用户名: 密码: 验证码:
高位精养模式日本囊对虾生长及浮游生物演替规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过测定日本囊对虾高位池养殖全过程的体重、体长、头胸甲长等,拟合形态性状生长曲线,评定其生长特性及规律,旨在为高位池养殖日本囊对虾提供数据支持;同时借鉴在其他水生动物种群形态分析中应用较为成熟的多元分析法,分析了日本囊对虾随着月龄的增长,其体长、全长、头胸甲长、头胸甲高、头胸甲宽、第一腹节背高、第三腹节背高、第一腹节背宽、第三腹节背宽、第六腹节长和体重的相对增长规律;通过对日本囊对虾整个养殖周期池中浮游生物种类、数量进行研究以及对养殖后期虾池中浮游生物的昼夜垂直迁移变化进行了研究,试图了解日本囊对虾养殖水体中的浮游生物群落组成及多样性的基本特征和动态,以及养殖后期浮游生物的昼夜垂直迁移,以期为日本囊对虾高产养殖提供支撑。
     研究表明:日本囊对虾体长和体重呈幂函数关系:W=1.182×10-5L3.0235,b接近于3,呈等速生长;其生长分快速生长期30~60日龄、稳定生长期60~90日龄、缓慢生长期90~130日龄3个时期;生长早、中期(50~90日龄左右)肥满度逐渐升高(1.14~1. 23),趋势显著,之后呈显著下降趋势(1.19~1.14);拟合出日本囊对虾的von Bertallanffy生长方程:Lt=111.796[1-e-0.0123 (t+0.07654)] ,Wt=15.611[1-e-0.0123 (t+0.07654)] 3.0235,体重生长拐点出现在89.9 d。
     不同月龄日本囊对虾各指标间均呈显著正相关(P < 0.01)。1~3月龄日本囊对虾全长与体长的相关系数最大;4月龄日本囊对虾体长与头胸甲宽的相关系数最大;5月龄日本囊对虾体重与体长的相关系数最大。各月龄日本囊对虾的主成分有所不同,1月龄日本囊对虾第一主成分为长度因子,2~3月龄日本囊对虾第一主成分为高度因子,4~5月龄日本囊对虾第一主成分为体重因子。错过最佳生长季节的日本囊对虾的体格大小与其相符的月龄可通过建立的判别方程式来判断,总的判别准确率为92.33 %。
     日本囊对虾养殖过程中,共观测到浮游植物7门26种,其中蓝藻门5种,绿藻门7种,硅藻门7种,裸藻门1种,隐藻门2种,甲藻门2种。养殖前中期,绿藻、硅藻多为优势种,养殖后期,蓝藻、硅藻和绿藻多为优势种。浮游植物种类数量变化趋势为养殖初期种类相对较少,随着养殖时间的延长,种类增多,养殖后期浮游植物种类数量达到高峰。浮游动物4类,其中原生动物8种,桡足类3种,轮虫类2种,其它浮游幼虫3种。养殖前期原生动物、桡足类和轮虫类共为优势种,养殖中期原生动物和轮虫共为优势种,养殖后期仅以原生动物为优势种。浮游动物种类数量变化趋势为养殖初期种类相对较少,随着养殖时间的延长,种类增多,到养殖中期时浮游动物种类数量达到高峰,养殖后期种类数量下降。整个养殖周期中虾池浮游植物与浮游动物的多样性指数均较低,仅分别为1.19~1.30和0.25~0.72,但虾池浮游动物与浮游植物的栖息密度变化趋势较为一致,且在数量方面呈现密切的线性关系,线性系数平均为R2=0.8553。
     日本囊对虾养殖后期,水体中温度、DO的昼夜变化显著(R<0.05),pH值的昼夜变化不显著(R>0.05),而温度、pH值、DO的在各个时间点的区域垂直变化均不显著。氮、磷、COD在各个时间点的区域垂直变化均不显著(R>0.05),氮、磷的昼夜变化不显著(R>0.05),COD昼夜变化显著(R<0.05)。浮游植物总数量C区大于B、A区,各区的昼夜垂直分布规律相似,均为清晨上浮,中午下沉,傍晚时分上浮,午夜时又下沉。浮游植物中的隐藻、裸甲藻、蓝藻均是白天上浮,夜晚下沉;绿藻清晨上浮,午后下沉,傍晚时分上浮,午夜时又下沉;硅藻的分布较均匀,昼夜垂直分布不明显。浮游动物总个体数量的昼夜垂直变化不明显,以个体总数量观,虾池中心部位的C区浮游动物总数量最多,靠近池壁的A区最少。但是,虾池浮游动物中的桡足类、藤壶六肢幼体仍体现出了昼夜垂直迁移规律。桡足类六肢幼体主要集中于30~120 cm水层,哲水蚤、藤壶六肢幼体白天上浮,夜晚下沉,且藤壶六肢幼体傍晚起向虾池中心扩散,原应属于底栖种类的猛水蚤出现了部分白天上浮,晚上下沉的现象,这些都可能与光强以及浮游动物为了适应日本囊对虾昼伏夜出的生活习性,以躲避其捕食有关。
By analyzing the data of body weight, body length and carapace length in the whole culture process of M.japonicus, fitting the growth curve of morphological traits, assessing the growth characteristics and rules of M.japonicus, aim to provide theoretical basis and technical parameters for the actual breeding process. In the same time, use multivariate analysis to analyze the law of relative growth in body length, total length, carapace length, carapace height, carapace width, first Abdominal segment height, third Abdominal segment height , first Abdominal segment width, third Abdominal segment width, sixth abdominal segment length and weight with the growth of months. Aim to provide theoretical basis for the problems that may arise in M.japonicus breeding. Then through monitoring the type and quantity of plankton in M.japonicus ponds during the whole breeding, monitoring the diurnal vertical migration of plankton in the late breeding, aim to understand the composition and diversity of plankton community and the diurnal vertical migration of plankton.
