用户名: 密码: 验证码:
北黄海藻类DNA病毒遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮游病毒是指游离在水体中的各类病毒,被认为是水体微生物群落中的重要成分,它在微食物环、生物地球化学循环、群落结构及多样性变化等方面起着重要作用。研究浮游病毒在不同海域和不同环境的丰度和分子多样性,可以探索浮游病毒的分布规律及生态学地位,为更好的理解生物群落结构变化规律奠定基础,并为环境评价等提供数据参考及理论依据。
     北黄海海区代表了北温带海洋生态环境的一种重要类型,在该海域仅有少量利用荧光显微镜技术研究浮游病毒丰度的相关报道。本文利用流式细胞仪对北黄海水域秋季浮游病毒丰度进行了检测,并分析浮游病毒丰度变化与水文参数的相关性。各站点浮游病毒丰度在2.76×106~3.97×107个mL-1之间,平均值为2.12×107个mL-1;水平分布上,浮游病毒高值区主要分布在调查区域的东南部海域。垂直分布上,各水层浮游病毒丰度无显著差异。昼夜变化方面,浮游病毒丰度最高值出现在30m层19:00时刻,最低值出现在10m层4:00时刻。浮游病毒丰度在1:00时刻出现峰值后,急剧下降,在4:00降至最低(底层除外),在7:00出现一个峰值后从10:00到19:00呈上升趋势。相关性分析显示,浮游病毒丰度与异养细菌、聚球藻、微微型真核浮游植物均呈显著正相关,与VBR无相关性。浮游病毒丰度与温度正相关,与盐度和深度显著负相关。
     藻类DNA病毒在海洋中的多样性极其丰富,而在国内尚未见相关报道。本文首次运用DGGE技术调查北黄海和青岛近海藻类DNA病毒群落多样性。在北黄海A604站、B107站和C803站分别得到10个、8个、8个OTUs (operational taxonomic units),在青岛近海ZQ站得到6个OTUs,说明不同海域藻类DNA病毒多样性有一定的差异,在北黄海较丰富,在青岛近海多样性稍低。北黄海3个站间相比,OTUs数量和位置均存在差异,这表明同一海域不同站位藻类DNA病毒多样性也存在差异。在所得OTUs中,有2个OTUs在4个站中均存在,这说明在北黄海和青岛近海存在着一些共同的藻类DNA病毒。
     本文依据DGGE带谱从直观上对北黄海和青岛近海藻类DNA病毒多样性进行了初步的研究,而最终确定某一环境中的病毒组成及分类地位需要与基因测序、系统树的构建结合起来。作者运用PCR-RFLP技术,通过构建藻类DNA病毒系统进化树对北黄海藻类DNA病毒科遗传多样性进行了研究。本文建立了北黄海藻类DNA病毒DNA聚合酶文库,随机挑取329个阳性克隆进行RFLP分析。获得的18个OTUs分别属于3簇:簇Ⅰ与已分离的针胞藻病毒属的赤潮异湾藻病毒HaV01亲缘关系较近,推测可能同属于针胞藻病毒属;簇Ⅱ与褐藻病毒属FsV亲缘关系较近,推测可能同属于褐藻病毒属;簇Ⅲ为未获得培养的类群,其分类地位有待于进一步研究。本文在北黄海海域没有检测到寄生藻病毒属、绿藻病毒属、颗石藻病毒属和金藻病毒属的成员。
Virioplankton, viruses in aquaic ecosystem, are now considered to be one of the most abundant and active components of microbial communities. Viroplankton play an important role in the microbial loop, biogeochemical cycles, structure and diversity of microbial community. Studying of the abundance and diversity of viroplankton in different locations and environment will help in understanding of the rules of the distribution and the ecological status of viroplankton. And it will also help to understand population structure of biology and provide reference numerical dates and theoretical basis for environmental assessment.
