用户名: 密码: 验证码:
胶州湾微微型浮游植物的时空分布
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微微型浮游植物是指粒径大小介于0.22μm和3μm之间的浮游植物,广泛存在于世界各大海域,包括微微型光合原核浮游植物和微微型真核浮游植物。他们是海洋微生物群落的重要组成部分,是海洋食物网中的重要生产者,在维持海洋生态系统的稳定,推动海洋生态系统的物质循环和能量流动方面起着十分重要的作用。对微微型浮游生物在不同的海域不同环境的丰度进行分析研究,可以掌握微微型浮游生物的分布规律以及生态学地位,这为将来探讨人类活动对海洋环境、海洋微生物多样性的影响奠定基础,为环境评价等提供数据参考及理论依据。
     胶州湾是一个深入青岛市辖区陆域的半封闭内湾,湾口与黄海相连,有多条河流汇集于此,由于其特殊的地理环境该海域受人类活动的影响较大,是中国沿海具有一定代表性的海域。本文利用流式细胞仪对胶州湾微微型浮游植物的丰度进行了研究,检测到了聚球藻和微微型真核浮游植物,未检测到原绿球藻。其中,聚球藻的丰度在1.317×103个mL~(-1)~3.26×104个mL~(-1)之间,高值区分布在湾内远岸海域;各季节表层聚球藻丰度始终高于底层,垂直分布差异较为明显;夏季各水层丰度变化波动较大,但变化频率一致,在中午和夜间分别出现两个峰值;四季丰度分布情况为:夏季>秋季>春季>冬季。微微型真核浮游植物的丰度分布在1.028×103个mL~(-1)~3.651×104个mL~(-1)范围内,主要活跃于在近岸海域;在四个季节表层和底层的丰度差异不明显;夏季表层、10m层以及底层的丰度波动明显,变化规律较一致;四个季节的丰度变化规律为春季>秋季>夏季>冬季。本实验测得的胶州湾微微型浮游植物四个季节的丰度分布情况与已报道的青岛近海、北黄海以及同纬度大洋海域的微微型浮游植物丰度时空分布规律一致,但是本实验检测到胶州湾的聚球藻和微微型真核浮游植物的丰度值普遍较高。分析其原因主要是胶州湾深入市区,有多条河流汇流于此,且在水位较浅的海域布有水产养殖区,受人类活动的影响胶州湾内营养盐浓度普遍较高。
Picophytoplankton (varying from 0.22to0.3μm) including prokaryotes and picoeukaryotes are widely distributed in the oceans all over the world .They are important portions of plankton an play an crucial role in the maintaining of stablilty of ecosystem in the ocean and the carbon flow an energy flow.Studying of the abundance and diversity of picophytopla- nkton in different locations and environment will help in the understanding of the rules of the distribution and the ecological status of picophytoplankton.And the knowledge if abundance and diversity of picophytoplankton will help us to make a solid foundation tof marine environment and learn about the impact of human activities on biological diversity .
     Jiaozhou bay is a semi-enclosed sea in Qingdao city ,connected with the Yellow Sea, brought together a number of rivers here. Due to the special geographical environment ,it’s a typical maritime space in chinese territorial waters . By using flow cytometry,we studied the abundance of picophytoplankton in this area. And it turns out, Synechococcus and Picoeukaryotes both had rich quantities,while Prochlorococcus was not detected . In the four seasons , the abundance of Synechococcus was about 1.317×103 particles mL~(-1)~ 5.326×104 particles mL~(-1),the maximum value showed in summer and located in the far-shore waters of the Bay; the abundance of Synechococcus living on the surface was always higher than those in the bottom, and there was obvious difference in vertical distribution; The abundance of Synechococcus fluctuated in nycthemeron , in different layers they changes in the same frequency, two peaks showed in noon and night respectively.The quantity of Picoeukaryotes ranged from 1.028×103 particles mL~(-1)to 3.651×104 particles mL~(-1), in spring the number jumped to its highest,and we also found the Picoeukaryotes were mainly active in the coastal waters; In four seasons there was no significant difference between the abundances of Picoeukaryotes living on surface and in bottom;The abundance of Picoeukaryotes over day and night also varied distinctly .