     The results indicate that:The relationship of body length and weight could be described by the power function: W = 1.182×10-5L3.0235. Value b was close to 3. This means an isometric growth. There were three stages in its growth: Fast growth stage 30-60 days ,Steady growth stage 60-90 days and Aging growth stage 90 days later. The condition factor was gradually increased in a significant trend at early and middle growth stage(1.14-1.23),and later in a gradually decreased trend (1.19- 1.14).The von Bertallanffy equations were as follows: Lt=111.796[1-e-0.0123 (t+0.07654)] ,Wt=15.611[1-e-0.0123 (t+0.07654)] 3.0235. The inflection of body weight growth was about 89.9 days.
     Result shows that the correlation between any two traits of M.japonicus is significant at all tested ages. The correlation coefficient of body length and total length are the maximum among 1-3 months, the correlation coefficient of total length and carapace width are the maximum among 4 months, the correlation coefficient of body length and weight are the maximum among 5 months. The principal components of M.japonicus at diffenrent ages are different. The first principal component of M.japonicus at first month is length factor , from two month of age to three months is height factor, and from four month of age to five months is weight factor. The month age closely related to the size of M.japonicus which has missed the best growing period can be deduced by employing the discriminant equations mentioned in this paper and the results of the discriminant analysis demonstrate that the overall accuracy is 92.33 %.
     A total of 26 species of phytoplankton were identified in the 4 M.japonicus culture ponds belonging to 7 phyla. They included 5 Cyanophyta species, 7 Chlorophyta species, 7 Bacillariophyta species, 1 Euglenophyta species, 2 Cryptophyta species, 2 Pyrrophyta species. In the early and mid farming, Chlorophyta and Bacillariophyta were the dominant species, in the later farming, Cyanophyta, Chlorophyta and Bacillariophyta were the dominant species. Succession of the phytoplankton community was rapid in the pre-rearing period. There were 4 species of zoonplankton identified, which included 8 Protozoa, 3 Copepoda, 2 Rotatoria and 3 Others larvas. In the early farming, Protozoa, Copepoda and Rotatoria were the dominant species, in the mid farming, Protozoa and Rotatoria were the dominant species, in the later farming, Protozoa was the dominant species. Succession of the zoonplankton community was rapid in the pre-rearing period, and reached a peak in the mid-period, then fell in the last period. The biodiversity index of phytoplankton and zoonplankton were lower throughout the whole period, just only 1.19-1.30 and 0.25-0.72. But the habitat density trend of phytoplankton and zoonplankton were consistent, and showed linear relationship in quantity, the average of linear coefficient was R2=0.8553.
