用户名: 密码: 验证码:
云南怒江白钨矿选矿试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钨矿是我国的优势矿产,它被誉为工业“味精”,被广泛应用于材料、国防、航空、造船等多个领域。目前,随着赣南等地的黑钨资源逐渐枯竭,白钨矿在钨总量中所占比例慢慢高于黑钨矿,合理利用宝贵的白钨矿资源变得意义重大。
     云南怒江某中型白钨矿床,原矿WO3品位1.14%。由工艺矿物学研究知,入选矿石为石英脉类型,钨矿中91.23%为白钨矿,少量的黑钨矿。白钨矿的嵌布粒度不均匀,部分浸染状形式存在,主要粒度范围在0.01~0.2mmm。针对原矿工艺矿物学特性,制定出重—磁联合选矿工艺,然后对重-磁联合工艺尾矿进行浮选探索性试验研究,最后通过工业试验验证试验室研究成果的合理性。论文主要研究内容及结果如下:
     1、磨矿试验研究:通过对比球磨机与棒磨机磨矿细度与摇床选别指标关系,同在最佳磨矿细度条件下,棒磨机磨矿所得摇床精矿指标较球磨机优;又通过对球磨与棒磨最佳磨矿产品粒度分析和单价解离度测定,验证在获得相近单体解离度情况下,棒磨磨矿产生微细粒物料少,棒磨磨矿较优。
     2、重选试验研究:通过将磨矿产品预先分成+0.074mm、-0.074+0.038mm、-0.038mm三个粒级,然后对各粒级分别进行跳汰、螺旋溜槽、摇床粗选试验研究,通过比较摇床重选粗选较其他两种工艺获得白钨粗精矿指标较好,所以三个粒级粗选均采用摇床重选工艺;由于粗选中矿W03品位和回收率均较高,所以对每个粒级粗选中矿进行摇床再选;重选工艺获得最终白钨精矿WO3品位62.27%,对原矿回收率69.18%。
     3、磁选除铁试验研究:对重选所得总精矿进行磁选除铁试验研究。确定磁选最佳条件为,磁场强度240mT,给矿浓度35%,在此条件下获得了除铁后的白钨精矿W03品位64.16%,对原矿回收率69.14%。
     4、重—磁联合工艺总尾矿浮选探索性试验研究:浮选探索性试验获得白钨精矿W03品位16.97%,对原矿回收率2.42%,浮选探索性试验未获得成功。该白钨矿性质特殊,采用常规浮选工艺选别有相当大的难度,由于研究经费和时间等原因,故没有深入对尾矿浮选进行研究。
     5、工业试验:工业试验以试验室试验研究为基础,试验获得最终白钨精矿W03品位65.07%,回收率68.17%,从而验证了试验室研究成果的合理性。
     总之,针对该白钨矿特殊性质,论文采用了重-磁联合工艺,并获得了较好的白钨精矿指标。论文未按一般思路,直接对该白钨矿进行浮选试验研究,而是根据原矿工艺矿物学特性,采用了合理的选矿工艺。
Tungsten, as an advantageous mineral resource of China, is known to all as "monosodium glutamate of industry" and has been widely used in the fields of material, national defense, aviation and shipmaking, etc. With the increasingly depletion of Wolframite resources in southern Gannan Area of China and other areas, the proportion of Scheelite to the total tungsten production has exceeded that of Wolframite; therefore, the reasonable utilization of the valuable Scheelite resource has become significantly important.
     The material used for the present investigation was obtained from a medium-scale Scheelite ore deposit in Nujiang of Yunnan province. The material is 1.14% WO3 grade. The mineralogy analysis shows that it is quartz-type and Scheelite is the dominant mineral accounting for 91.23% of the total tungsten minerals. The material has an uneven size distribution, with most tungsten minerals disseminated in the narrow range of 0.01-0.20 mm. Therefore, a gravity separation-magnetic separation flowsheet was tested on the ore, on the basis of the mineralogy analysis, and its tailings was further separated with the flowsheet. The feasibility of this flowsheet for the ore was investigated using full-scale tests. The main contents of this study are listed below:
     1. Grinding tests. Ball grinding and rod grading of the ore and their effects on shaking table separating results were fully examined. It was found that the rod grinding achieves a higher quality concentrate for the optimum grinding fineness and the rod grinding produces much less ultra-fine particles.
