Maury R, Eissen JP, et al. Can slab melting be caused by flat subduction(?) Geology, 2000, 28: 535-538
    Guynn JH, Kapp P, Pullen A, et al. Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 2006, 34: 505-508
    Harris NBW, Inger S, Xu RH. Cretaceous plutonism in Central Tibet: an example of post-collision magmatism(?) Journal of Volcanology and Geothermal Research, 1990, 44: 21-32
    Hawkesworth, C., Clarke, C. Partial melting in the Lower crust: new constraints on crustal contamination processes in the Central Andes. In Reutter, K.J., Scheuber, E. and Wigger, P.J. (eds): Tectonics of the Southern Central Andes, Structure and Evolution of an Active Continental Margin: Berlin, Springer Verlag, 1994, pp. 93-101.
    Hoskin P, Schaltegger U. In: Manchar JM, Hoskin PWO ( eds. ) , the composition of zircon and igneous and metamorphic petrogenesis. Earth and Planetary Science Letters, 2003, 220: 139-155
    Hou ZQ, Gao YF, Qu XM, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 2004, 220: 139-155
    Hu ZC, Gao S, Liu YS, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry, 2008, 23: 1093-1101
    Jahn BM, Wu FY and Hong DW. Important crustal growth in the Phanerozoic: isotopic evidence of granitoids from East-Central Asia. Proc. Indian Acad. Sci. Earth and Planetary Science Letters, 2000, 109: 5-20
    Ji WQ, Wu FY, Chung SL, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 2009, 262: 229-245
    Kapp P, DeCelles PG, Gehrels GE, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 2007, 119: 917-933
    Kapp P, Yin A, Harrison TM, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin, 2005, 117: 865-878
    Kemp AIS, Hawkesworth CJ, Foster GL. Paterson BA. Woodhead JD. Hergt JM. Gray CM and Whitehouse MJ. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 2007, 315: 980-983
    Klerkx, J., Deutsch, S., Pichler, H., Zeil, W. Sr-isotopic composition and trace element data bearing on the origin of the Cenozoic volcanic rocks of the Central and Southern Andes. Journal of Volcanology and Geothermal Research 2, 1977, 49-71.
    Le Maitre RW ( ed. ). Igneous Rocks: A Classification and Glossary of Terms ( 2nd edition ). Cambridge University Press, 2002, 33-39
    Lee HY, Chung SL, Wang YB, et al. Age, petrogenesis and geological significance ofthe Linzizong volcanic successions in the Linzhou basin, southern Tibet: Evidence from zircon U-Pb dates and Hf isotopes. Acta Petrologica Sinica, 2007, 23: 493-500
    Li XH, Li WX and Li ZH. On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China. Chinese Science Bulletin, 2007b, 52 ( 14 ) : 1873-1885
    Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei GJ and Qi CS. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subductedflat-slab(?) Lithos, 2007a, 96: 186-204
    Liu YS, Gao S, Hu ZC, et al. Continental and Oceanic Crust Recycling-induced Melt–Peridotite Interactions in the Trans-North China Orogen: U–Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 2010a, 51: 537-571
    Liu YS, Hu ZC, Gao S, et al.. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 2008a, 257: 34-43
    Liu YS, Hu ZC, Zong KQ, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 2010b, 55: 1535-1546
    Liu YS, Zong KQ, Kellemen PB, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole : Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Elsevier, Oxford, ROYAUME-UNI. 2008b
    Ludwig KR. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, California. 2003
    Maniar PD and Piccoli PM. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 1989. 101: 635-643
    Miller C, Schuster R, Klotzli U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 1999, 40: 1399-1424
    Mkenzie D, Priestley K. The influence of lithospheric thickness variations on continental evolution. Lithos, 2008, 102: 1-11
    Mo XX, Dong GC, Zhao ZD, et al. Timing of Magma Mixing in the GangdisêMagmatic Belt during the India-Asia Collision:Zircon SHRIMP U-Pb Dating. Acta Geologica Sinica, 2005, 79: 66-76
    Mo XX, Hou ZQ, Niu YL, et al. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 2007, 96: 225-242
    Mo XX, Niu YL, Dong GC, et al. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chemical Geology, 2008, 250: 49-67
    Niu, Y., O'Hara, M.J. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust–mantle differentiation and chemical structure of oceanic upper mantle. Lithos, 2009, 112, 1-17.
