用户名: 密码: 验证码:
2007年春季和秋季北黄海微型浮游生物丰度调查分析及两种微型硅藻的分离鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2007年春季和秋季对北黄海水域(120°34'E-124°03'E,32°00' N-39°23' N)微型浮游生物丰度进行调查,其中春季78个站位,秋季80个站位,对微型浮游生物丰度在水平分布,垂昼夜变化和种类组成进行了分析。春季北黄海水域微型浮游生物丰度变化范围为(5.01cells/ml~91.87cells/ml)平均值为29.50 cells/ml.秋季变化范围为(4.70 cells/ml~151.73 cells/ml),平均值为34.15 cells/ml;在水平分布上,山东半岛,辽东半岛的近岸和北黄海暖流经过的海域丰度较高,达到90cells/ml。种类组成上,两个季节主要为硅藻甲藻组成,也有少数的蓝藻、绿藻出现。在昼夜变化上,春季和秋季表现出相似的趋势,表层和10米层在中午12:00-14:00出现峰值,30米层和底层水深的丰度分布相对较均匀,变化不大,没有明显的峰值出现。利用多元相关分析可知,春季微型浮游生物丰度与环境参数有相关性但并不显著,而秋季微型浮游生物丰度与温度呈显著的正相关,与水深呈显著的负相关,与盐度相关性不显著。
     采用96孔板有限稀释分离培养的方法,将采自青岛太平角的1株微型藻类纯化,对其进行光镜和电镜观察,与纤细角毛藻(Chaetoceros gracilis)在光镜下无法区分,电镜下只有角毛结构稍有差异,故从形态上初步鉴定为角毛藻属(Chaetoceros sp.qd)藻类。角毛每隔0.5μm左右有一互生的刺状突起,顶端呈锥状,其网状骨架主干呈螺旋状,延伸至顶端,骨架之间有横隔相连,形成小孔结构。扩增其18S核糖体基因(18SrDNA),由测序结果得知C.sp.qd的18S序列部分长度为1623bp,经BLAST比对后得到C.sp.qd与Chaetoceros gracilis strain UTEXLB 2375的18SrDNA相似值最高,达到99%,确定为角毛藻属的微藻。然后扩增5.8S核糖体基因(5.8SrDNA)和转录单元内间隔区(Internal Transcribed Spacer, ITS)序列,5.8SrDNA-ITS的序列总长度为837bp。比对后可知此种5.8S区与角毛藻属相似度很高,达到99%,但ITS区差别较大。系统进化树以及遗传距离分析显示此藻种与其他角毛藻种有显著差异,在进化树中单独分支,结合形态学分析将C.sp.qd鉴定为一角毛藻新种.
     采用96孔板有限稀释分离培养的方法,将采自青岛太平角的1株微型藻类纯化,对其进行光镜和电镜观察,与艾伦海链藻(Thalassiosira allenii)和具毛海链藻(Thalassiosira hispida)在光镜下无法区分,在电镜下与艾伦海链藻壳缘支持突数量上不同,与具毛海链藻在孔纹数量上也有差异。故从形态上初步鉴定为海链藻属(Thalassiosira sp.qd)藻类。扩增其18S核糖体基因(18SrDNA),由测序结果得知T.sp.qd的18S序列部分长度为1640bp,使用硅藻门13个不同属的18S与本种构建的系统发育树可知,本种与海链藻属的藻类聚群,节点支持率为98,故确定为海链藻属的微藻。然后扩增5.8S核糖体基因(5.8SrDNA)和转录单元内间隔区(Internal Transcribed Spacer, ITS)序列,5.8SrDNA-ITS的序列总长度为762bp。比对后可知此种5.8S区与海链藻属相似度很高,达到99%,但ITS区差别较大。在属内种间的系统进化树以及遗传距离分析显示此藻种与其他海链藻种有显著差异,在进化树中单独分支,显示此藻种可能为一新种,由于缺乏与之相近的两种藻的5.8S-ITS序列,无法从分子生物学方面验证我们的推断。但本文提供此藻种较详细的形态学和分子生物学资料,以期为将来准确鉴定此藻种奠定基础。
To study the distribution and daily variation of nanoplankton in the northern Yellow Sea, nanoplankton abundance in spring and autumn was determined Nano-plankton Direct Count in the northern Yellow Sea was in the range between 5.01 cells/ml and 91.87 cells/ml at the 78 sampling stations, with a mean of 29.50 cells/ml in spring. Direct Count in the northern Yellow Sea was in the range between 4.70 cells/ml and 151.73 cells/ml at the 80 sampling stations, with a mean of 34.15 cells/ml in autumn. Higher nanoplankton abundance was found at the 10m,20m layers in offshore waters of the Liaodong Peninsular,Shandong Peninsular and the way of Bohai warm current than those in other waters in both seasons. The results show that diatoms and dinoflagellates are the major components of phytoplankton community in the survey region, with cynobacteria, green algae being also common found in some stations.The data of both season showed the similar trend that the diurnal variation of nanoplankton abundance of the surface and the 10m layer was more significant than those of the 30 m and the bottom, while the variation of the abundance of the bottom layer was small. According to multicorrelation analysis, nanoplankton abundance in spring had correlation with the environmental parameters but not significant, while in autumn the abundance had significant positive correlation with the temperature, significant nagitive correlation with the depth, no significant correlation with the salinity.