     The North Yellow Sea represents an important type of marine ecosystem of the north temperate zone. There were just a few reports about the abundance of virioplankton in the North Yellow Sea using epiflororence microscopy(EFM). In this paper, we studied the abundance of virioplankton by flow cytometry(FCM), and analyzed the correlation between virioplankton and environmental parameters in the North Yellow sea. Viral abundance ranged from 2.76×106 to 3.97×107 particles mL-1(2.12×107 particles mL-1 on average). In horizontal distribution, the area of the high viral abundance existed the southeast area of investigation area. In vertical distribution, there was no significant difference of virioplankton abundance in each water layer. In daily variations of virioplankton, its highest virioplankton abundance existed at the 30m water layer at 19:00, while the lowest abundance existed at the 10m water layer at 4:00. The abundance of virioplankton appeared uptrend from 10:00 to 19:00 in all layers. Virioplankton abundance has obvious positive correlation with heterotrophic bacteria, Synechococcus(Syn) and picoeukaryotes(Euk), however, there was no correlation between virioplankton abundance and VBR. The virioplankton abundance was positively correlated with temperature, while it has negative correlation with depth and salty.
     The diversity of algae DNA viruses are extremely rich in the oceans, but there was no any reports about the study of viroplankton diversity in China. The diversity of algae DNA viruses in the North Yellow Sea and Qingdao coastal waters was analysed by denaturing gradient gel electrophoresis (DGGE). The amount of operational taxonomic units (OTUs) in the North Yellow Sea was 10,8,8 at stations of A604, B107 and C803, respectively, and it was 6 in ZQ station. These results implicated that the diversity of algal viruses was not the same in different waters, which was higher in the North Yellow Sea and lower in ZQ station. Furthermore, the diversity of algal viruses was also different in the three stations of the North Yellow Sea. And 2 similar OTUs were found throughout the whole four stations, suggesting that some kinds of genetically identical algal viruses have a ubiquitous distribution in the seas。
     DGGE map indicated the diversity of algae DNA viruses in the North Yellow Sea and Qingdao coastal waters, but it was preliminary. In order to define the members and classification of virus, the target segments were sequenced and were used in sequence analysis. In this paper, we studied the genetic diversity of algae DNA viruses in the North Yellow Sea by PCR-RFLP.329 positive clones were digested by HaeⅢand MspⅠ, and we obtained 18 operational taxonomic units(OTUs). The 18 OTUs were attributed to three cluster. Cluster I was most closely related to DNA pol sequences of HaV01 which belongs to Raphidovirus. Cluster II was most closely related to DNA pol sequences of FsV which belongs to Phaeovirus. Cluster III was attributed to uncultured viruses, and its definite position in classification need further research. No member of Chlorovirus, Prasinovirus, Prymnesiovirus and Coccolithovirus was discovered in this study.
引文
鲍磊,陈纪新,黄邦钦.应用变性梯度凝胶电泳研究厦门西海域超微型真核浮游生物多样性.海洋环境科学,2007,26(6):504-509.
    白晓歌.北黄海浮游病毒的丰度变化及与微微型浮游植物、异养细菌相关性研究:[硕士学位论文].青岛:中国海洋大学海洋生命学院,2007.
    白晓歌,汪岷,马晶晶,等.冬季和春季长江口及其近海水域浮游病毒丰度的分析.海洋与湖沼,2007,38(4):367-372.
    白晓歌,汪岷,梁彦韬,等.运用荧光显微技术分析北黄海夏季浮游病毒的分布.中国海洋大学学报,2008,38(4):609-613.
    陈纪新,黄邦钦,郑微云.海洋超微型浮游植物多样性研究方法进展.海洋科学,2002,26(8):34-39.
    何夙旭,周志刚,姚斌,等.3种DNA提取方法对养殖池塘不同生境菌群PCR-DGGE分析的影响.中国农业科技导报,2009,11(1):73-79.
    洪健,周雪平.ICTV第八次报告的最新病毒分类系统.中国病毒学,2006,21(1):84-96.
    梁彦韬.青岛近海浮游病毒、微微型浮游植物、异养细菌的丰度变化及其与环境相关性研究:[硕士学位论文].青岛:中国海洋大学海洋生命学院,2008.
    梁彦韬,汪岷,白晓歌,等.青岛近海水域夏季和冬季浮游病毒丰度的分析.海洋与湖沼,2008.39(4):41 1-418.