    Pan GT, Ding J, Yao DS and Waang LQ. Guidebook of 1:1500000 geological map of the Qinghai–Xizang ( Tibetan ) Plateau and adjacent areas. Chengdu Cartographic Publishing House, Chengdu, 2004.
    Patchett PJ. Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution. Geochimica et Cosmochimica Acta, 1983, 47: 81-91
    Pearce JA, Houjun M. Volcanic Rocks of the 1985 Tibet Geotraverse: Lhasa to Golmud. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1988, 327: 169-201
    Pearce, JA. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe, RS. (Ed.), Andesites. John Wiley, New York, 1982, 525-548.
    Pogue KR, DiPietro JA, Khan SR, et al.. Late Paleozoic Rifting in northern Pakistan. Tectonics, 1992: 11: 871-883
    Qu XM, Hou ZQ, Li YG. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos, 2004, 74: 131-148
    Ramos. Plate tectonic setting of the Andean Cordillera. Episodes, 1999, 22: 183-190.
    Rollison H. Using geochemical date: evaluation, presentation, interpretation. Nerw York: :Longman Scintific and Technical, 1993
    Sch?rer U. The effect of initial230Th disequilibrium on young UPb ages: the Makalu case, Himalaya. Earth and Planetary Science Letters, 1984, 67: 191-204
    Sengor AMC. Tectonics of the Tethysides: Orogenic Collage Development in a Collisional Setting. Annual Review of Earth and Planetary Sciences, 1987, 15: 213-244
    Sun SS and McDonough WF. Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, ed. Magmatism in Ocean Basins. Spec. Publ. Geol. Soc. Lond, 1989, 42: 313-345
    S?derlund U, Patchett PJ, Vervoort JD, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary ScienceLetters, 2004, 219: 311-324
    Tilmann F, Ni J, Team IIS. Seismic Imaging of the Downwelling Indian Lithosphere Beneath Central Tibet. Science, 2003, 300: 1424-1427
    Turner S, Arnaud N, Liu J, et al. Post-collision, shoshonitic volcanism on the Tibetan plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 1996, 37: 45-71
    Vernon RH. Microgranitoid enclaves in granites globules of hybrid magma quenched in a plutonic environment. Nature, 1984, 309: 438– 439
    Watson EB and Harrison TM. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 1983, 64: 295-304
    Wen DR, Chung SL, Song B, et al. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications. Lithos, 2008a, 105: 1-11
    Wen DR, Liu DY, Chung SL, et al. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 2008b, 252: 191-201
    Williams H, Turner S, Kelley S, et al. Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 2001, 29: 339-342
    Wilson, M.. Igneous petrogenesis. London: Allen and Unwin, 1989
    Wu FY, Ji WQ, Liu CZ, et al. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology, 2010, 271: 13-25
    Xu RH, Sch?rer U, Allègre CJ. Magmatism and Metamorphism in the Lhasa Block (Tibet) : A Geochronological Study. The Journal of Geology, 1985, 93: 41-57
    Xu YG, Lan JB, Yang QJ, et al. Eocene break-off of the Neo-Tethyan slab as inferred from intraplate-type mafic dykes in the Gaoligong orogenic belt, eastern Tibet. Chemical Geology, 2008, 255: 439-453
    Yang JH, Wu FY, Wilde S, et al. Tracing magma mixing in granite genesis: in situ U–Pb dating and Hf-isotope analysis of zircons. Contributions to Mineralogy and Petrology, 2007, 153: 177-190
    Yang JH, Wu FY, Wilde SA, Xie LW, Yang YH and Liu XM. Tracing magma mixing in granite genesis: in situ U-Pb dating and Hf isotope analysis of zircons. Contributions to Mineralogy and Petrology, 2007a, 153, 177-190
    Yang JH, Wu FY, Xie LW and Liu XM. Petrogenesis and tectonic implications of Kuangdonggou syenites in the Liaodong Peninsula,east North China Craton: Constraints from in-situ zircon U-Pb ages and Hf isotopes. Acta Petrologica Sinica, 2007b, 23 ( 2 ) : 263-276 ( in Chinese with English abstract )