     In the late period, the diurnal variation of temperature and DO were significant (R<0.05), and pH was not significant(R>0.05), but the vertical variation of temperature, pH and DO in various time points were not significant. The vertical variation of nitrogen, phosphorus and COD in various time points were not significant(R>0.05), the diurnal variation of nitrogen and phosphorus were not significant(R>0.05), and COD was significant(R<0.05). The total number of phytoplankton in C were greater than B and A , and the distribution of diurnal vertical were similar in every regional, which were floating in the morning, sinking in the noon, then floating again at dusk, sinking in the midnight. Cryptophyta, Pyrrophyta and Cyanophyta were floating in the morning and sinking in the night. Chlorophyta were floating in the morning, sinking in the noon, then floating again at dusk, sinking in the midnight. The distribution of Bacillariophyta was uniform, and the distribution of diurnal vertical was not obvious. The diurnal vertical migration of tatal zoonplankton were not significant, but the diurnal vertical migration of Balanus larva and Copepoda were signifcant. Copepoda larva mainly stayed in the 30-120 cm water layer, Calanus, M.norvegica and Balanus larva were floating in the morning and sinking in the night, and Balanus larva migrated to the periphery from night. These may be related to the light intensity, the adaptability of M.japonicus′living habits and avoid predation.
引文
[1]崔和.中国对虾产业发展现状及前景[C].2011年第三届中国对虾产业发展论坛, 2011,4.
    [2]崔禾.纵观全球养殖对虾产业现状分析我国对虾产业发展趋势[J].中国水产,2006(5):28-31.
    [3]余云军,于会国.世界对虾养殖业的发展现状与发展趋势[J].世界农业,2007(5):44-47.
    [4]Saoud I P, DavisD A, Rouse D B. Suitability studies of inland well waters for Litopenaeus vannamei culture[J]. Aquac., 2003, 217(1-4):373-383.
    [5]张振华,韩士群,严少华.我国对虾养殖的现状及持续发展对策[J].江苏农业科学, 2002,(3):15-18.
    [6]王立新.我国凡纳滨对虾养殖现状[J].中国渔业经济.2001.261-556.
    [7]宋盛宪.对虾养殖现状、发展趋势与对策[J].水产科技,2006,5:1-7.
    [8]廖泽芳,宁凌.中国对虾产业分析[J].海洋开发与管理,2009(4):10-13.
    [9]孟庆武,王圣,赵玉洁.我国对虾工厂化养殖的特点、发展趋势及前景[J].海洋渔业,2007(2):124-127.
    [10]崔和.我国对虾产业及国际对虾贸易现状分析[M].中国水产流通与加工协会编.北京:海洋出版社.2009.1-7.
    [11]孙成波,王平,李义军.日本对虾健康养殖[M].海南出版社.2010:1-7.
    [12]李义军,王平,孙成志等.日本对虾养殖技术精要[J].海洋与渔业:水产前沿,2009,9:35-37.
    [13]刘瑞玉,钟振如.南海对虾类[M].北京:农业出版社,1988.114-120.
    [14]王军霞,王维娜,王亚斌,等.日本对虾的营养需求[J].海洋通报,2003,22(5):78-95.
    [15]钟振如.南海虾类资源的特征及其经济种类分布的特点[J].海洋渔业,1986,8(3):99-103.
    [16]王伟定.日本对虾的温度适应性试验[J].渔业现代化,2001,(1):20-22.
    [17]戴庆年,王军,李琪.日本对虾耗氧率的研究[J].厦门水产学院院报,1994,16(1):25-29.
    [18]周志华,傅文庆,张文焕.光线对实验室桶养日本对虾生长影响的研究[J].福建畜牧兽医,1999,21(2):6-7.
    [19]臧维玲,戴习林,江敏,等.盐度对日本对虾幼虾生长与瞬时耗氧速率的影响[J].上海水产大学学报,2002,11(2):114-117.
    [20]李建,姜令绪,王文琪,等.氨氮和硫化氢对日本对虾幼体的毒性影响[J].上海水产大学学报,2007,16(1):22-27.
    [21]高淑英,邹栋梁,厉红梅.汞、镉、锌和锰对日本对虾仔虾的急性毒性[J].海洋通报,1999,18(2):93-96.
    [22]王艺磊,贾锡伟,邹志华,等.多重PCR技术分析日本对虾(Marsupenaeus japonicus)精巢和卵巢差异表达基因[J].科学技术与工程,2004,4(5):374-379.
    [23]林琼武,黄加祺,周文.日本对虾亲虾性腺多次成熟利用的研究[J].海洋学报,2001,33(4):141-146.
    [24]管曙光,孙福新.日本对虾亲虾培育及产卵、孵化关键技术[J].齐鲁渔业,2003,20(4):22-23.