    江雪娇.北黄海微微型浮游植物的丰度及微微型真核浮游生物分子多样性研究:[硕士学位论文].青岛:中国海洋大学海洋生命学院,2009.
    焦念志,杨燕辉.从营养扰动实验看原绿球藻在近海分布的制约因素.植物学报,2002,44(6):731-739.
    刘艳鸣,张奇亚.利用脉冲场凝胶电泳测定东湖浮游病毒基因组的大小利用脉冲场凝胶电泳测定东湖浮游病毒基因组的大小.武汉大学学报,2005.51(S2):238-240.
    孙寓姣,左剑恶,邢薇,等.高效厌氧产甲烷颗粒污泥微生物多样性及定量化研究.环境科学,2006,27(011):2354-2357.王芳,汪岷,白晓歌,等.应用DGGE技术分析北黄海和青岛近海藻类DNA病毒遗传多样性.海洋与湖沼,2010,41.王斐,郑天凌,洪华生.海洋病毒在微生物食物环中的重要作用.海洋科学,1998,4:41-43.
    邢薇,左剑恶,孙寓姣,等.利用FISH和DGGE对产甲烷颗粒污泥中微生物种群的研究.环境科学,2006,27(011):2268-2272.
    张稚兰,刘静雯,董双林,等.海洋球石藻Emiliania huxleyi (Prymnesiophyceae)病毒主要外壳蛋白基因的克隆与序列分析.海洋与湖沼,40(2):152-158
    赵以军,裴达,石正丽,等.藻类病毒研究40年.华中师范大学学报,2003,37(3):399-404.
    Allen M J, Wilson W H. The coccolithovirus microarray:an array of uses. Briefings In Functional Genomics And Proteomics,2006,5(4):273-279.
    Allen M J, Joaquin Martinez-Martinez, Schroeder D C, et al. Use of microarrays to assess viral diversit from genotype to phenotype. Environmental Microbiology,2007,9(4):971-982.
    Alonso M C,Rodriguez J,Borrego J J. Enumeration and isolation of viral particles from oligotrophic marine environments by tangential flow filtration. INTERNATL MICROBIOL,1999, 2:227-232.
    Angly, F. E., Felts B., Breitbart M.,et al. The marine viromes of four oceanic regions. PLoS Biol.,2006,4:e368.
    Auguet J. C., Montanie H., Delmas D.,et al. Dynamic of virioplankton abundance and its environmental control in the Charente Estuary (France). Microb. Ecol.,2005,50:337-349.
    Bano N, Hollibaugh J T. Diversity and distribution of DNA sequences with affinity to ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in the Arctic Ocean. Applied and Environmental Microbiology,2000,66(5):1960-1969.
    Bano N, Hollibaugh J T. Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Applied and Environmental Microbiology,2002,68(2):505-518.
    Bench S R, Hanson T E, Williamson K E, et al. Metagenomic Characterization of Chesapeake Bay Virioplankton. Applied and Environmental Microbiology,2007,73(23):7629-7641.
    Bettarel Y, Dolan J, Hornak K, et al. Strong, weak, and missing links in a microbial commuty of the N.W. Mediterranean Sea. FEMS. Microbiol. Ecol,2002,42:451-462.
    Bettarel Y,Telesphore Sime-Ngando, Amblard C, et al. Viral Activity in Two Contrasting Lake Ecosystems. Applied and Environmental Microbiology,2004,70(5):2941-2951.
    Bratbak G, Thingstad F, Heldal M. Viruses and the Microbial Loop. Microbial Ecology, 1994,28:209-221.
    Breitbart M, Felts B, Kelley S, et al. Diversity and population structure of a near-shore marine-sediment viral community. The Royal Society,2004,271:565-574.
    Breitbart M, Rohwer F. Here a virus, there a virus, everywhere the same virus. Trends in Microbiology,2005,13(6):378-384.
    Brussaard C P D, Short S M, Frederickson C M et al. Isolation and Phylogenetic Analysis of Novel Viruses Infecting the Phytoplankton Phaeocystis globosa (Prymnesiophyceae). Applied and Environmental Microbiology,2004,70(6):3700-3705.