    Yang JS, Xu ZQ, Li ZL, et al. Discovery of an eclogite belt in the Lhasa block, Tibet: A new border for Paleo-Tethys? Journal of Asian Earth Sciences, 2009, 34: 76-89
    Yin A, Harrison TM. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280
    Yuan HL, Gao S, Dai MN, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology, 2008, 247: 100-118
    Zhang HF, Gao S, Zhong ZQ, et al. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chemical Geology, 2002, 186: 281-299
    Zhang JY, Yin A, Wu FY, et al. Coupled U-Pb Dating and Hf Isotopic Analysis of Detrital Zircons from Modern Sand of the Yalu River System (Yarlung Tsangpo) in Southern Tibet: Implications for Himalayan Provenance Analysis and Drainage Reconstruction. American Geophysical Union, Fall Meeting 2009, abstract #T43B-2072
    Zhang KJ, Zhang YX, Li B, et al. Nd isotopes of siliciclastic rocks from Tibet, western China: Constraints on provenance and pre-Cenozoic tectonic evolution. Earth and Planetary Science Letters, 2007, 256: 604-616
    Zhang XH, Mao Q, Zhang HF, Zhai MG, Yang YH and Hu ZC. Mafic and felsic magma interaction during the construction of high-K calc-alkaline plutons within a metacratonic passive margin: The Early Permian Guyang batholithfrom the northern North China Craton. Lithos, 2011, doi:10.1016/j.lithos.2011.03.008
    Zhang, K.J., Xia, B.D., Wang, G.M., Li, Y.T., Ye, H.F. Early Cretaceous stratigraphy, depositionalenvironments, sandstone provenance, and tectonic setting of central Tibet, western China, Geological Society of America Bulletin, 2004, 116, 1202–1222.
    Zhao ZD, Mo XX, Dilek Y, et al. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 2009, 113: 190-212
    Zhu DC, Mo XX, Niu YL, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology, 2009a, 268: 298-312
    Zhu DC, Mo XX, Niu YL, et al. Zircon U-Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet: Implications for Permian collisional orogeny and paleogeography. Tectonophysics, 2009b, 469: 48-60
    Zhu DC, Mo XX, Niu YL, Zhao ZD, Wang LQ, Liu YS and Wu FY. Geochemical investigation of Early Cretaceous igneous rocks along an east–west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology, 2009a, 268, 298-312
    Zhu DC, Mo XX, Wang LQ, et al. Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science in China Series D-Earth Sciences, 2009c, 52: 1223-1239
    Zhu DC, Mo XX, Zhao ZD, et al. Early Cretaceous Comei large igneous province in SE Tibet: Whole-rock Sr-Nd and zircon Hf isotopic constraints on mantle source characteristics. Geochimica Et Cosmochimica Acta, 2008a, 72: A1101-A1101
    Zhu DC, Mo XX, Zhao ZD, et al. Presence of Permian extension- and arc-type magmatism in southern Tibet: Paleogeographic implications. Geological Society of America Bulletin, 2010, 122: 979-993
    Zhu DC, Pan GT, Chung SL, et al. SHRIMP zircon age and geochemical constraints on the origin of lower Jurassic volcanic rocks from the Yeba formation, Southern Gangdese, south Tibet. International Geology Review, 2008b, 50: 442-471
    Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. Origin and evolution of the Tibetan Plateau. Submitted to Gondwana Research, 2012.
    Zhu DC, Zhao ZD, Niu YL, et al. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 2011, 301: 241-255
    Zhu DC, Zhao ZD, Pan GT, et al. Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: Products of slab melting and subsequent melt-peridotite interaction? Journal of Asian Earth Sciences, 2009d, 34: 298-309
    Zhu, DC, Zhao, ZD, Niu, YL, Dilek, Y, Wang, LQ, and Mo, XX. Lhasa Terrane in southern Tibet came from Australia. Geology, 2011b, doi: 10.1130/G31895.1
    Zorpi MJ, Coulon C and Orsini JB. Hybridization between felsic and mafic magmas in calc-alkaline granitoids - a case-study in northern Sardinia, Italy. Chemical Geology, 1991, 92: 45-86
    曹圣华,李德威,余忠珍,袁建芽,吴旭铃,胡为正.西藏冈底斯尼雄超大型富铁矿的成矿地
    质特征.大地构造与成矿学, 2007, 31(3): 328-334.