     A nanoplanktic strain was isolated from Taiping Corner of Qingdao through limited dilution method on 96 multiwell cell culture plate. It was impossible to distinguish it from Chaetoceros gracilis in light microscope and there were few differences in the structure of flagellum in electronic microscope, so it was prelimin-ary identified as a Chaetoceros species (Chaetoceros sp.qd) based on morphological features.There was a alternative protuberance every 0.5μm on the flagellum whose top liked a wimble, reticular framework presented as helix structure which extended tothe top,there was diaphragm plate that linked the framework and shaped the hole structure. The 18SrDNA sequence was amplified, sequenced to be 1623bp long and had highest level similarity (99%) with strain UTEX LB 2375 of Chaetoceros gracilis retrived from GenBank database. The strain was ascribed to the Chaetoceros genus. The 5.8S rDNA and ITS sequence was further amplified which were 837bp, the BLAST analy-sis showed that Chaetoceros sp.qd had high level similarity with Chaetoceros at 99% in 5.8S region, but there were remarkable differences in ITS region. Phylogenic tree construction and genetic distance analysis indicated that the isolated Chaetoceros sp.qd diverged with other Chaetoceros species, formed a separate branch in the phylo-genic tree. Combined with morphological results, Chaetoceros sp.qd is suggested to be a new species of Chaetoceros.
     A nanoplanktic strain was isolated from Taiping Corner of Qingdao through limited dilution method on 96 multiwell cell culture plate. It was impossible to distinguish it from Thalassiosira allenii and Thalassiosira hispida in light microscope, in electronic microscope, there are many differences in the quantity of support enation between Thalassiosira sp.qd and Thalassiosira allenii, it also has many discrepancy in the quantity of pore texture between Thalassiosira sp.qd and Thalassiosira hispida, so it was preliminary identified as a Thalassiosira species (Thalassiosira sp.qd) based on morphological features. The 18SrDNA sequence was amplified, sequenced to be 1640bp long and had highest level similarity (98%) with strain UTEX LB 2375 of Thalassiosira angulata strain BEN02-35 retrived from GenBank database. The strain was ascribed to the Thalassiosira genus. The 5.8SrDNA and ITS sequence was further amplified which were 762bp, the BLAST analysis showed that Chaetoceros sp.qd had high level similarity with Thalassiosira at 99% in 5.8S region, but there were remarkable differences in ITS region. Phylogenic tree construction and genetic distance analysis indicated that the isolated Thalassiosira sp.qd diverged with other Thalassiosira species, formed a separate branch in the phylogenic tree, This suggested that Thalassiosira sp.qd was a new specie. However we can't verified the deduction in molecular biology because lack of the 5.8S-ITS sequence. But we provide the detailed data in morphology and molecular biology, so it established the foundation to identificate the nanoplankton precisely in future.