    [25]孙成波,何建国,王平,等.三种方法处理后养殖海水的浮游生物变化及培水效果[J].水产学报,2005,29(1):137-142.
    [26]孙成波,武海波,邓超,等. 6种化学消毒剂对养殖海水中浮游生物的影响[J].中山大学学报(自然科学版), 2008,(01).
    [27]黄建丁.日本对虾健康养殖技术[J].中国水产,2010,12:36-38.
    [28]王平,孙成波,庄健进,等.5种饵料对日本囊对虾早期生长及感染WSSV存活率的影响[J],热带生物学报,2010,1(4)371-375.
    [29]林琼武,单保党,黄加祺.不同饵料搭配对日本对虾人工育苗存活率的影响[J].台湾海峡, 2001, 20: 44-48.
    [30]陈伟杨,夏大伟.三疣梭子蟹与日本对虾轮养技术[J],中国水产,2010,5:43-44.
    [31]宋林生,相建海,李晨曦,等.日本对虾野生种群和养殖种群遗传结构的RAPD标记研究[J].海洋与湖沼,1999,30(3):261-266.
    [32]庄志猛,孔杰,石拓,等.日本囊对虾野生与养殖群体遗传多样性RAPD分析[J].自然科学进展, 2001, 11(3):250-255.
    [33]刘波,陈清西,柯才焕.日本囊对虾人工诱变子一代的遗传变异进行了RAPD分析[J].厦门大学学报(自然科学版),2006, 45(z1):172-176.
    [34]徐田军,王日昕,孙悦娜.我国东南沿海日本囊对虾(Marsupenaeus japonicus)4个养殖群体遗传分化及其遗传结构分析[J].海洋与湖沼,2009, 40(6):91-96.
    [35]曾凡荣,王军,周孔霖.基于线粒体Cytb基因探讨我国日本囊对虾4个地理群体的遗传结构及种群分化[J].厦门大学学报(自然科学版),2010,49(5):86-91.
    [36]孟繁星,徐田军,王日昕.日本囊对虾群体遗传多样性的线粒体序列分析[J].浙江海洋学院学报(自然科学版),2010, 29(4):85-96.
    [37]孙成波,邓先余,李镇泉,等.北部湾野生日本囊对虾(Marsupenaeus japonicus)体重和形态性状的关系[J].海洋与湖沼,2008, 39(3):263-268.
    [38]李义军,李婷,王平,等.日本囊对虾3个野生种群和1个养殖种群的形态差异与判别分析[J],海洋与湖沼,2010,41(4):1-5.
    [39]陶保华,胡超群,任春华.副溶血弧菌对斑节对虾和日本对虾的致病力研究[J].中国水产科学,2000,7(3):117-119.
    [40]刘波,俞志明.建立白斑综合症病毒在日本对虾体内潜伏性感染的方法研究[J].海洋科学,2003,27(8):72-76.
    [41]陈秀敏,宋清春.菌清防治日本对虾黑鳃病的研究[J].中国水产,2000,(2):57.
    [42]邓欢,王年斌,安育新.日本对虾(Penaeus japanicus)受弧菌感染的发病情况与感染剂量、温度条件的关系[J].水产科学,1998,17(2):3-7.
    [43]宫春光,肖国华.日本对虾拟阿脑虫病的防治[J].科学养鱼,2003,(2):21.
    [44]赵春民,王海英.日本对虾仔虾“红线病”及其防治[J].科学养鱼,2006,(9):54-55.
    [45]何建国,李贵生,钟创光.日本对虾中肠腺坏死杆状病毒病的组织细胞病理研究[J].中山大学学报论丛,1996,(增刊):23-25.
    [46]Wang Z Y,Tsoi K H,Chu K H.Applications of AFLP technology in genetic and phylogenetic analysis of penaeid shrimp[J].Biochemical Systematics and Ecology, 2004,32:399-407.
    [47]Tsoi K H,ChanT Y,Chu K H.Molecular population structure of the kuruma shrimp Penaeus japonicus species complex in western Pacific[J].Marine Biology,2007, 150:1345-1364.
    [48]Cardoso A M,Barros C F.Identification of Vertebrate type Steroid homones in the shrimp Penaeus japonicus by tandem Masss spectrometry and sequential production scanning[J].Journal American Society of Mass Spectrometry,1997,8(4):365-370.
    [49]Wang W J,Aida K.Characterization of chromatophorotropic neurpeptides from the kuruma prawn Penaeus japonicus[J].General and Comparative Endocrinology,1999, 114(3):415-424.