    陈国荣,陈玉禄,张宽忠.中华人民共和国1∶25万区域地质调查报告(班戈县幅) . 2003.
    陈建林,许继峰,康志强,等.青藏高原西部措勤县中新世布嘎寺组钾质火山岩成因.岩石学报, 2006, 22 (3) : 585-594
    陈越,朱弟成,赵志丹,张亮亮,刘敏,于枫,管琪,莫宣学.西藏北冈底斯巴木错安山岩的年代学、地球化学及岩石成因.岩石学报, 2010, 26(7): 2193-2206
    董国臣,莫宣学,赵志丹,等.冈底斯岩浆带中段岩浆混合作用:来自花岗杂岩的证据.岩石学报, 2006, 22 (4) : 835-844
    董国臣,莫宣学,赵志丹,等.西藏冈底斯南带辉长岩及其所反映的壳幔作用信息.岩石学报, 2008, 24 (2) : 203-210
    董国臣,莫宣学,赵志丹,等.拉萨北部林周盆地林子宗火山岩层序新议.地质通报, 2005, 24 (6) : 549-557
    董国臣.林周盆地林子宗火山岩及其所含的印度-欧亚大陆碰撞信息研究:[博士学位论文].北京:中国地质大学, 2002
    董昕,张泽明,耿官升,等.青藏高原拉萨地体南部的泥盆纪花岗岩.岩石学报, 2010, 26 (7) : 2226-2232
    董彦辉,许继峰,曾庆高,等.存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?岩石学报, 2006, 22 (3) : 661-668
    耿全如,潘桂棠,金振民,等.西藏冈底斯带叶巴组火山岩地球化学及成因.地球科学-中国地质大学学报, 2005, 30 (6) : 748-760
    耿全如,潘桂棠,王立全,等.西藏冈底斯带叶巴组火山岩同位素地质年代.沉积与特提斯地质, 2006, 26 (1) : 1-7
    耿全如,王立全,潘桂棠,等.西藏冈底斯带洛巴堆组火山岩地球化学及构造意义.岩石学报, 2007, 23 (11) : 2699-2714
    和钟铧,杨德明,王天武.冈底斯带桑巴区早白垩世后碰撞花岗岩类的确定及构造意义.岩石矿物学杂志, 2006, 25(3): 185-193
    和钟铧,杨德明,郑常青,等.冈底斯带门巴花岗岩同位素测年及其对新特提斯洋俯冲时代的约束.地质论评, 2006b, 52 (1) : 100-106
    侯增谦,曲晓明,杨竹森,等.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 2006a, 25 (6) : 629-651
    侯增谦,杨竹森,徐文艺,等.青藏高原碰撞造山带: I.主碰撞造山成矿作用.矿床地质, 2006b, 25 (4) : 337-358
    侯增谦,赵志丹,高永丰,等.印度大陆板片前缘撕裂与分段俯冲:来自冈底斯新生代火山-岩浆作用证据.岩石学报, 2006c, 22 (4) : 761-774
    胡道功,吴珍汉,江万,等.西藏念青唐古拉岩群SHRIMP锆石U-Pb年龄和Nd同位素研究. 中国科学(D辑:地球科学) , 2005, 35 (1) : 29-37
    黄俊平,曹圣华,陈振华,等.西藏冈底斯中段晚侏罗—早白垩世花岗岩特征.资源调查与环境, 2006, 27 (4) : 277-285
    黄玉,赵志丹,张凤琴,朱弟成,董国臣,周肃,莫宣学.西藏冈底斯仁布-拉萨一带花岗岩基的地球化学及其意义.岩石学报, 2010, 26(10): 3131-3142
    计文化,陈守建,赵振明,李荣社,何世平,王超.西藏冈底斯构造带申扎一带寒武系火山岩的发现及其地质意义.地质通报, 2009, 28(9): 1350?1354
    纪伟强,吴福元,锺孙霖,等.西藏南部冈底斯岩基花岗岩时代与岩石成因.中国科学(D辑: 地球科学) , 2009, 39 (7) : 849-871
    纪伟强.藏南冈底斯岩基东段花岗岩时代与成因:[博士学位论文].北京:中科院地质与地球物理研究所,2010
    康志强,许继峰,董彦辉,王保弟.拉萨地块中北部白垩纪则弄群火山岩: Slainajap洋南向俯冲的产物(?)岩石学报, 2008, 24(2): 303-314.