     2. Gravity separations. The ground material was divided into three fractions of +0.074 mm,-0.074+0.038 mm and -0.038 mm and they were respectively tested on jigs, spirals and shaking tables; the results indicate that the shaking table achieves a relatively higher quality Scheelite concentrate and thus these three fractions are all roughed using shaking tables. As the middle products from shaking tables roughing has still a high WO3 grade, these products are further scraped on the tables. The gravity flowsheet produces a final Scheelite concentrate assaying 62.27% WO3 with 69.18% recovery.
     3. Iron removal with magnetic separation. The rough Scheelite concentrate from gravity separations are tested with magnetic separator to remove iron particles. Under the optimum operating conditions of the magnetic separator, i.e., magnetic intensity of 240 mT and feed% solids of 35%, a final Scheelite concentrate assaying 64.16% WO3 with 69.16% recovery was achieved after the removal of iron particles.
     4. Gravity separation-magnetic separation tests of tailings from the Scheelite ore. A Scheelite concentrate assaying 16.97% WO3 with 2.42% recovery was produced with flotation methods; therefore, this tailings can not be effectively treated with conventional flotations. Due to the shortage of research finance and the limitation of time, further flotation studies of the tailings was not performed.
     5. Full-scale test. On the basis of the pilot-scale investigations as listed above, a full-scale test was carried out on the ore. The test produced a final Scheelite concentrate assaying 65.07% WO3 with 68.17% recovery, which fully validated the pilot-scale tests.
     In summary, based on the mineralogy analysis of the Scheelite ore a gravity separation-magnetic separation flowsheet was used in the study and a relatively higher performance was achieved.
引文
[1]顾丽兰,费梅英,周致勤编.世界钨钼矿山实录.[M].北京:冶金工业出版社,1992
    [2]彭少方编著.钨冶金学[M].北京:冶金工业出版社,1981
    [3]许德清编著,华南钨矿工艺矿物学[M].北京:冶金工业出版社,1997
    [4]张启修,赵秦生主编.钨钼冶金[M].北京:冶金工业出版社,2005
    [5]江西省地质矿产局实验测试中心编著.钨矿石分析[M].北京:地质出版社,1989
    [6]Mark Seddon.全球钨资源和未来供应[J].中国钨业,2001,5-6:135-137
    [7]祝修盛.我国的钨资源与钨工业[J].中国钨业,2003,18(5):24-29
    [8]李洪潮,张成强,张颖新等.干式永磁强磁选机在黑钨矿分选中的应用研究[J].中国矿业,2008(17):64-66
    [9]孙仲元,周为吉.用振动高梯度磁选法处理韶关精选厂黑钨细泥的研究[J].矿产综合利用,1989(6):1-6
    [10]Q Zheng,H.Fan.Hydrometallurgy.16(1986),No3,p.263
    [11]K.OSSEO-ASARE,Metallyp Metallurgical Transaction B.Vol 13B.Dec 1982,555
    [12]李鸿桂.稀有金属冶金学.北京:冶金工业出版社,1990
    [13]江西省地质矿产局实验测试中心编著.钨矿石分析.北京:冶金工业出版社,1990
    [14]稀有金属材料加工手册编写组.稀有金属材料加工手册.北京:冶金工业出版社,1983
    [15]李逸群,颜晓锺著.中国南岭及邻区钨矿床矿物学.武汉:中国地质大学出版社,1991
    [16]孙传尧主编.当代世界矿物加工技术与装备.北京:科学出版社,2006
    [17]林洪珍.我国黑钨矿预选富集工艺进展[J].有色金属,1999,(4):6~11
    [18]T. anachi,G. mogi. Life cycle inventory for base metal ingots production in Japan including mining and mineral processing processes by cost estimating system database. 2007, (17):131-135
    [19]汪淑惠.矿山预选进展[J].国外金属矿选矿,2003,(3):4-8
    [20]刘建明.深部开采黑钨矿选矿实践[J].中国钨业,2004,19(5):88~90
    [21]K. Casteel.离心重选设备评述[J].国外金属矿选矿,2003,(11):4-6
    [22]赵昱东.分选弱磁性矿磁选机的技术进展[J].江西冶金,2000, (3):22-26
    [23]孙仲元,周为吉.用振动高梯度磁选法处理韶关精选厂黑钨细泥的研究[J].矿产综合利用,1989,(6):1-6
    [24]林海清.近20年来我国钨选矿技术的进展[J].国外金属矿选矿,2001,16(5-6):69-75
    [25]方聃.湖南钨矿选矿技术研究进展[J].矿产保护与利用,2005,(6):36-38
    [26]孙伟,胡岳华,覃文庆等.钨矿回收工艺研究进展[J].矿产保护与利用,2000,(1):43~46
    [27]Tungsten. Proceding of the First International Tungsten Symposium Stockholm[M]1979
    [28]P. Bahringcr Mining Engineering [J].1979,33(8):1220-1225
    [29]Warren L. J. Colloid interface Sci[J].1975,50:305-318
    [30]孙伟,胡岳华,覃文庆等.钨矿浮选药剂研究进展[J].矿产保护与利用,2000,(3):42~46
    [31]Nobodt[J]. Mining Engineering,1980,36(8):556-575.