     The distribution of Picophytoplankton in Jizaozhou Bay we got from this experiment is all about the same with that of Picophytoplankton in Qingdao coastal waters, the North Yellow Sea and the ocean on the same latitude,while the population quantity of Picophytoplankton is larger.The main reason is about Jiaozhou Bay located in urban area ,that impact of the human activities change the hyraulic index of the waters.
引文
[1] Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, West-Johnsrud L, and Zettler ER. Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Archives of Microbiology, 1992,157 (3): 297~300
    [2] Waterbury JB, Watson SW, Guillard RRL, and Brand LE. Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature, 1979, 277: 293~294
    [3] Rosmarie Rippka, Josette Deruelles, John B. Waterbury, Michael Herdman and Roger Y. Stanier. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. J Gen Microbiol, 1979, 111: 1~61
    [4] Johnson PW, and McN J. Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnology and Oceanography, 1979.928~935
    [5] Sallie W. Chisholm. Phytoplankton size. Primary productivity and biogeochemical cycles in the sea, 1992, 37:213~237
    [6] Waterbury, J.B., S.W. Watson, F.W. Valois, and D.G. Franks. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Can. Bull. Fish. Aquat. Sci. 214:71~120
    [7] Murphy LS, and Haugen EM. The distribution and abundance of phototrophic ultraplankton in the North Atlantic. Limnology and oceanography, 1985, 30 (1): 47~58
    [8] Robineau B, Legendre L, Michel C, Budeus G, Kattner G, Schneider W, and Pesant S. Ultraphytoplankton abundances and chlorophyll a concentrations in ice-covered waters of northern seas. Journal of Plankton Research, 1999, 21 (4): 735~755
    [9] Gradinger R, Weisse T, and Pillen T. Significance of picocyanobacteria in the Red Sea and the Gulf of Aden. Botanica marina, 1992, 35 (3): 245~250
    [10] Partensky F, Blanchot J, Lantoine F, Neveux J, and Marie D. Vertical structure of picophytoplankton at different trophic sites of the tropical northeastern Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 1996, 43 (8): 1191~1213
    [11] Olson RJ, Chisholm SW, Zettler ER, Altabet MA, and Dusenberry JA. Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep Sea Research Part A. Oceanographic Research Papers, 1990, 37 (6): 1033~1051
    [12] Campbell L, and Vaulot D. Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep Sea Research Part I: Oceanographic Research Papers, 1993, 40 (10): 2043~2060
    [13] Bronwyn R. Robertson, Naoaki Tezuka and Makoto M. Watanabe. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and re?ect phycobilin content. International Journal of Systematic and Evolutionary Microbiology, 2001, 51: 861~871
    [14] Gerardo Toledo, Brian Palenik. Synechococcus Diversity in the California Current as Seen by RNA Polymerase (rpoC1) Gene Sequences of Isolated Strains. Appl. Environ. Microbiol., 1997,63(11): 4298~4303
    [15] Carola E. W. Leitsch, Klaus V. Kowallik, Susan Douglas. The atpA gene cluster of guillardia theta (cryptophyta): A piece in the puzzle of chloroplast genome evolution. Journal of Phycology, 1999, 35(1):128~135
    [16] J Neveux, F Lantoine, D Vaulot. Phycoerythrins in the southern tropical and equatorialPacific Ocean: Evidence for new cyanobacterial types: Biochemical conditions in the Equatorial Pacific in late 1994, 1999, 104(C2): 3311~3321
    [17] Antonia Herrero,Enrique Flores,Flores García Flores. Carbon acquisition by cyanobacteria: mechanisms, comparative genomics, and evolution.2008.309~322
    [18]汪晶,康瑞娟,施定基,丛威,蔡昭铃.有机碳源对转hTNF-α基因聚球藻生长和光合作用的影响.植物生理与分子生物学学报, 2003, 29(5): 36~38
    [19] Sieburth J. McN, and Davis,P.G. The role of heterotrophic nanoplankton in the grazing and nurturing of planktonic bacteria in the Sargasso and Caribbean Seas. Annales de I'lnstitut Oceanographique, 1982, 58(S): 285~296
    [20] W. W. C. Gieskes and G. W. Kraay. Dominance of Cryptophyceae during the phytoplankton spring bloom in the central North Sea detected by HPLC analysis of pigments. Marine Biology, 1983, 75(2-3): 179~185