    李才,王天武,李惠民,等.冈底斯地区发现印支期巨斑花岗闪长岩——古冈底斯造山的存在证据.地质通报, 2003, 22 (5) : 364-366
    李昌年.岩浆混合作用及其研究评述.地质科技情报, 2002, 21(4): 49-54
    李皓扬,钟孙霖,王彦斌,等.藏南林周盆地林子宗火山岩的时代、成因及其地质意义:锆石U-Pb年龄和Hf同位素证据.岩石学报, 2007, 23 (02) : 493-500
    廖思平,陈振华,罗小川,等.西藏当惹雍错地区白榴石响岩的发现及地质意义.地质通报, 2002, 21 (11) : 735-738
    刘登忠,陶晓风,马润则.中华人民共和国1∶25万区域地质调查报告(措勤县幅) . 2003
    刘琦胜,江万,简平,等.宁中白云母二长花岗岩SHRIMP锆石U-Pb年龄及岩石地球化学特征.岩石学报, 2006, 22 (3) : 643-652
    刘伟,李奋其,袁四化,卓皆文,张万平,梁婷.西藏中冈底斯带措勤地区则弄群熔结凝灰岩锆石LA-ICP-MS U-Pb年龄.地质通报,2010, 29(7): 1009-1016
    卢书炜,任建德,白国典,等.西藏尼玛县南部中晚侏罗世松木果强过铝花岗岩带的发现及其意义.中国地质, 2006, 33 (2) : 332-339
    马润则,刘登忠,陶晓风,等.西藏措勤地区发现第三纪富钾岩浆岩.地质通报, 2002, 21 (11) : 728-731
    孟繁一,赵志丹,朱弟成,张亮亮,管琪,刘敏,于枫,莫宣学.西藏冈底斯东部门巴地区晚白垩世埃达克质岩的岩石成因.岩石学报, 2010, 26(7): 2180-2192
    莫宣学,董国臣,赵志丹,等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 2005, 11 (3) : 281-290
    莫宣学,罗照华,肖庆辉等.花岗岩类岩石中岩浆混合作用的识别与研究方法.见:肖庆辉,
    邓晋福等主编.花岗岩研究思维与方法.北京:地质出版社, 2002, 53-70
    莫宣学,赵志丹, Don JD,等.青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示: Sr-Nd同位素证据.岩石学报, 2006, 22 (4) : 795-803
    莫宣学,赵志丹,邓晋福,等.印度—亚洲大陆主碰撞过程的火山作用响应.地学前缘, 2003, 10 (3) : 135-148
    尼玛次仁,谢尧武,沙昭礼.中华人民共和国1∶25万区域地质调查报告(那曲县幅) . 2004
    潘桂棠,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化.岩石学报, 2006, 22 (3) :521-533
    宋彪,张玉梅,万渝生,等.锆石SHRIMP样品靶制作,年龄测定及有关现象讨论.地质论评, 2002, 5 (增刊) : 26-30
    覃锋,徐晓霞,罗照华.北京房山岩体形成过程中的岩浆混合作用证据.岩石学报, 2006, 22(12): 2957– 2970
    王立全,潘桂棠,朱弟成,等.西藏冈底斯带石炭纪—二叠纪岛弧造山作用:火山岩和地球化
    学证据.地质通报, 2008, 27 (9) : 1509-1534
    吴旭铃,陈振华.西藏尼雄岩体岩石地球化学特征及其成因探讨.中国地质, 2005, 32(1): 122-127.