引文
Adachi M, Sako Y, Ishid Y. Analysis of Alexandrium(Dinophyceae) species using sequences of the 18S ribosomal DNA and internal transcribed spacer regions. Journal of phycology,1996, 32:424-432.
    Albert C, Michael R L, Rebecca D S.Copepod grazing in a subtropical bay:species-specific responses to a midsummer increase in nanoplankton standing stock, Marine ecology,2000, 193:15-84.
    Armbrust E. V. et al. The Genome of the Diatom Thalassiosira Pseudonana:Ecology, Evolution, and Metabolism,2004,306(5639):79-86.
    Barry F S, Evelyn B, Steven Y N. Abundance and productivity of heterotrophic nanoplankton in Georgia coastal waters Journal of plankton research,1984,6,(1):195-202.
    Beatrice C B, Joyce L, Richard E N. Nanoplankton species predominant in the subarctic Pacific in May and June 1978. Deep Sea Research,1982,(29)2:185-200.
    Burk ill P H M, Antoura R F C, Owens N J P. Biogeochem ical cycling in the no rthwestern Indian Ocean:a brief overview. Deep Sea Research,1993,40 (3):643-649.
    Cleve P T.Examination of diatoms found on the surface of the sea of Java.sih Kong
    Svenska Vetensk-Akad.Hand,1873,11:3-3.
    Daugbjerg N, Hansen G, Larsen J, et al. Phylogeny of some of major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia,2000,39 (4):302-317.
    David W T, Neal R P, Andrew C T.Offshore blooms of the red tide dinoflagellate, Alexandrium sp., in the Gulf of Maine,Continental Shelf Research,2001,21(4):347-369.
    De Toni J B,Sylloge Algarum Hucusque cognitarum,vol. Ⅱ,Bacillarieae,Typis Seminar i,Patavii,sect. Ⅰ-Ⅲ,1891,1-1556.
    Dunstan W M. Nitrogen, phosphorous and eutrophication in the coastal marine environment. Science,1971,N.Y.171,1008-1013
    Estep K W, Davis P G, Hargraves P E,Sieburth J M. Chloroplast containing microflagellates in natural populations of North Atlantic nanoplankton, their identification and distribution; including a description of five new species of Chrysochromulina(Prymnesiophyceae). Joural of Protistologica,1984,20(4):613-634.
    Fabrice P, Rejean T, Eeic D, Marcel R. Variation of lipid class and fatty acid composition of Chaetoceros muelleri and Isochrysis sp. grownin a semicontinuous system. Aquaculture, 2003,221:393-406.
    Fryxell G A, Hasle G R,Hallegraeff G M, Anderson D M, Cerebella A D. Manual on harmful marine microalgae. Paris:Imprimerie Landais(United Nations Educational, Scientific and Cultural Organization), Taxonomy of harmful diatoms,2004:465-510.
    GaoY H, chen C P, Li Y. Marine nanoplanktonic diatoms from coastal waters of
    HongKong.Perspective on Marine Environment Change in Hong Kong and Southern China, 1977-2001(ed.B.Morton),2003,93-107.
    Gieskes W W C, Kraay G W. Dominance of Cryptophyceae during the phytoplankton spring bloom in the central North Sea detected by HPLC analysis of pigments, Marine Biology, 1983,75(2):179-185. Giovannoni S J,Britschgi T B,Moyer C L, et al. Genetic diveristy in Sargasso Sea bacterioplankton. Nature.1990,45:60-63.
    Hasle G R, Lange C B. Freshwater and brackish water Thalassiosira:taxa with tangentially undulated valves,Phycologia,1989,28:120-130.
    Hasle G R. Some marine plankton genera and the diatom family Thalassiosiraceae. Nova,Hedwigia,Beih.1978 45:3-439.