    [32]王淀佐.浮选理论新进展[M].北京:科学出版社,1992
    [33]朱建光,周春山.混合捕收剂的协同效应在黑钨和锡石细泥浮选药剂中的应用[J].中南工业大学学报,1995,(4):465-469
    [34]高玉德.微细粒级黑钨矿浮选现状[J].广东有色金属学报,1997,7(2):90-93
    [35]刘文刚,王本英,代淑娟等.羟肟酸类捕收剂在浮选中的应用现状和发展前景[J].有色矿冶,1997,22(4):25~27
    [36]高玉德,邱显扬,夏启斌等.苯甲羟肟酸与黑钨矿的作用机理的研究[J].广东有色金属学报,2001,11(2):92-94
    [37]朱一民,周菁.萘羟肟酸浮选黑钨细泥的试验研究[J].矿冶工程,1998,18(4):33-35
    [38]方夕辉,钟常明.组合捕收剂提高钨细泥浮选回收率的试验研究[J].中国钨业,2007,22(4):26-28
    [39]周晓彤,邓丽红.钨细泥重—浮—重选矿新工艺的研究[J].材料研究与应用,2008,2(3):231~233
    [40]R. Arnold, E.E. Brownbill, S.W. Ihle. Hallimond tube flotation of scheelite and calcite with amines. International Journal of Mineral Processing, Volume 5, Issue 2, July 1978, Pages 143-152
    [41]O. Ozcan, A.N. Bulutcu, P. Sayan,0. Recepoglu. Scheelite flotation:a new scheme using oleoyl sarcosine as collector and alkyl oxine as modifier. International Journal of Mineral Processing, Volume 42, Issues 1-2, October 1994, Pages 111-120
    [42]M.R. Atademir, J.A. Kitchener, H.L. Shergold. The surface chemistry and flotation of scheelite, II. Flotation "collectors". International Journal of Mineral Processing, Volume 8, Issue 1, March 1981, Pages 9-16
    [43]K.I. Marinakis, G.H. Kelsall. The surface chemical properties of scheelite (CaW04) I. The scheelite/water interface and CaW04 solubility.Colloids and Surfaces, Volume 25, Issues 2-4, August 1987, Pages 369-385
    [44]K. Hanumantha Rao, K.S.E. Forssberg. Mechanism of fatty acid adsorption in salt-type mineral flotation.Minerals Engineering, Volume 4, Issues 7-11,1991, Pages 879-890
    [45]朱玉霜,朱建光.浮选药剂的化学原理(修订版)[M].长沙:中南工业大学出版社,1996
    [46]见百熙.浮选药剂[M].北京:冶金工业出版社,1981
    [47]YUEHUA HU, ZHENGGCHE XU. INTERACTIONS OF AMPHO—TERIC AMINO PHOSPH ORIC ACIDS WITHCAICIUJM. CON. TAINING MINERALS AND SELECTIVE FLOTATION[J]. MIN. ER. PROCESS.2003:87-94.