    [50]姜勋平,刘桂琼,杨利国,等.海门山羊生长规律及其遗传分析[J].南京农业大学学报.2001, 24(1):69-72.
    [51]魏法山,康相涛,李国喜,等.固始鸡生长过程中不同类型肌纤维面积比的变化[J].西北农林科技大学学报(自然科学版),2006, 34(2):83-85.
    [52]张元跃,金枚荷.番鸭生长方程的研究[J].山东家畜.1997(1):3-14.
    [53]熊邦喜,陈志奋,高云.不同体形鱼类的年龄与生长相关表达式的拟合研究[J].水利渔业.1996,(5):22-25.
    [54]角田俊平.中井和夫.皇姑鱼的年龄和生长[J].齐鲁渔业.1994,11(3):45-46.
    [55]谢恩义,何学福.瓣结鱼的年龄和生长的研究[J].动物学杂志.1999,34(5):8-12.
    [56]欧阳敏,喻晓,陈道印.鄱阳湖团头鲂生长的研究[J].江西水产科技.2002,(1):10-16.
    [57]吴莉芳,张东鸣,黄权.黄花泡乌鳢年龄与生长的研究[J].吉林农业大学学报.1999,21(增刊):70-73.
    [58]曲克明,李勃生.对虾养殖生态环境的研究现状和展望[J].海洋水产研究, 2000, 21 (3): 67-71.
    [59]Feuga A M.The role ofmicroalgae in aquaculture: situation and trends[J]. Journal of applied Phycology,2000, 12: 527-534.
    [60]毕永红,胡征宇.水色及其与藻类的关系[J].环境科学,2005, 24 (1): 66-68.
    [61]查广才,麦雄伟,周昌清,等.凡纳滨对虾低盐度养殖池浮游藻类群落研究[J].海洋水产研究, 2006, 27 (1): 1-7.
    [62]曹煜成,李卓佳,杨莺莺,等.浮游微藻生态调控技术在对虾养殖应用中的研究进展[J].南方水产, 2007, 3 (4): 70-73.
    [63]张汉华,李卓佳,郭志勋,等.有益微生物对海水养殖池游生物生态特征的影响研究[J].南方水产, 2005, 1 (2):7-14.
    [64]查广才,周昌清,黄建容,等.凡纳对虾淡化养殖虾池微浮游生物群落及多样性[ J].生态学报, 2004, 24 (8):1752-1759.
    [65]吴玉霖,周成旭.甲藻赤潮的海洋危害及其防治[J].海洋环境科学, 1997, 16 (4): 59-63.
    [66] Carmichael W W.Hemagglutination method for detection of freshwater cyanobacteria (bluegreen algae) toxins [J]. Applied and Environmental Microbio,l 1981, 41 (6): 1383-1388.
    [67]黄翔鹄,李长玲,郑莲,等.固定化微藻对改善养殖水质和增强对虾抗病力的研究[ J].海洋学报, 2005, 24 (2): 57-62.
    [68]李雪松,梁君容,陈长平,等.泉州湾虾池浮游种类多样性研究[J].厦门大学学报:自然科学版, 2006, 45 (增刊):234-239.
    [69]吴斌,廖思明.广西北海凡纳滨对虾养殖池塘中微型藻类组成调查[J].广西科学, 2008, 15 (4): 452-455.
    [70]申玉春,熊邦喜,叶富良,等.南美白对虾高位池浮游生物和初级生产力的研究[J].水利渔业, 2004,24 (3):7-10.
    [71]杨秀兰,王爱敏,薄学锋,等.浮游生物在盐碱地封闭式对虾养殖中的生态作用[J].齐鲁渔业, 2002,19(10):5-8.
    [72]张才学,劳赞,廖玉莲,等.凡纳滨对虾常见养殖模式下养殖后期浮游植物及理化因子的变化[J].广东海洋大学学报,2007, 27 (4): 38-44.
    [73]刘孝竹,李卓佳,曹煜成,等.低盐度养殖池塘常见浮游微藻的种类组成,数量及优势种群变动[J].南方水产, 2009,5(1):9-16.
    [74]Weisman A .Das Tierleben im Bodensee[J].Schr.Gesch.Bodensees Umgebung, 1877,7: 1-31.
    [75]Harley J F.Environmental control of diel vertical migration behavior[J].Ergeb Limnol, 1993, 39(6):1-17.