    Casamayor E O, Schafer H, Baneras L et al. Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes:comparison by microscopy and denaturing gradient gel electrophoresis. Applied and Environmental Microbiology,2000, 66(2):499-508.
    Chen F, Suttle C.A. Amplification of DNA Polymerase Gene Fragments from Viruses Infecting Microalgae. Applied and Environmental Microbiology,1995,61(4):1274-1278.
    Chen F, Suttle C A. Evolutionary Relationships among Large Double-Stranded DNA Viruses That Infect Microalgae and Other Organisms as Inferred from DNA Polymerase Genes. Virology, 1996,219:170-178.
    Chen F, Suttle C A, Short S M. Genetic Diversity in Marine Algal Virus Communities as Revealed by Sequence Analysis of DNA Polymerase Gene. Applied and Environmental Microbiology,1996,62(8):2869-2874.
    Clasen J L, Suttle C.A. Identification of Freshwater Phycodnaviridae and Their Potential Phytoplankton Hosts, Using DNA pol Sequence Fragments and a Genetic-Distance Analysis. Applied and Environmental Microbiology,2009,75(4):991-997.
    Cochran P. K., Paul J. H. Seasonal abundance of lysogenic bacteria in a subtropical estuary. Applied and Environmental Microbiology,1998,64:2308-2312.
    Colombet J, Robin A, Lavie L, et al. Virioplankton 'pegylation':use of PEG (polyethylene glycol) to concentrate and purify viruses in pelagic ecosystems. Journal of Microbiological Methods,2007,71(3):212-219.
    Cottrell M T, Suttle C A. Wide-Spread Occurrence and Clonal Variation in Viruses Which Cause Lysis of a Cosmopolitan, Eukaryotic Marine Phytoplankter, Micromonas pusilla Marine. Ecology Progress Series MESEDT,1991,78(1):1-9.
    Culley A I, Asuncion B F, Steward G F.Detection of inteins among diverse DNA polymerase genes of uncultivated members of the Phycodnaviridae. International Society for Microbial Ecology,2008:1-10.
    Diez B, Pedros-Alio C, Marsh T L et al. Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Applied and Environmental Microbiology, 2001,2001,67(7):2942-2951.
    Dorigo U, Jacquet Ste'phan, Jean-Franc ois Humbert. Cyanophage Diversity, Inferred from g20 Gene Analyses, in the Largest Natural Lake in France, Lake Bourget[. Applied and Environmental Microbiology,2004,70(2):1017-1022.
    Dunigan D D, Fitzgerald L A, Van Etten J L. Phycodnaviruses:a peek at genetic diversity. Virus research,2006,117(1):119-132.
    Ferris M J, Muyzer G, Ward D M. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Applied and Environmental Microbiology,1996,62(2):340.
    Frederickson C M, Short S M, Suttle C A. The Physical Environment Affects Cyanophage Communities in British Columbia Inlets. Microbial Ecology,2003,46:348-357.
    Fuhrman J A. Marine viruses and their biogeochemical and ecological effect[J]. Nature, 1999,399:541-548.
    Fuller N J,Wilson W H, Joint I R, et al. Occurrence of a Sequence in Marine Cyanophages Similar to That of T4 g20 and Its Application to PCR-Based Detection and Quantification Techniques. Applied and Environmental Microbiology,1998,64(6):2051-2060.
    Jacquet Ste'phan, Heldal M, Debora Iglesias-Rodriguez, et al. Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection.Aquatic Microbial Ecology 2002.27: 111-124.
    Jiang S, Fu W, Chu W, et al. The Vertical Distribution and Diversity of Marine Bacteriophage at a Station off Southern California. Microbial Ecology,2003,45:399-410.
    Larsen A, Castberg T, Sandaa R A, et al. Virioplankton community structure along a salinity gradient in a solar saltern. Marine Ecology Progress Series MESEDT,2001,221:47-57.
    Larsen A, Castberg T, Sandaa R A, et al. Spring phytoplankton bloom dynamics in Norwegian coastal waters:Microbial community succession and diversity. Limnology and Oceanography,2004,49(1):180-190.