    [48]邓丽红,周晓彤.新型捕收剂R31浮选低品位白钨矿的研究.矿产保护与利用,2007,(4):19~22
    [49]张忠汉,张先华.难选白钨矿石选矿新工艺流程研究[J].矿冶.2002.11:181-184
    [50]A.G. Kholmogorov, O.N. Kononova. Processing mineral raw materials in Siberia:ores of molybdenum, tungsten, lead and gold.Hydrometallurgy, Volume 76, Issues 1-2, January 2005, Pages 37-54
    [51]Ismail Girgin, Fatih Erkal. Dissolution characteristics of scheelite in HCl---C2H5OH---H2O and HCl---C2H5OH solutions.Hydrometallurgy, Volume 34, Issue 2, November 1993, Pages 221-229
    [52]P.T.L. Koh, J.R.G. Andrews, P.H.T. Uhlherr. Floc-size distribution of scheelite treated by shear-flocculation.International Journal of Mineral Processing, Volume 17, Issues 1-2, May 1986, Pages 45-65
    [53]Roland Eichhorn, Rudolf Holl, Emil Jagout, Urs Scharer. Dating scheelite stages:A strontium, neodymium, lead approach from the Felhertal tungsten deposit, Central Alps, Austria.Geochimica et Cosmochimica Acta, Volume 61, Issue 23, December 1997, Pages 5005-5022
    [54]R. F. Johnston, H. T. Nguyen. Direct reduction carburisation of scheelite with carbon Minerals Engineering, Volume 9, Issue 7, July 1996, Pages 765-773
    [55]Solozhenkin, PM; Nebera, VP; Lyalikova-Medvedeva, NN, et al. Biomodification of mineral surfaces in mineral processing and hydrometallurgy. MINERAL PROCESSING ON THE VERGE OF THE 21ST CENTURY,year 2000, Pages 573-577
    [56]Nag, DK. Rock support systems design and application in underground mines particular reference to Dolphin and Bold head mines of King Island Scheelite. MINING SCIENCE AND TECHNOLOGY 99, year 1999, Pages 457-461
    [57]O.ozcan,A. N. Bulutcu, P. Sayan and O. Redepolu. Scheelite flotation:A new schemeusing oleoylsarcosine as collector and alkyl oxine as modifi Ⅰ. ER[J]. International journal of mineral procesing. OCTOBER 1994. PAGESIl1-120.
    [58]邱显杨,程德明,王淀佐.苯甲羟肟与白钨矿作用机理的研究.矿冶工程,2001,21(3):39-40
    [59]曾庆军,林日孝,张先华等.ZL捕收剂浮选白钨矿的研究和应用[J].材料研究与应用,2007(1):231—233
    [60]张旭,李占成,戴惠新.白钨矿浮选药剂的使用现状及展望[J].矿业快报,2008,(9):9~11
    [61]胡为柏.浮选[M].北京:冶金工业出版社.1990
    [62]高玉德,邱显扬,冯其明.苯甲羟肟酸捕收白钨矿浮选溶液化学研究[J].有色金属,2003, (4):28~31
    [63]叶雪均.白钨常温浮选工艺研究[J].中国钨业,1999,14(5-6):113-117
    [64]胡力行,吕永信译.浮选(纪念A·M·高登文集).北京:冶金工业出版社,1981
    [65]叶雪均,黄兴华.某矿选矿流程合理方案及收钨新工艺研究[J].南方冶金学院学报,1993(2):105-115
    [66]张忠汉,张先华,叶志平等.难选白钨矿重-浮选矿新工艺的研究[J].广州有色金属学报.2001,11(2):79-82
    [67]张忠汉,张先华,叶志平等.柿竹园多金属矿GY法浮钨新工艺研究[J].矿冶工程,1999,19(4):22—25
    [68]孟宪瑜,于雪,高起鹏.低品位白钨矿选矿工艺试验研究.有色矿冶,2007,23(5):19-22
    [69]张燕红,王选毅.栾川钼矿白钨回收工业试验研究.中国钨业,2002,17(5):34-37
    [70]魏庆玉.白钨的化学选矿[J].中国钨业,2000,15(4):26-28
    [71]朱俊.中国钨资源前景探讨[J].中国钨业,1997,(11):11~14
    [72]林海清.选—冶联合工艺强化钨矿综合回收的研究.有色金属,1990,(3):15~21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700