    [76]Dodson S .Predicting diel vertical migration of zooplankton[J].Limnol Oceanogr, 1990,35(5): 1195-1200.
    [77]Kozhov M.Lake baikal and its life[M].Netherlands:The Hague.1963.
    [78]McLaren I A.Effects of temperature on growth of zooplankton and the adaptive value of vertical migration[J].Fish.Res. Bd.Canada,1963,26(5):199-220.
    [79]Enright J T, Honegger W H. Diurnal vertical migration: adaptive significance and timing.Part 2.Test of the model:Details of timing[J].Limnol Oceanogr, 1977, 22 (5): 873-886.
    [80]白洁,姜艳,孙军.黄海冷水团邻近海域浮游植物的昼夜垂直变化[J].中国海洋大学学报,2007,37(6):1013-1016.
    [81]汪岷,梁彦韬,白晓歌,等.北黄海夏季微微型浮游植物的分布[J].植物生态学报.2008,32(5):1184-1193.
    [82]杨世民,刘光兴.北黄海典型水域春夏季浮游植物的昼夜变化[J].中国海洋大学学报,2009,39(4):611-616.
    [83]刘光兴,杜秀宁.北黄海典型水域秋冬季浮游植物群落的昼夜变化[J].中国海洋大学学报,2009,39(4):597-603.
    [84]唐汇娟,谢平,陈非洲.微囊藻的昼夜垂直变化及其迁移[J].中山大学学报(自然科学版), 2003,42(2):236-239.
    [85]林琼武,单保党,黄加祺,等.北方地区日本对虾育苗业中存在的几个问题[J].中山大学学报(自然科学版),2000,39(增刊):28-33.
    [86]李才文,管越强,俞志明.盐度变化对日本对虾暴发白斑综合症病毒病的影响[J].海洋环境科学,2002,2(4):6-10.
    [87]田德纯.日本对虾荧光极毛杆菌病防治初探[J].中国水产,2001(2):54-55.
    [88]张春艳,沈忠,周志权,等.波尔山羊羔羊生长发育规律研究[J].华中农业大学学报,2006, 25(6):640-644.
    [89]Cheng C S, Chen L C. Growth characteristics and relationships among body length , bodyweight and tail length of Penaeus monodon from a culture environment in Taiwan[J]. Aquaculture, 1990,91:253-263.
    [90]吴琴瑟,黄鸿基,叶妃轩.养殖斑节对虾体长与体重的关系[J].热带海洋,1992,11(3):53-56.
    [91]施永海,张根玉,刘建忠,等.室内工厂化养殖斑节对虾的生长特性[J].上海海洋大学学报, 2009,18 (6): 702-707.
    [92]刘小林,吴长功,张志怀,等.凡纳滨对虾形态性状对体重的影响效果分析[J].生态学报,2004,24(4):857-862.
    [93]Farmer A S D.Morphometric relationships of commercially important secies of penaeid shrimp from the Arabian Gulf[J].Kuwait Bull.Mar.Sci.,1986,7:1-21.
    [94]Fontaine C T, Neal R A.Length-weight relation for the three commercially important penaeid shrimp of the Gulf of Mexico[J].Trans.Am.Fish.Soc., 1971, 100:584-586.
    [95]林汝榕.斑节对虾几个形态参数关系的初步分析[J].水产科技报,1988(2):16-18.
    [96]徐善良,王春琳,梅文骧等.口虾蛄形态参数关系的研究[J].浙江水产学院报, 1996(1):l5-20.
    [97]Devi S L.Growth and population dynamics of the Indian white prawn Penaeus indicus H M Edwards from kakinada[J].Proc. Indian Acad. Sci.(Animal Science), 1986,95:629-639.
    [98]Farmer A S D,Ukawa M.A provisional atlas for the commercially important penaeid shrimps of the Arabian Gulf [J].Kuwait Bulletion of Marine Sci.,1986, 7: 23-44.
    [99]黄鸿基,吴琴瑟,蒋静南.墨吉对虾体长与体重关系的计算及其在生产中的应用[J].湛江水产学院学报,1990,10(1):52-58.
    [100]华汉峰.中国对虾几个形态关系的测定[J].水产科学,1981,4(1):23-29.
    [101]杨严欧,向华云,姚峰.长湖青虾形态参数关系的初步研究[J].湖北农学院学报. 1998,18(2):36-40.