    [21] Olson RJ, CW Watras, SW Chisholm. Patterns ofindividual cell growth in marine centric diatoms. J Gen Microbiol, 1986, 132: 1197~1204
    [22] Liu HB, Campbell L, Landry MR. Growth and mortality rates of Prochlorococcus and Synechococcus measured with a selective inhibitor technique. Marine ecology-Progress series, 1995, 116(1): 277~287
    [23] F.Partensky, W. R. Hess, and D. Vaulot. Prochlorococcus, a Marine Photosynthetic Prokaryote of Global Significance. Microbiology and Molecular Biology Reviews, 1999.63(1): 106~127
    [24] Hongbin Liu, Hector A. Nolla, Lisa Campbell. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aqual Micorb Ecol, 1997, 12: 39~47
    [25] Nyree J. West and David J. Scanlan. Niche-Partitioning of Prochlorococcus Populations in a Stratified Water Column in the Eastern North Atlantic Ocean. Applied and Environmental Microbiology, 1999, 65(6): 2585~2591
    [26] Jim Aiken, Nick J. Hardman-Mountford, Ray Barlow, James Fishwick,Takafumi Hirata,and Tim Smyth. Functional links between bioenergetics and bio-optical traits of phytoplankton taxonomic groups: an overarching hypothesis with applications for ocean colour remote sensing. Journal Plankton Research, 2008, 30(2): 165~181
    [27] Zackary I. Johnson, Erik R. Zinser, Allison Coe, Nathan P. McNulty, E. Malcolm S.Woodward and Sallie W. Chisholm.Niche Partitioning Among Prochlorococcus Ecotypes Along Ocean-Scale Environmental Gradients. Science, 2006, 311: 1737~1740
    [28] L. R. Moore, S. W. Chisholm. Photophysiology of the marine cyanobacterium Prochlorococcus: Ecotypic differences among cultured isolates. Limnol Oceangr, 1999, 44(3): 628~638
    [29] Campbell.L, Nollah. A, Vaulot.D. The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnol Oceangr, 1994, 39(4): 954~961
    [30] F Partensky, J Blanchot.Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters : a review . 1999,19,457~475
    [31] Wolfgang R. Hess, Gabrielle Rocap, Claire S. Ting, Frank Larimer, Stephanie Stilwagen, Jane Lamerdin and Sallie W. Chisholm. The photosynthetic apparatus of Prochlorococcus: Insights through comparative genomics. Photosybthesis research, 2001, 70(1): 53~71
    [32] S. W. Jeffrey, S. W. Wright and M. Zapata.Recent advances in HPLC pigment analysis ofphytoplankton. Marine and Freshwater Research, 1999, 50(8): 879~896
    [33] Warwick F. Vincent. Tolerance in Cyanobacteria and Life in the Cryosphere. Algae and Cyanobacteria in Extreme Environments, 2007, 11(4): 287~301
    [34] Zhi Jian Jiang, Xiao-Pin Huang, Jing-Ping Zhang. Effects of CO2 Enrichment on Photosynthesis, Growth, and Biochemical Composition of Seagrass Thalassia hemprichii (Ehrenb.) Aschers. Journal of Intergrative Plant Biology, 2010, 52(10): 904~913
    [35] Simon.N, Barlow.RG, Marie.D, Partensky.F, Vaulot.D. Characterization of oceanic photosynthetic picoeukaryotes by flow cytometry. Journal of Phycology, 1994, 30(6): 922~935
    [36]汪岷,白晓歌,梁彦韬,王芳,江雪娇,郭永坚,杨帆.北黄海夏季微微型浮游植物的分布.植物生态学报, 2008, 32 (5): 1184~1193
    [37] Worden A.Z., Picoeukaryote diversity in coastal waters of the Pacific Ocean. Aquatic microbial ecology, 2006, 43: 165~175
    [38] Nyree J. West, Wilhelm A. Sch?nhuber, Nicholas J. Fuller . Closely related Prochlorococcus genotypes show remarkably different depth distributions in two oceanic regions as revealed by in situ hybridization using 16S rRNA-targeted oligonucleotides.EM.2001,147:1734~1744
    [39] Not F, Latasab M, Scharek R, Vipreya M, Karleskinda P, Balagueb V, Ontoria-Oviedo I, Cuminob A, Goetzed E, and Vaulota D. Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes. Deep-Sea Research I: Oceanographic Research Papers, 2008, 1(55): 1456~1473
    [40] Worden AZ, Nolan.JK,Palenik.B. Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component. Limnol Oceangr, 2004, 49(1): 168~179
    [41] Ning XR, and Vaulot D. Simultaneous estimates of Synechococcus spp growth and grazing mortality rates in the English Channel. Chin J Oceanol Limnol, 1996, 14: 8~16.