    Hecky, Kilham, Total Nitrogen, Total Phosphorus, and Nutrient Limitation in Lakes and Oceans: Is There a Common Relationship, Limnology and Oceanography.1998,1213-1223.
    Hildebr M. Perspective of manipulating diatom silica nanostruetore.J Nanosci. Nanotechnol.2005, 5:146-157.
    Huang B Q, Hong H S,Wang H L. Size fractionated primary productivity and the phytoplankton bacteria relationship in the Taiwan Strait. Marine Ecology Progress Series.1999,183:29-38.
    Hustedt F. Bacilllariophyta, A. Pascher, Die Susswasser-Flora von Mitteleuropas,Jena, Heft 1930, 10:1-466.
    Joel C. Goldman. steady state growth and ammonium uptake of a fast growing diatom.Limnology and Oceanography,1978, (23) 4:695-703.
    Jochem F J, Pollehne F, Zeitzschel B. Productivity regime and phytop lank ton size structrue in the Arabian Sea.Deep Sea Research,1993,40 (3):711-735.
    Karsten G. Abteilluing Bacillariophyta in Engler and A. Prantl,Die Naturlicheu Pflanen familen, Leipzig,1928,2:105-303.
    Kerr S R. Theory of size distribution in ecological communities. Fish. Research.,1974,31: 1856-1962.
    Kirchman D L,Duck low H W,M cCarthy J J, et al. Biomass and nitrogen up take by hetero trophic bacteria during the spring phytoplank ton bloom in the North A tlantic Ocean. Deep Sea R esearch,1994,41 (56):879-895.
    Larry H.Weber,Sayed Z.El-Sayed Contributions of the net, nano-and picoplankton to the phytoplankton standing crop and primary productivity in the Southern Ocean. Journal of Plankton Research,1987,9, (5):973-994.
    Lebour M V, The palnktonic Diatoms of Northern Seas, Ray Soc., London,1930,1-244.
    Lebouteiller A,Blanchot J, Rodier. Size distribution pattern of phytoplankton in the western Pacific:towards a generation for tropical open ocean. Deep Sea Research,1992,39:501-509.
    Mann A, Report on the diatos of the Albatross Voyages in the Pacific Ocean,1888-1904. Contribution from the US national Herbarium,1907,10(5):221-419.
    Maximino D, Esther G, Magda V,Jordi C. Morphological variability in three populations of the dinoflagellate Alexandrium taylori, Journal of plankton research,1997,19 (6):749-757.
    Mazumder A, McQueen D J, Taylor W D, Lean D R S, Dickman M D, Micro-and mesozooplankton grazing on natural pico-and nanoplankton in contrasting plankton communities produced by planktivore manipulation and fertilization. Marine cology,1990, 118(3):257-282.
    McCarthy J J, Rowland W, Taylor, Loftus M.E. Significance of nanoplankton in the Chesapeake Bay estuary and problems associated with the measurement of nanoplankton productivity. Marine Biology,1983,7-16.
    Medlin E K, Elwood H J, Stickel S. Morphological and genetic variation withinn the diatom Skeletonema costatum:evidence for s new species Skeletonema pseudoostatum. Phycol,1991, 27:514-524.
    Mee L D, Espinosa M, Diaz G. Paralytic shellfish poisoning with a Gymnodinium catenatum red tide on the Pacific coast of Mexico. Marine environmental research,1998,19 (1):77-92.
    Miyazono A,Odate T,Maita Y. Seasonal functions of cell density of cyanobacteria and other picophytop lank ton inIwanai bay, Japan. Journal of Ocean ography,1992,48:257-266.
    Murphy L S, Haugen E M. The distribution and abundance of phototrophic ultraplankton in the north Atlantic.Lim nol. Ocean ogra.,1985,30:47-58.
    Olson R J, Chisholm S W, Zettler E R. Pigments, Size and distribution of Synechococcus in the north Atlantic and Pacific Ocean. L im nol. Oceanogra.,1990,35:45-58.
    Peta J M, Andre R, Elisabeth L. Palynological records of red tide-producing species in Canada: past trends and implications for the future, Palaeogeography,2002,180,1-3.