    [102]Garcia S, Reste L .Life cycles,dynamics,exploitation and management of coasal penaeid shrimp stocks[J].FAO Fish.Tech.1981,20(3):215-216.
    [103]Jamieson G S, Bourne N. North Pacific Workshop on stock assessment and management of invertebrates[J].Can. Spec. Publ. Fish. Aquat Sci.1986,92:102-109.
    [104]苏振明,王克行,张存义.黄海增殖日本对虾的生长特性.水产学报.1996, 20 (1):25-29.
    [105]Cheng C S and Chen L C. Growth characteristics and relationships among body length,body weight and tail length of Penaeus monodon from a culture environment in Taiwan[J].Aquaculture. 1990.91:253-263.
    [106]黄建华,马之明,周发林.池塘养殖斑节对虾的生长特性[J].海洋水产研究.2006, 27(1):14-20.
    [107]刘小林,吴长功,张志怀,等.凡纳对虾形态性状对体重的影响效果分析[J].生态学报, 2004, 24 (4):857-862.
    [108]华元渝,胡传林,张水元,等.主成分分析方法在鲢鱼种生长体征指标分析中的应用[J].生态学报,1982,2(3):15-24.
    [109]王朝晖,齐雨藻,陈菊芳,等.大亚湾角毛藻细胞数量波动及其与环境因子关系的多元分析[J].生态学报,2006, 26(4):1096-1102.
    [110]杨严鸥,李林春,操玉涛.中华鲟繁殖力的主成分分析研究[J].信阳农业高等专科学校学报, 2000,10(1):46-49.
    [111]杨严鸥,姚峰.淡水鱼类生态对策的主成分分析研究[J].湖北农学院学报, 1999,19(1):42-45.
    [112]何铜,刘小林,杨长明,等.凡纳滨对虾各月龄性状的主成分与判别分析[J].生态学报,2009,29(4):2134-2142.
    [113]李思发,李晨虹,李家乐.尼罗罗非鱼品系间形态差异分析.动物学报,1998, 44(4): 450-457.
    [114]赵晓勤,倪娟,陈立侨,等.日本沼虾4种群的形态差异分析[J].中国水产科学,2006,13(3): 224-228.
    [115]郭慧,陈立侨,杨国梁,等.不同罗氏沼虾种群形态差异的比较研究[J].中国水产科学,2006,13 (4):530-534.
    [116]李朝霞,李健,王清印,等.中国对虾"黄海1号"选育群体与野生群体的形态特征比较[J].中国水产科学,2006,13(3):384-388.
    [117]王丽卿,王为东,臧维玲.河口区斑节对虾淡化养殖塘浮游生物状况[J].上海水产大学学报, 2002,11(2):118-123.
    [118]Hu H J,Li R Y,Wei H Z, et al. Freshwater algae of China[M].Shanghai: Shanghai Scientific & Technological Press, 1980. 10:478.
    [119]Shen Y F.Protozoology[M]. Beijing: Science Press ,1999.139-482.
    [120]雷衍之,杨凤,化学实验[M].北京:中国农业出版社,2004:152-194.
    [121]马克平,刘玉明.生物群落多样性的测度方法.I.α多样性的测度方法(下) [J].生物多样性, 1994,2(4):231-239.
    [122]黄长江,陈善文,何歆,等. 2001-2002年粤东柘林湾浮游动物的生态学研究[J].海洋与湖沼, 2003,34(2):117-124.
    [123]张汉华,李卓佳,郭志勋,等.益生菌对海水虾池浮游生物的生态调控效果研究[J].海洋科学, 2009,33(1):12-20.
    [124]李永祺.海水养殖生态环境的保护与改善[M].济南:山东科学拄求出版社.1999.
    [125]黄翔鹄.对虾高位池优势浮游植物种群与成因研究[J].热带海洋学报,2002, 21 (4):36-44.
    [126]孙耀,李锋,李健,等.虾塘水体中浮游植物群落特征与营养状况的关系[J].海洋水产研究, 1998,19(2):47-50.
    [127]姚泊,何建国,莫福,等.虾塘浮游生物种类调查[J].中山大学学报(增州),2000,(39):224-228.
    [128]Rhee GY.Phosphate uptake under nitrate limitation by Scenedesmus sp. and its ecological implications[J].Journal of Phycology,1974,10:470-475. [l29]赵卫红,李金涛,杨登峰,等.现场培养实验研究营养盐对赤潮浮游植物生长的影响[C].中国香港:南中国海会出版.2003:193-196.