    Lindell D, Jaffe J D, Johnson Z I, et al. Photosynthesis genes in marine viruses yield proteins during host infection. Nature,2005,438:86-89.
    Liu, J. M, Mahaffy J. E, Mueller J, et al. The marine viromes of four oceanic regions. PLoS Biol.,2006,4:e368.
    Marie D, Brussaard C. P. D, Thyrhaug R, et al. Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl. Environ. Microbiol.,1999,65:45-52.
    Marjolijn T, Hoogveld H L, et al. Population Dynamics and Diversity of Viruses, Bacteria and Phytoplankton in a Shallow Eutrophic Lake. Microbial Ecology,2008,56:29-42.
    Martlnez J M, Schroeder D C, Larsen A. Molecular Dynamics of Emiliania huxleyi and Cooccurring Viruses during Two Separate Mesocosm Studies. Applied and Environmental Microbiology,2007,73(2):554-562.
    Marusich E I, Mesyanzhinov V V. Nucleotide and deduced amino acid sequences of bacteriophage T4 gene 20. Nucleic Acids Res,1989,17(18):7514.
    Meints R H, Schuster A M, Van Etten J L. Chlorella viruses Plant. Molecular Biology Reporter,1985,3(4):180-187.
    McDaniel L, Houchin L. A, Williamson S. J, et al. Paul. Plankton blooms:lysogeny in marine Synechococcus. Nature,2002,415:496.
    Miller, R. V. Environmental bacteriophage-host interactions:factors contributing to natural transduction. Antonie Leeuwenhoek,2001,79:141-147.
    Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient-gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology,1993,59(3):695-700.
    Nagasaki, K., and M. Yamaguchi. Isolation of a virus infectious to the harmful bloom causing microalga Heterosigma akashiwo (Raphidophyceae).Aquat. Microb. Ecol,1997,13:135-140.
    Ptashne, M. A genetic switch:phage lambda and higher organisms,2nd ed. Cell Press, Blackwell Scientific Publications, Cambridge, MA.1992.
    Sandaa R A, Larsen A. Seasonal Variations in Virus-Host Populations in Norwegian Coastal Waters:Focusing on the Cyanophage Community Infecting Marine Synechococcus spp. Applied and Environmental Microbiology,2006,72(7):4610-4618.
    Sandaa R A, Clokie M, Mann N H. Photosyntheticgenes inviral populationswith a large genomic size range fromNorwegian coastalwaters. Federation of European Microbiological Societies Microbiol Ecol,2008,63:2-11.
    Santos F, Meyerdierks A, Pena A, et al.Metagenomic approach to the study of halophages: the environmental halophage. Environmental Microbiology,2007,9(7):1711-1723
    Schroeder D C, Oke J, Hall M, et al. Virus Succession Observed during an Emiliania huxleyi Bloom. Applied and Environmental Microbiology,2003,69(5):2484-2490.
    Schauer M, Massana R, Pedros-Alio C. Spatial differences in bacterioplankton composition along the Catalan coast (NW Mediterranean) assessed by molecular fingerprinting. FEMS microbiology ecology,2006,33(1):51-59.
    Schroeder D C, Oke J, Hall M et al. Virus Succession Observed during an Emiliania huxleyi Bloom. Applied and Environmental Microbiology,2003,69(5):2484-2490.
    Schroeder D C, Oke J, Malin G, et al. Coccolithovirus (Phycodnaviridae):Characterisation of a new large dsDNA algal virus that infects Emiliania huxleyi. Archives of Virology,2002, 147:1685-1698.
    Short S M, Suttle C A. Use of the polymerase chain reaction and denaturing gradient gel electrophoresis to study diversity in natural virus communities. Hydrobiologia,1999,401:19-32.
    Short S M, Suttle C A. Sequence analysis of marine virus communities reveals that groups of related algal viruses are widely distributed in nature. Applied and Environmenta. Microbiology, 2002,68(3):1290-1296.
    Short C M, Suttle C A. Nearly Identical Bacteriophage Structural Gene Sequences Are Widely Distributed in both Marine and Freshwater Environments. Applied and Environmental Microbiology,2005,71(1):480-486.