    Robert J O, Alexi S, Heidi M. S. An automated submersible flow cytometer for analyzing pico-and nanophytoplankton:FlowCytobot,Marine ecology,1997,50(2):301-315.
    Rogerson A, Defreitasa.S.W, Mcinnes A G. Growth rates and ultrastructure of siliceous setae of Chaetoceros gracilis (Bacillariophyceae). Journal of phycology,1986,22:56-62.
    Ryther, Dunstan. The effects of ammonium and phosphate enrichments on clorophyll a, pigment ratio and species composition of phytoplankton of Vineyard Sound, Marine Biology, 1971,19(1):69-73.
    Ryther J H. The ecology of phytoplankton blooms in Moriches Bay and Great South Bay, Long, Island, New York. Biol. Bull. mar. biol. Lab, Woods Hole,1954,106,198-209.
    Sanders R W, Caron D A, Berninger U G. Relationships between Bacteria and Heterotrophic Nanoplankton in Marine and Fresh Waters:An Inter-Ecosystem Comparison.Marine Ecology Progress Series MESEDT,1992,86(1):1-14.
    Sarno D, Kooistra W H, Medlin L K. Diversity in the genus Skeletonem (bacillariphycea e).Journal of Phycology,2005,41:151-176.
    Savidge G,Boyd P, Pom roy A, et al. Phytoplankton production and biomass estimates in'the northeast Atlantic Ocean,. Deep Sea R esearch,1995,42:500~617.
    Scala S, Bowler C.Molecular insights into the novel aspeets of diatom biology.Cell.Mol. Life Sci. 2001,58:66-73.
    Sieburth..Oceanic amoebae from the North Atlantic:culture, distribution, and taxonomy Clone. Transactions of the American Microscopical Society,.1978,97(1):73-88.
    Simonsen R. Ideas for a more natural system of the Centric diatoms.beih.Nova Hedwigia, 1972,39:37-54.
    Stoecker D K. Particle production by planktonic ciliates. Linm ol. Oceanog ra.,1984,29: 930-940.
    Stoecker D K, Michaels A,Davis L H. Large proortion of marine plankton ciliates are found to contain functional chlorop lasts. N ature,1987,326:790-792.
    Syvertsen E E, Ricard M B.Proceeding of the Eighth International Diatom Symposium. Thalassiosira hispida sp.Nov.marine planktonic diatom,1986:33-42.
    Tilman.Nitrogen mineralization and nitrification in four Minnesota old fields
    Oecologia (Berlin),1987,71:481~85.
    Van Heurck H. Synopsis des Diatomees de Belgique, Anvers.Edite par lauteur,2 vol.,text and atlas, textl-235,pl.1-3,Table alphabetique,1-120(1885),Atlas,pl.l-132,with descr. leav.and 3 suppl. Pls.(1880-1)
    Verity P G, Stoecker D K, Sierack iM E, et al. Grazing, growth and mortality of microzoop lankton during the 1989 North Atlantic spring bloom at 47N,18W. Deep Sea Research, 1993,40(9):1793-1814.
    Wen K, Ortmann A C, Suttle C A. Accurate estimation of viral abundance by epifluo-rescence microscopy. Applied and Environmental Microbiology,2004,70:3862-3867.
    白洁,姜艳,孙军,等.黄海冷水团邻近海域浮游植物的昼夜垂直变化.中国海洋大学学报:自然科学版,2007,37(6):1013-1016.
    白晓歌,汪岷,梁彦韬,江雪娇,王 芳,杨琳运用荧光显微技术分析北黄海夏季浮游病毒的分布.中国海洋大学学报,2008,8,(4):609-613.
    曹振锐,黄邦钦,刘媛,洪华生,谢廷贵.厦门海域分粒级叶绿素a含量的分布特征.台湾海峡,2005,24(4):493-501.
    陈月琴,屈良鹄.海洋亚历山大藻属种间界定的分子标准.中山大学学报(自然科学版),1999,38(1):7-11.