    [130]曲克明,陈碧鹃,袁有宪,等.氮磷营养盐影响海水浮游硅藻种群组成的初步研究[J].应用生态学报,2000,ll(3):445-448.
    [131]谢立民,林小涛,许忠能,等.虾池的理化因子及浮游植物群落的调查[J].生态科学, 2003,22(1)34-37.
    [132]郑重,浮游生物学概论[M]北京:科学出版社,1964.
    [133]陈济丁,任久长,蔡晓明.利用大型浮游动物控制浮游植物过量生长的研究[J].北京大学学报(自然科学版),1995,31(3):373-381.
    [134]韩希福,王荣.海洋浮游动物对浮游植物水华的摄食与调控作用[J].海洋科学, 2001,25(10):31-33.
    [135]赵文,李晓东,徐纪军.轮虫培育池不同粒级藻类对浮游植物生物量好生产量的贡献[J].水产学报,2004,28,(2):167-174.
    [136]杨秀兰,王爱敏,薄学锋,等.浮游生物在盐碱地封闭式对虾养殖中的生态作用[J].齐鲁渔业, 2002,19(10):5-8.
    [137]彭聪聪,李卓佳,曹煜成,等.虾池浮游微藻与养殖水环境调控的研究概况[J].南方水产,2010,6(5):74-80.
    [138]曹煜成,李卓佳,杨莺莺,等.浮游微藻生态调控技术在对虾养殖应用中的研究进展[J].南方水产,2007,3 (4):70-73.
    [139]郭皓,于占国.虾池浮游植物群落特征及其与虾病的关系[J].海洋科学,1996 (1):39-45.
    [140]刘顺会,孙松,韩博平.浮游动物昼夜垂直迁移机理的主要假说及其研究进展[J].生态科学,2008,27(6):515-521.
    [141]左涛,王荣,王克,等.夏季南黄海浮游动物的垂直分布与昼夜垂直移动[J].生态学报. 2004.24(3):524-530.
    [142]郑重.海洋浮游动物的昼夜垂直移动研究[A].海洋浮游生物生态学文集[C].厦门大学出版社,1986(1):86-95.
    [143]王克,王荣,高尚武.东海浮游动物昼夜垂直移动的初步研究[J].海洋与湖沼.2001,32(5):534-540.
    [144]黄加祺.厦门港浮游甲壳动物昼夜垂直移动的初步研究[J].海洋学报.1986,8(2):215-222.
    [145]ParsonsT R, Takahashi M, Hargrave B.Biological oceanogrphic processes[M]. Oxford:Pergamon Press, 1984:322.
    [146]Arvola L. Dial variation in primary production and the vertical distribution of phytoplankton in a polymietic lake [J]. Arch. Hydrobiol,1984,101:503-519.
    [147]Tilzer M M. Diurnal periodicity in the phytoplanton assemblage of a high mountain lake[J].Limnol. Oeeanogr.,1973,18:15-30.
    [148]刘晓丹,王真良.北黄海中华哲水蚤各期幼体昼夜垂直移动的初步研究[J].海洋学报,1991, 13(10):247-254.
    [149]Zaret T M,Suffern J S.Vertical migration in zooplankton as a predator avoidance mechanisms[J]. Limnol. Oeeanog.,1976,21(6):804-813.
    [150]Gliwicz Z M.A lunar cycle in zooplankton[J].Ecology, 1986,67(4):883-897.
    [151]Wang K,Wang R,Gao S W. Preliminary study on the diurnal vertical migration of zooplankton in the East China Sea[J].Oceanologica Et Limnologia Sinica,2001, 32(5):534-540.
    [152]Bao Q H,Cai X Y.Acoustic scattering from thermocline in the Yellow Sea and its relation with the vertical distribution of Dlankton[J].Acta Oceanologica Sinica.1995, 7(5):59-64.
    [153]Scrope-Howe S,Jones D A.The vertical distribution of zooplankton in the western Irish Sea[J].Esttlarine,Coastal and Shelf Science.1986.22(6):785-802.
    [154]Li B H,Fu K C,Zeng X Q.The distribution characteristics of Chlorophyll-a in later summer in the southern Yellow Sea area[J].Oceanologica Et Limnologia Since,1999,30(3):300-305.
    [155]Wang B D.Formation mechanism of maximum value in vertical distribution of dissolved oxygen in the Yellow Sea[J].Oceanogr. Huanghai Bohai Seas,1997, 15(3):10-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700