用户名: 密码: 验证码:
云南某中低品位白钨矿常温浮选技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们针对云南某地区的钨矿资源进行了选矿新技术研究,其目的是充分利用矿产资源,利用选矿新技术、新药剂、新工艺,对该地区的钨矿资源进行可选性评价。
     本次试验所选用的原矿品位在0.38%,属于中低品位氧化矿,委托方要求选矿后精矿品位大于60%,回收率大于80%。
     由于白钨矿与方解石、萤石等含钙脉石矿物的可浮性十分相近,因此它们的浮选分离十分困难。前苏联和国内大部分选矿厂对白钨矿多采用加温浮选,即彼得罗夫法,但此方法操作复杂,能耗大,成本高,生产环境差,因而白钨矿与含钙脉石矿物在常温条件下浮选分离一直是选矿界探索的话题,为此,我们在本次试验中的目标就是在常温下实现白钨矿与脉石的分离。
     我们在试验过程中对该矿石进行了三种选别流程方案的比较,即
     (1)单一重选(摇床)方法;(2)浮选法;(3)重—浮联合流程。
     经过试验对比,在磨矿细度为-200目占62.58%时,单一重选法可得出钨精矿含三氧化钨34.67%,但钨的回收率只有25.97%;此方案不可取。重—浮联合流程,可分别得出重选钨精矿和浮选钨精矿,其品位较好,两种钨精矿中钨的总回收率也较高,但流程较复杂,生产过程中控制较难。全浮选法,浮选流程结构简单,操作方便,选别指标也好,采用了6次精选,两次扫选就可以使钨精矿品位达到63.17%,钨金属回收率为86.32%。
     在对比了白钨矿重选、重浮联合、全浮选三种流程后,最后采用全浮选作为此次白钨矿分选的最终流程,并在多次试验的基础上,运用新药剂、新方法,创新的实现了白钨矿的常温浮选。
     在确定了药剂制度和工业流程后,我们从节能、减排、可持续发展的角度上考虑,对浮选尾矿进行了回水试验,并证明了选矿废水可以重新返回利用,不但减少了对选厂周围水质的污染,又减少了选矿成本。
We directed against the resources of wolfram ore in the area of YUN NAN province, the purpose is adequate use the mineral resources, use the new technology and reagent to research if this area of wolfram ore has the value to be opened up and develop.
     In this experiment, the grade of the ore is only 0.38%, which is belonging to the ore of lower-grade. The company requests us the grade of the finished ore must higher than 60%, the recover must higher than 80%.
     Because of the scheelite's floatability is similar with the calcite and kelve, the scheelite is different to be celebrated. Russia and most of the concentrator in our country is used the hot flotation, but this way is complex to operate, the consumption of energy is very big, also has the high capital and the environment of the concentrator is very disappointing. So how to celebrate the scheelite and gangue mineral with calcium in the normal temperature is a target of the experts. In our experiment, our purpose is try to realize this target.
     In this experiment, we have taken three ways for celebrating the scheelite, so as:(1) only in gravimetric separation (2) flotation (3) combined work with gravity and flotation.
     Through with comparison, when the mesh-of-grind at 62.58%(below the 0.074millimeter), only work as gravity, the finished ore's grade is 34.67%, the recover is only 25.97%. So this way has given up. Combined work with gravity and flotation, we can received the finished ore as gravity and flotation, the grade and the recover are qualified, but the circuit is very complex, it is not easy to be controlled. Floatation, the circuit is simply, and easy to control, the most important is the indicator is very well, after six times concentration, we can receive the finished ore's grade at 63.17%, the recover at 86.32%.
     After the comparison with gravity、flotation and the combined work, we use the way with flotation at last. Based on many experiments, we have realized the way to celebrate the scheelite under the normal temperature with the new reagent and method.
     The reagent and circuit have been finalized, we considered reducing the waste, so we have taken many experiments on the waste water, and have proved that the waste water can be used again. In this way, we not only reduce the pollution near the concentrator, but also reduce the capital.
引文
[1]Lassner E, Schubert W-D. Tungsten, ProPerties, Chemistry, Techology of the Element, Alloys, and Chemical Compounds. New York:Kluwer Academic/Plenum Publishers,1999.
    [2]Yih S W H, Wang C T.Tungsten. New York:Plenum Press,1979.
    [3]Morniroli J P. Low temperature embrittlement of undoped and doped tungsten. In:Pink E, Bartha L Ed. The Metallurgy of Doped/Non-sag Tungsten. London, Elsevier,1989.
    [4]彭少方.钨冶金学.北京:轻工业出版社,1984.
    [5]Greenwood N N, Earnshaw A. Oxford:The chemistry of the Elements. Pergamon Press,1984:1291.