    蔡昱明,宁修仁,朱根海.君贤.南极普里兹湾浮游植物现存量与初级生产力粒级结构和新生产力研究.海洋学报,2005,27(4):630-641.
    董婧,周纬,李培军,等.黄海北部对虾放流区的浮游植物群落结构.海洋环境科学,1999,18(1):77-80.
    董婧,李培军,刘悦,等.黄海北部近岸浮游植物生态特征分析.水产科学,1999,18(5):12-15.
    董婧,刘海映,毕远溥,等.黄海北部近岸的浮游甲藻生态.海洋水产研究,2002,23(4):46 -50.
    董婧,李培军,刘悦,等.黄海北部近岸浮游植物生态特征分析.水产科学,1999,918(5):12-15.
    程金凤.中国沿海几种典型微型硅藻的形态、遗传差异与系统进化研究厦门:厦门大学图书馆,2007.
    程兆第,高亚辉,刘师成.福建沿海微型硅藻.海洋出版社,1993,8-9.程兆第,高亚辉.厦门港微型硅藻(Ⅰ)植物分类学报,1993,31(2):197-200.高亚辉.厦门港微型浮游生物研究.厦门大学理学博士学位论文,1990.
    高亚辉,程兆第,金德祥.小盘藻属,我国微型硅藻类的一个新记录属.植物分类学报,1992,30(3):273-76.
    高亚辉,程兆第,金德祥.小盘藻属二新种和小环藻属—新变种明厦门大学学报,1992b3(1):7-78.
    高亚辉,程兆第,金德祥.海链藻属一新种和二新变种.厦门大学学报,1992c,31(3):292-294.高亚辉,焦念志.胶州湾发现的我国海链藻属(硅藻门)的四个新记录种.胶洲湾
    生态学研究(主编:董金海、焦念志),北京:科学出版社,1995,90-95.
    高亚辉,虞秋波,齐雨藻,邹景忠,陆斗定,李扬,陈长平.长江口附近海域春季浮游硅藻的种类组成和生态分布.应月生态学报,2003,14(7):1044-1048.
    高亚辉.厦门港微型浮游生物研究.厦门:厦门大学图书馆,1990.
    郭玉洁,钱树本.中国低栖硅藻类.北京:科学出版社.2003,276-280.
    洪华生,黄邦钦.厦门西海域秋季浮游植物现存量、光合作用率的分级研究[J].厦门
    大学学报,1994,33(Sup):12-16.
    黄邦钦,刘媛,陈纪新,等.东海、黄海浮游植物生物量的粒级结构及时空分布.海洋学报,2006,28(2):156-164.
    黄健,梁姗,秦洁,利用ITS-5.8S rDNA序列对2株海洋亚历山大藻进行的分子鉴定,中国海洋大学学报,38(2):2008,286-290
    黄文祥,沈亮夫,朱琳.黄海的浮游植物.海洋环境科学,1984,3(3):19-28.
    金德祥,程兆第,刘师成,马俊亨,中国海洋低栖硅藻类,海洋出版社,1992.
    金德祥,程兆第,林均民,刘师成,中国海洋低栖硅藻类,海洋出版社,1982.
    金德祥,陈金环,黄凯歌.中国海洋浮游硅藻类.上海:上海科学技术出版社.1965.
    金翔龙,喻普之.北黄海构造轮廓.黄东海地质.北京:科学出版社,1982:23-291
    康元德.黄海浮游植物的生态特点及其与渔业的关系.海洋水产研究,1986,7:103-107.
    李海涛,杨官品,刘永健,海链藻目核糖体RNA基因片段的扩增及多样性分析,2006,海洋科学,30(5):40-44
    李秀芹于志刚甄毓蔡青松米铁柱李荣秀,应用双特异分子探针技术定性定量检测圆海链藻(Thalassiosira rotula),2009,海洋与湖沼,1:12-18
    李扬.中国近海海域微型硅藻的生态学特征和分类学研究.厦门:厦门大学图书馆,2006.
