用户名: 密码: 验证码:
MACA体系中处理低品位氧化铜矿的基础理论和工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国存在大量高碱性脉石型难处理低品位氧化铜矿资源,汤丹铜矿就是这类资源中规模最大、最具有代表性的难处理矿藏。采用酸性介质很难经济可行地处理该类矿物,为此国内外大量科研工作者针对性开发了氨性体系湿法提取工艺或者选冶结合工艺,但效果还不理想。为了大幅提高这类高碱性脉石氧化铜矿的浸出率,本研究采用Me(Ⅱ)-NH4Cl-NH3-H2O(MACA)浸出体系,对该体系中铜的相关固相化合物的热力学稳定区和其相互转化关系及溶解特性进行了研究,并对该体系中铜矿浸出动力学进行了深入研究,继而提出机械活化与氟化氢铵活化浸出高氧化率、高结合率的汤丹氧化铜矿的有效方法,探讨了其活化机理;采用LIX84-1从该体系浸出液中萃取回收铜,对LIX84-1与Cu(Ⅱ)-NH4Cl.NH3-H2O体系的萃取平衡、氨平衡、硫酸反萃平衡做了深入研究;此外本研究还探索了从Cu-NH3-Ethylenediamine-NH4Cl-H2O溶液中直接电积铜的工艺参数。
     基于质量平衡与电荷平衡构筑各含铜物种在Cu(Ⅱ)NH4Cl-NH3-H2O中的热力学模型,采用电算指数法对模型求解,确定了各含铜物种的溶解特性、各物种的热力学稳定区域以及相关物种之间的相互转化的热力学条件。验证试验终了固相的XRD图谱、各固相的平衡铜浓度与平衡pH值显示热力学预测是准确的。
     试样粒径减小、氨水和氯化铵浓度增大、液固比增大以及温度提高都有利于高氧化率、高结合率汤丹铜矿浸出速率和浸出率的提高;浸出过程可用收缩核模型描述,受灰分层扩散过程控制,浸出反应表观活化能为23.28kJ/mol。半经验动力学方程可表示为:
     通过对浸出前后矿样的工艺矿物学性能研究,发现矿样浸出率难以提高是因为被包裹结合氧化铜难浸出导致的。
     活化15min和30min可将表观反应活化能由未活化的24.13kJ/mol分别降低到15.40kJ/mol和14.76kJ/mol,浸出反应受扩散过程控制;粒度和X射线衍射分析表明,矿粒浸出性能的提高是比表面积提高与晶格畸变共同作用的结果;机械活化处理后结合氧化铜自由化非常明显,硫化铜在活化过程中也有所降低。在最佳普通磨浸工艺条件下浸出矿样,磨浸浸出率比搅拌浸出高出6.35%,磨浸具有一定的活化效果,但不显著。
     对结合氧化铜产生包裹作用的氧化铁、氧化铝及氧化硅等脉石成分都在NH3-NH4Cl-NH4HF2H2O体系中有一定溶解度;在最佳条件下氟化氢铵活化浸出渣计铜浸出率达到89.85%,氟化氢铵消耗量为32.7-42.5Kg·(t矿)-,浸出液中铁、铝、硅等的含量明显增高。动力学分析发现,氟化氢铵浓度分别为0mol.L-1、0.1mol.L-1、0.3mol.L-1和0.5mol.L-’时的表观反应活化能分别为24.13kJ/mol、21.44kJ/mol、32.68kJ/mol和33.51 kJ/mol,活化浸出过程受扩散控制。
     各浸出方案比较发现,采用氟化氢铵活化浸出渣计浸出率达到89.85%,就浸出率而言最具优势;添加次氯酸钙氧化浸出时浸出率比不加时高出3.16%;磨浸工艺浸出率相比常规搅拌浸出具有一定优势,但优势不是非常明显;由于阴离子半径较大,硫酸根和碳酸根在矿石内扩散比较困难,使得硫酸铵和碳酸氢铵与氨水组成的浸出体系的浸出率比氯化铵体系要低。
     绘制了LIX84-1从Cu(Ⅱ)-NH4Cl.NH3-H2O体系中萃取-洗涤-反萃过程平衡关系曲线,并根据平衡曲线确定浸出液萃取-洗涤-反萃过程的最佳工艺条件,在最佳条件条件下获得了超过97%的铜萃取回收率,反萃后液符合电解铜要求,洗涤液富集氨后可返回浸出循环使用。
     通过对Cu-NH3-Ethylenediamine-NH4Cl-H2O体系直接电积铜探索研究发现,要从铜浓度低于5g·L’溶液中直接电积获得板状阴极铜,除非电流密度低到50-100A.m-2以下;此外,该体系中电积电流效率很低,一般在80%以下,这都降低了该技术工业化利用的可能性。
     总之,热力学分析结论为确定该体系中铜浸出剂的成分提供了依据,对高碱性脉石型低品位氧化铜矿的有效利用具有重要意义。动力学与相关工艺研究,查清了高氧化率(>90%)、高结合率(>30%)氧化铜矿的浸出率难以提高的原因,并针对性提出了一些解决方案,为改善工艺指明了努力方向。弱酸性氯化铵溶液洗涤负铜有机相中氨方法的采用,为确保氨性体系萃取提铜创造了先决条件,使得电积过程不再被氨富集所困扰,并且实现了负铜有机相中共萃氨的有效回收。
There is a large amount of low grade refractory copper oxide ore, of which the gangue is alkaline, exiting in our country. And Tang Dan copper ore is the most big and the typically one. It is very difficult to treat this kind of resoure with acidic lixiviants. In order to extract the copper from this kind of copper oxide ore, many hydrometallurgical processes or leaching-flotation combined processes with the ammonical solution as lixiviant are developed by the researchers. Though these research, it is became feasible to extract copper from the copper oxide ore of which the copper sulfides content is relatively high or the copper oxides content is relatively high but the bonded copper oxides is relatively low. However, because that the leaching rate is too low and the effect of flotation is also not very good, it is still very difficult to use the copper oxide ore of which the oxided rate is more than 90% and bonded rate is more than 30%. In this research, an attempt was made to solve this problem. The NH4Cl-NH3-H2O was used as the lixiviant in this research. The mechanical activating method and NH4HF2 activating method were proposed to strengthen the leaching process after the leaching thermodynamic and dynamic characteristic of the copper oxide ore in the NH4Cl-NH3-H2O solution is systemicly researched. LIX84-1 was used to extract copper from Cu-NH4Cl-NH3-H2O solution. The balance of extraction, ammonia co-extracting and stripping with H2SO4 was determined. The exploration test of directly electrowinning copper from Cu-NH3-Ethylenediamine-NH4Cl-H2O was also conducted in this research.