    谢国刚,邹爱建,袁建芽.中华人民共和国1∶25万区域地质调查报告(邦多区幅) . 2003a
    杨德明,和钟铧,王天武.中华人民共和国1:25万区域地质调查报告(门巴区幅) . 2005
    杨进辉,吴福元,谢烈文,柳小明.辽东矿洞正长岩成因及其构造意义:锆石原位微区U-Pb年龄和Hf同位素制约.岩石学报, 2007, 23(2): 263– 276
    杨经绥,许志琴,李天福,等.青藏高原拉萨地块中的大洋俯冲型榴辉岩:古特提斯洋盆的残留(?)地质通报, 2007, 26 (10) : 1277-1287
    于枫,李志国,赵志丹,谢国刚,董国臣,周肃,朱弟成,莫宣学.西藏冈底斯带中西部措麦地区林子宗火山岩地球化学特征及意义.岩石学报, 2010, 26(7): 2217-2225
    张宏飞,徐旺春,郭建秋,等.冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据.岩石学报, 2007b, 23 (6) : 1347-1353
    张宏飞,徐旺春,郭建秋,等..冈底斯印支期造山事件:花岗岩类锆石U-Pb年代学和岩石成因证据.地球科学(中国地质大学学报) , 2007a, 32 (2) : 155-166
    张亮亮,朱弟成,赵志丹,董国臣,莫宣学,管琪,刘敏,刘美华.西藏北冈底斯巴尔达地区岩浆作用的成因:地球化学、年代学及Sr-Nd-Hf同位素约束.岩石学报, 2010, 26(6): 1871-1888
    张晓倩,朱弟成,赵志丹,王立全,黄建村,莫宣学.西藏措勤尼雄岩体的成因及对富Fe成矿作用的潜在意义.岩石学报, 2010, 26(6): 1793-1804
    张泽明,董昕,耿官升,王伟,于飞,刘峰.青藏高原拉萨地体北部的前寒武纪变质作用及构造意义.地质学报, 2010, 84(4): 449-456
    张招崇,董书云,黄河,马乐天,张东阳,张舒,薛春纪.西南天山二叠纪中酸性侵入岩的地质和地球化学:岩石成因和构造背景.地质通报, 2009, 28(12): 1827-1839
    赵志丹,莫宣学,罗照华,等.印度—亚洲俯冲带结构——岩浆作用证据.地学前缘, 2003, 10 (3) : 149-157
    周长勇,朱弟成,赵志丹,许继峰,王立全,陈海红,谢烈文,董国臣,周肃.西藏冈底斯带西部达雄岩体的岩石成因:锆石U-Pb年龄和Hf同位素约束.岩石学报, 2008, 24(2): 348 – 358
    周长勇,朱弟成,赵志丹,许继峰,王立全,陈海红,谢烈文,董国臣,周肃.西藏冈底斯带西部达雄岩体的岩石成因:锆石U-Pb年龄和Hf同位素约束.岩石学报, 2008, 24(2): 348–358.
    朱弟成,莫宣学,王立全,赵志丹,牛耀玲,周长勇,杨岳衡.西藏冈底斯东部查隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束.中国科学D辑, 2009d, 39(7): 833-848
    朱弟成,莫宣学,赵志丹,等.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘, 2009, 16 (2) : 1-20
    朱弟成,莫宣学,赵志丹,牛耀玲,潘桂棠,王立全,廖忠礼.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘, 2009a, 16(2) :001-020
    朱弟成,潘桂棠,莫宣学,等.藏南特提斯喜马拉雅带中段二叠纪—白垩纪的火山活动(Ⅰ) :分布特点及其意义.地质通报, 2004, 23 (7) : 645-654
    朱弟成,潘桂棠,莫宣学,等.冈底斯中北部晚侏罗世—早白垩世地球动力学环境:火山岩约束.岩石学报, 2006, 22 (3) : 534-546
    朱弟成,潘桂棠,王立全,等.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论. 地质通报, 2008b, 27 (9) : 1535-1550
    朱弟成,潘桂棠,王立全,等.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境.地质通报, 2008c, 27 (4) : 458-468

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700