    李杨,高亚辉,吕颂辉.我国海链藻属的新记录种类Ⅰ.厦门大学学报(自然科学版),2008,47(2):286-290.
    李扬.东、黄海微型硅藻分类、生态及其典型种遗传差异的研究,厦门大学理学硕士学位论文.2003.
    李扬.中国近海海域微型硅藻的生态学特征和分类学研究.厦门大学理学硕士学位论文..2006.
    李扬,高亚辉,吕颂辉,我国海链藻属的新记录种类Ⅰ、Ⅱ,2008厦门大学学报,47(2):286-294
    南春容,董双林.大型海藻与海洋微藻间竞争研究进展.海洋科学,2004年,28(11):64-66.
    钱树本,陈国蔚,汤庭耀.山东省荣城县近海浮游植物的研究.山东海洋学院学报,1981,11(3):52-70.
    王鉴,李桂珍,王秀艳.长海县水域浮游植物数量分布和季节变化.水产科学,1995,14(2):23-27.
    王俊.黄海春季浮游植物的调查研究.海洋水产研究,2001,22(1):56-61.
    王俊.黄海秋、冬季浮游植物的调查研究.海洋水产研究,2003,24(1):15-23.
    王晓艳,杨品红,谢春华,李梦军,吴维新.珍珠池与鱼池藻类昼夜变化节律的研究.内陆水产,2004,3.
    王勇,焦念志.北黄海浮游植物营养盐限制的初步研究.海洋与湖沼,1999,30(5):512-518.
    王金辉,黄秀清,刘阿成,张有份.长江口及邻近水域的生物多样性变化趋势分析,海洋通报,2004,23(1):32-39.
    孙军,刘东艳,杨世民,郭健,钱树本.渤海中部和渤海海峡及邻近海域浮游植物群落结构的初步研究.海洋与湖沼,2002,33,(5):461-471.
    孙儒泳.动物生态学原理第二版.北京:北京师范大学出版社,1992.356~357
    孙颖民,石玉,郝彦周.水产生物饵料培养实用技术手册.北京中国农业出版社,1999,24-25.
    田治立,王长海,纤细角毛藻的光生物反应器培养,海洋通报,2005,24(1):35-39
    叶志娟,刘兆普,王长海,牟氏角毛藻在海水养殖废水中的生长及其对废水的净化作用,海洋环境科学2006,25(3):9-12
    于洪贤,曲翠,马成学.牡丹江浮游植物丰度与环境因子的相关性分析.湿地科学,2008,6,(2):293-297.
    俞建銮,李瑞香.渤海、黄海浮游植物生态的研究.黄渤海海洋,1993,11(3):52-59.
    臧家业,汤毓祥,邹娥梅,等.黄海环流的分析.科学通报,2001,46(增刊):7-15
    张宝玉,王广策,吕颂辉,齐雨藻,邹景忠,曾呈奎.三株赤潮硅藻5.8S rDNA及其转录间隔区(ITS)的克隆和序列分析,海洋学报,2006,28(1):111-117,.
    张菊平,张兴志.植物游离细胞的扫描电镜样品的制备法.生物学通报,2008,43(8):56.
    张旭,王超,胡志晖.连云港近岸海域春季浮游植物多样性和群落结构.海洋环境科学,2008,27(1):83-85.
    张以恳,1996夏季北黄海冷水团多年变化特征分析,海洋预报,13(4):16-21
    赵曾春,黄文祥.北黄海五号倾废区浮游植物生态初探.海洋环境科学,1991,10(4):7-13.
    钟远,金相灿,孙凌,等.磷及环境因子对太湖梅梁湾藻类生长及其群落影响.城市环境与城市生态,2005,18(6):32-36.
    朱明,张学成,茅云翔,阎斌伦,滕亚娟.温度、盐度及光照强度对海链藻(Thalassiosira sp.)生长的影响,海洋学报,2003,27(12):58-61
    朱树屏,郭玉洁.烟台、威海鲐鱼渔场及其附近海区角毛硅藻属的研究.海洋与湖沼,1957,1(1):27-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700