    Sullivan M B, Lindell D, Lee J A, et al. Prevalence and Evolution of Core Photosystem Ⅱ Genes in Marine Cyanobacterial Viruses and Their Hosts. PLoS Biology,2006,4(8):1344-1357.
    Van Etten J L,Lane L C, Meints R H. Viruses and virus like particles of eukaryotic alga. Microbiology and Molecular Biology Reviews,1991,55(4):586-620.
    Wang K, Chen F. Genetic diversity and population dynamics of cyanophage communities in the Chesapeake Bay. Aquatic Microbial Ecology 2004,34:105-116.
    Waters R E, Chan A T. Micromonas pusilla Virus:the Virus Growth Cycle and Associated Physiological Events Within the Host Cells; Host Range Mutation. General Virology, 1982,63: 199-206.
    Weinbauer M G, Rassoulzadegan F. Are viruses driving microbial diversification and diversity? Environmental Microbiology,2003,6(1):1-11.
    Wichels A, Biel S S, Gelderblom H R, et al. Bacteriophage Diversity in the North Sea. Applied and Environmental Microbiology,1998,64(11):4128-4133.
    Wilhelm S W, Carberry M J, Eldridge M L, et al. Marine and Freshwater Cyanophages in a Laurentian Great Lake:Evidence from Infectivity Assays and Molecular Analyses of g20 Genes. Applied and Environmental Microbiology,2006,72(7):4957-4963.
    Wilhelm S W, Suttle C A. Viruses and nutrient cycles in the sea. BioScience,1999,49:781-788.
    Williamson, S. J, Houchin L. A, McDaniel L, et al. Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida. Appl. Environ. Microbiol,2002,68:4307-4314.
    Wilson W H, Fuller N J, Joint I R, et al. Analysis of cyanophage diversity in the marine environment using denaturing gradient gel electrophoresis. In C. R. Bell, M. Brylinsky, and P. JohnsonGreen (ed.), Microbial biosystems:new frontier. Proceedings of the 8th International, 1999:565-570.
    Wommack K E, Hill R T, Kessel M, et al. Distribution of viruses in the Chesapeake Bay. Applied and Environmental Microbiology,1992,58:2965-2970
    Wommack K E, Ravel J, Hill R T, et al. Population dynamics of chesapeake bay virioplankton:total community analysis by pulsed-field gel electrophoresis. Applied and Environmental Microbiology,1999,65 (1):231-240
    Wommack K E, Ravel J, Hill R T, et al. Hybridization analysis of Chesapeake Bay virioplankton. Applied and Environmental Microbiology,1999,65:241-250.
    Wommack K E, Colwell R R. Virioplankton:Viruses in Aquatic Ecosystems. Microbiology and Molecular Biology Reviews,2000,64(1):69-114.
    Marston M F, Sallee J L. Genetic Diversity and Temporal Variation in the Cyanophage Community Infecting Marine Synechococcus Species in Rhode Island's Coastal Waters. Applied and Environmental Microbiology,2003,69(8):4639-4647.
    Miller, R. V. Environmental bacteriophage-host interactions:factors contributing to natural transduction. Antonie Leeuwenhoek,2001,79:141-147.
    Zeidner G, Bielawski J P, Shmoish M, et al. Potential photosynthesis gene recombination betwee Prochlorococcus and Synechococcus via viral intermediates.Environmental Microbiology, 2005,7(10):1505-1513
    Zhang Y P, Burbank D E, Van Etten J L. Chlorella viruses isolated in China. Applied and Environmental Microbiology,1988,54(9):2107-2173.
    Zhang Y P, Suttle C A. Design and use of PCR primers for B-family DNA polymerase genes to detect and identify viruses and microbes, p. a-85. In ASLO & PSA 1994 Joint Meeting. American Society for Limnology and Oceanography, Lawrence, Kans,1994.
    Zhong Y, Chen F, Wilhelm S W, et al. Phylogenetic Diversity of Marine Cyanophage Isolates and Natural Virus Communities as Revealed by Sequences of Viral Capsid Assembly Protein Gene g20. Applied and Environmental Microbiology,2002,68(4):1576-1584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700