    [6]莫似浩.钨冶金的原理和工艺.北京:轻工业出版社,1984.
    [7]《有色金属提取冶金手册》编辑委员会.有色金属提炼冶金手册:稀有高熔点金属(上).北京:冶金工业出版社,1999.
    [8]孔昭庆.论中国钨矿业之可持续发展[J].中国钨业,1999(5—6)12—15.
    [9]曹异生,李有余.钨资源开发与发展对策[J]有色金属工业,2002(11):11一13.
    [10]康永孚,苗树屏,李崇佑等.中国矿床(中册)第一章中国钨矿床[M]北京:地质出版社,1994;99—101.
    [11]中国矿床发现史编委会.中国矿床发现史[M]北京:地质出版社.1996.
    [12]"Tungsten". Proceeding of the First International Tungsten Symposium Stockholm [M] 1979.
    [13]杨久流.微细粒黑钨矿复合聚合分选新技术及理论研究[D].中南工业大学博士学位论文1995.12.
    [14]孙伟等.钨矿回收工艺研究进展矿产保护与利用2000.2.
    [15]周怒安等.国外钨选厂[M]长沙有色设计研究院,1981.4.
    [16]冯其明等.柿竹园多金属矿资源综合利用研究报告[R].1993.12.
    [17]彭少芳.钨冶金学[M].冶金工业出版社,1981.34-47.
    [18]姚文峰等.国外金属矿选矿[J].1979,(11):45—48.
    [19]姚珍刚.氟化钠压煮分解白钨精矿工艺研究.中国钨业,1999(5—6):166.
    [20]林海清.近20年来我国钨选矿技术的进展[J].中国钨业,2001,16(5—6): 69—75.
    [21]胡力行,吕永信等译.浮选(纪念A·M·高登文集).北京;冶金工业出版社,1981 447-460.
    [22]王秋人等.高效组合抑制剂Y88白钨矿常温精选工艺研究[J].湖南有色金属,2003, (10):11-12.
    [23]过建光等.柿竹园钨常温精选工艺研究[J].有色金属(选矿部分),2002,(6):13-14.
    [24]L. A. Vaquez, etc. Flotation—A. M. Gaudin Memoroial [J] 1976, (1): 580-596.
    [25]王彦杰等.湖南有色金属[J]1982,(8):35—37.
    [26]张时洪.江西有色金属[J].1985,(4):28—31.
    [27]王豫新.崔国际.钨.上册[M].江西有色冶金研究所,1979.7.
    [28]邱冠周.微细粒矿物洋选理论及工艺革新[D].中南工大博士学位文.1987.
    [29]邱冠周,胡岳华等.颗粒问相互作用与细粒浮选[M]中南工大出版社,1993.
    [30]Hu Weibai. Wang DianZuo and Jin Huaai[J].14th IMPC,1988,445-452.
    [31]Warren L. J. Colloid Interface Sci[J].1975,50:305-318.
    [32]李豫学.邓芳超等.国外钨选矿厂[C].中国选矿科技情报同,1984.4.
    [33]韦大为.有色金属(季刊)[J].1985.40(4):39—43.
    [34]邱显扬等.苯甲羟污酸与白钨矿作用机理研究[J].矿冶工程,2001,(9):39-42.
    [35]高玉德等.苯甲羟污酸捕收白钨矿浮选溶液化学研究[J]有色金属(选矿部分),2003,(4):28-30.
    [36]Seddon MK全球钨资源和未来供应[J].中国钨业,2001,5-6:135-137.
    [37]中国钨业协会秘书处.我国钨产业现状和前景[J].中国钨业,2004,(5):23-32.
    [38]K.卡斯蒂尔.离心重选设备评述[J].国外金属选矿,2003,(11):4-6.
    [39]杨斌清.湖南某钨矿选矿试验研究[J].江西有色金属,1996,(3):21—23.
    [40]张忠汉,张先华,林日孝等.难选白钨矿选矿新工艺研究[J].广东有色金 属学报,2000,10(2):84—87.
    [41]胡为柏.浮选.北京:冶金工业出版社.1990.350-353.
    [42]叶雪均白钨矿常温浮选研究中国钨业1999.11.
    [43]张忠汉,张先华,林日孝等.难选白钨矿选矿新工艺的研究[J].广州有色金属学报,2000,10(2):84—87.
    [44]张忠汉,张先华,叶志平等.难选白钨矿重—浮选矿新工艺的研究[J].广州有色金属学报,2001,11(2):79—83.
    [45]过建光,吕清纯,李晓东等.柿竹园钨加温浮选工艺改造实践[J].有色金属(选矿部分),2002(6):13—14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700