    [42] Worden AZ, Nolan JK, and Palenik B. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol Oceangr, 2004, 168~179
    [43] Patricia F. Moreira-Turcq and Jean Marie Martin. Characterisation of fine particles by flow cytometry in estuarine and coastal Arctic waters. Journal of Sea Research, 1998, 39(3):217~226
    [44] Evelyne Derelle, Conchita Ferraz, Stephane Rombauts, Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features . PNAS,2006,103(31):, 11647-11652.
    [45] Jie Yuan, Min-Yi Chen, Peng Shao, Hui Zhou, Yue-Qin Chen, Liang-Hu Qu. Genetic diversity of small eukaryotes from the coastal waters of Nansha Islands in China. FEMS Microbiology Letters, 2004, 2: 163~170
    [46] Isao Inouye, Mitsuo Chihara. Laboratory culture and taxonomy of Hymenomonas coronata and Ochrosphaera verrucosa (Class Prymnesiophyceae) from the Northwest Pacific. Journal of Plant Research, 1980, 93(3): 195~208
    [47] Monique Turmel,Marie-Christine Gagnon, Charley J. O'Kelly,Christian Otis and Claude Lemieux. The Chloroplast Genomes of the Green Algae Pyramimonas, Monomastix, and Pycnococcus Shed New light on the Evolutionary History of Prasinophytes and the Origin of the Secondary Chloroplasts of Euglenids. Mol Biol Evol, 2009, 26(3): 631~648
    [48]钟瑜,黄良民,黄小平,邱大俊,宋星宇,刘华雪.冬夏季雷州半岛附近海域微微型光合浮游生物的类群变化及环境影响.生态学报, 2009, 29(6): 3000~3008
    [49]郝彦菊,唐丹玲.大亚湾浮游植物群落结构变化及其对水温上升的响应.生态环境学报, 2010, 19(8): 1749~1800
    [50] Yuan Zhao, Li Zhao, Tian Xiao, Sanjun Zhao, Jiliang Xuan, Chaolun Li and Xiuren Ning. Spatial and temporal variation of picoplankton distribution in the Yellow Sea, China. Chin J Oceanol Limnol, 2011, 29(1):150~162
    [51] Erik R. Zinser, Allison Coe, Zackary I. Johnson, Adam C. Martiny, Nicholas J. Fuller, David J. Scanlan, and Sallie W. Chisholm. Prochlorococcus Ecotype Abundances in the North Atlantic Ocean As Revealed by an Improved Quantitative PCR Method. Applied and Environmental Microbiology, 2006, 72(1): 723~732
    [52] Fiala M, Kopczynska EE, Jeandel C, Oriol L, and Vetion G. Seasonal and interannual variability of size-fractionated phytoplankton biomass and community structure at station Kerfix, off the Kerguelen Islands, Antarctica. Journal of Plankton Research, 1998, 20(7): 1341~1356
    [53] Moore LR., Goericke. R,Chisholm, SW. Comparative physiology of Synechococcus and Prochlorococcus: Influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Marine ecology-Progress series, 1995, 116: 259~275
    [54] Liu H, Suzuki K, Minami C, Saino T, and Watanabe M. Picoplankton community structure in the subarctic Pacific Ocean and the Bering Sea during summer 1999. Marine ecology- Progress series, 2002, 237: 1~14
    [55] Moon-van der Staay, S.Y., G. W. M. van der Staay, L. Guillow, D. Vaulot, H. Claustre, L. K. Medlin, Abundance and diversity of prymnesiophytes in the picoplankton community from the equatorial Pacific Ocean inferred from 18S rDNA sequences. Limnol Oceangr, 2001, 45: 98~109
    [56]孙晓庆,董树刚,汤志宏.营养盐和光照对浮游植物群落结构的影响.南方水产, 2008, 4(1): 1~9
    [57] Béatrice Bec, Julie Husseini-Ratrema, Yves Collos,Philippe Souchu, and AndréVaquer. Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: emphasis on the picoeukaryote community. Journal of Plankton Research, 2005, 27(9): 881~894
    [58] Mikhail V. Zubkov, Bernhard M. Fuchs, Glen A. Tarran, Peter H. Burkill, and Rudolf Amann. High Rate of Uptake of Organic Nitrogen Compounds by Prochlorococcus Cyanobacteria as a Key to Their Dominance in Oligotrophic Oceanic Waters. Applied and Environmental Microbiology, 2003, 69(2): 1299~1304
    [59] Sunda WG, Huntsman SA. Interrelated Influence of Iron, Light and Cell-Size on Marine-Phytoplankton Growth. Nature, 1997, 390: 389~392
    [60] Timmermans, K. R.,van der Wagt B., Veldhuis, M. J. W., Maatman, A., de Baar, H. J. W. Physiological responses of three species of marine pico-phytoplankton to ammonium, phosphate, iron and light limitation. Journal of Sea Research, 2005, 53(1): 109~120
    [61] Landry. MR,Barber.RT ,Bidigare. RR,Chai. Fei , Coale.KH , Dam.HG,Lewis. MR, Lindley. ST ,McCarthy.JJ,Roman. MR ,Stoecker.DK ,Verity.PG,White.JR.Iron and grazing constraints on primary production in the central equatorial Pacific: An EqPac synthesis. Limnol Oceangr, 1997, 42(3): 405~418
    [62]梁彦韬.青岛近海浮游病毒、微微型浮游植物、异养细菌的丰度变化及其与环境相关性研究: [硕士学位论文].青岛:中国海洋大学生物系,2008
    [63]汪岷,梁彦韬,白晓歌,江雪娇,王芳,乔倩.青岛近海及其临近海域冬季微微型浮游植物的分布.应用生态学报, 2008, 19(11): 2428~2434
    [64]汪岷,梁彦韬,白晓歌,江雪娇,王芳,乔倩.青岛近海及其邻近海域夏季微微型浮游植物丰度的分析.中国海洋大学学报, 2008, 38(3): 403~418
    [65]韩希福,王荣.海洋浮游动物对浮游植物水华的摄食与调控用.海洋科学, 2001, 25(10): 31~33
    [66]王芳,汪岷,白晓歌,梁彦韬,闫群,杨琳,刘冠群.应用DGGE技术分析北黄海和青岛近海藻类DNA病毒遗传多样性.海洋与湖沼, 2010, 41(4): 519~523
    [67] Joint, IR, Pipe, RK .An electron microscope study of a natural population of picoplankton from the Celtic Sea. Marine ecology-Progress series, 1984, 20(2): 113~118
    [68] B. C. Booth. Size classes and major taxonomic groups of phytoplankton at two locations in the subarctic pacific ocean in May and August, 1984. Marine Biology, 1988, 97(2): 275~286
    [69] Franca Palumbo, Giuliano Ziglio, Andrévan der Beken. Phytoplankton Analysis Using Flow Cytometry. Sgorbati, S., 2007
    [70] CM. Yentsch, PK. Horan, K. Muirhead. Flow cytometry and cell sorting: a technique for analysis and sorting of aquatic particles. Limnol Oceangr, 1983, 28(6): 1275~1280
    [71] Alexis Dufresne, Marcel Salanoubat, Frédéric Partensky, et al. Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. , PNAS, 2003, 100(17): 9647~9649
    [72]晁敏,张利华,张经.流式细胞计分析海洋微微型浮游生物样品固定以及贮存方法.应用与环境生物学报, 2005, 11(4): 448~452
    [73]晁敏,张利华,张经.流式细胞计在海洋浮游植物研究中的应用.海洋科学, 2003, 27(4): 18~22
    [74]沃革登,宁修仁.英吉利海峡蓝细菌增长速率和被摄食速率的测定.海洋学报, 1992, 14(4): 84~93
    [75]焦念志,杨燕辉.四类海洋超微型浮游生物的同步监测.海洋与湖沼, 1990, 30(5): 506~511
    [76]白晓歌.北黄海浮游病毒的丰度变化及与微微型浮游植物、异养细菌相关性研究: [硕士学位论文].青岛:中国海洋大学生物系, 2007
    [77] Seung Yeo Moon-van der Staay, Rupert De Wachter & Daniel Vaulot. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature, 2001, 409: 607~610
    [78] Khadidja Romari, Daniel Vaulot. Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. Limnol Oceangr, 2004, 49(3): 784~798
    [79] Countway PD, Gast RJ, Savai P, Caron DA. Protistan diversity estimates based on 18S rDNA from seawater incubations in the Western North Atlantic. Journal of Eukaryotic Microbiology, 2005, 52(2): 95~106
    [80] S.S.Golden, M.S.Nalty and D.S.Cho. Genetic relationship of two highly studied Synechococcus strains designated Anacystis nidulans. J Bacteriol., 1989, 171(1): 24~29
    [81] SL Pichard, L Campbell and JH Paul. Diversity of the ribulose bisphosphate carboxylase/oxygenase form I gene (rbcL) in natural phytoplankton communities. Applied and Environmental Microbiology, 1997, 63(9): 3600~3606
    [82]鲍磊,陈纪新,黄邦钦.应用变性梯度凝胶电泳研究厦门西海域超微型真核浮游生物多样性.海洋环境科学, 2007, 26(6): 504~509
    [83]袁洁,邵鹏,陈月琴,蔡创华,屈良鹄.南沙群岛微型与超微型真核藻类遗传多样性的初步研究.海洋科学, 2003, 27(7): 43~47
    [84]江雪娇,北黄海微微型浮游植物的丰度及微微型真核浮游生物分子多样性研究: [硕士学位论文].青岛:中国海洋大学生物系, 2009
    [85]张志南,周红.胶州湾小型底栖生物的丰度和生物量.海洋与湖沼, 2001, 32(2): 139~147
    [86]吴玉霖,孙松,张永山,张芳.胶州湾浮游植物数量长期动态变化的研究.海洋与湖沼, 2004, 35(6): 518~523
    [87]潘胜军,沈志良.胶州湾叶绿素a浓度及浮游植物的粒级组成.应用生态学报, 2009, 10: 2468~2474
    [88] Blanchot J, Andre JM, Navarette C, Neveux J, and Radenac MH. Picophytoplankton in the equatorial Pacific: vertical distributions in the warm pool and in the high nutrient low chlorophyll conditions. Deep Sea Research Part I: Oceanographic Research Papers, 2001, 48 (1): 297~314
    [89]赵亮,魏皓.胶州湾水交换的数值研究.海洋与湖沼, 2002, 33(1): 23~29
    [90] Coale. KH, Johnson. KS, Fitzwater. SE. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the Equatorial Pacific Ocean Nature,1996,383: 495-501.
    [91] Campbell L, E.J. Carpenter. Diel patterns of cell division and growth rates of Synechococcus spp. Marine ecology-Progress series, 1986, 32: 139~148
    [92]焦念志,陈念红.原绿球藻—海洋生态学研究的新领域.海洋科学,1995,4:9~12.
    [93] Miho Hirose, Toshiya Katano and Shin-Ichi Nakano. Growth and grazing mortality rates of Prochlorococcus, Synechococcus and eukaryotic picophytoplankton in a bay of the Uwa Sea, Japan. Journal of Plankton Research,200830(3):241~250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700