     Thermodynamic models were constructed based on both mass and charge balance. And the models were solved with exponential computation method. The dissolving characteristic, the stable area and condition converting to another phase of each phase were determined. The forecast by thermodynamic model was validated to be reliable by the X-ray diffraction patterns of the final solid, the equilibrium concentration of the copper and the equilibrium pH of each solid phases.
     It was found that the leaching speed and the final leaching rate of the sample was increasd by decreasing the particle size of the sample, increasing the ammonia and ammonium chloride concentration, rising the leaching temperature and liquid to solid rate. The leaching process could be described with the shrinking core model and diffusion through the'ash layer' was the controlling step. The activation energy was calculated to be 23.279kJ/mol. A semi-empirical equation as following was also fitted to describle the leaching process:
     The process minerolagical performance of the samples before and after leaching was investigated. The reason why the leaching rate of the sample was so difficult to be improved could be ascribed to the bad leaching characteristic of the enwrapped bonded copper oxide.
     The apparent activation energy of the samples activated for 15min and 30min was depressed from the unactivated 24.13kJ/mol to 15.40kJ/mol and 14.76kJ/mol, respectively. The leaching process was controlled by the diffusion step through the'ash layer'. The improving of the leaching effect was the co-contribution of increase of both surface area and imperfection content. The phase analysis of the samples shows the bonded copper oxide was greatly released after the mechanical activating. When leaching the sample under the optimal condition, the leaching rate was 6.35% higher than the agitation leaching test. It is means that the milling-leaching prosess have some activation effort but the effort is very limited.
     Thermodynamic calculation shown that the gangue components of Fe2O3, Al2O3, SiO2 encompassing the bonded copper oxdies could be dissolved partly in the NH3-NH4Cl-NH4HF2-H2O solution. The copper leaching rate was attained 89.85% and the NH4HF2 consumption was about 32.7-42.5kg per ton ore after leaching the sample under the optimal condition. The concentration of Fe, Al and Si in the leached out solution was evidently increased. When the concention of NH4HF2 in solution is 0 mol·L-1、0.1mol·L-1、0.3mol·L-1 and 0.5mol·L-1, the activation energy of leaching process was analysized to be 24.13kJ/mol、21.44 kJ/mol、32.68 kJ/mol and 33.51 kJ/mol, respectively.
     When using LIX84-1 to extract copper from the leached-out solution after leaching the ore with the solution containing NH4Cl 3mol/L, NH3 2.5mol/L, the extracting-washing-stipping condition was selected according to the equillibrium curves to be:extracting steps 2, extracting A/O 1:1; washing steps 1, washing A/O 5:1; stripping steps 2, stripping A/O 1:2. The whole extracting effect was more than 97% and the stripping solution could be used to electrowinning copper.
     The exploration tests of directly eletrowinning copper from Cu-NH3-Ethylenediamine-NH4Cl-H2O solution shown that the electricity efficiency and cell voltage was complicatedly inflounced by each operation parameter. It was very difficult to eletrowinning well plated copper when the concentration of copper was lower than 5g·L-1 unless the electricity density was low to 50~100A·m-2. Most of the electricity efficiency was lower than 80% due to the inflounce of Cu(Ⅰ). All these limit the usage of this technology in the industry.
     Though all of these theoretical and technological study, the reason why leaching rate of the copper oxide ore of which the oxided rate was more than 90% and bonded rate was more than 30% was so difficult to be improved was checked. Some processes are also proposed to solve that problem, which providing a direction for the future work.
引文
[1]李振寰编著.元素性质数据手册[M].石家庄:河北人民出版社,1985.
    [2]曹异生.国际铜矿业进展[J].世界有色金属,2007,(5):35-41.
    [3]A. K. Biswas and W. G. Davenport. Extractive metallurgy of copper[M]. Oxford;New York:Pergamon Press,1976.
    [4]赵天从等.有色金属提取手册(铜镍)[M].北京:冶金工业出版社,2000.
    [5]大冶有色金属公司,河北矿冶学院同编.反射炉炼铜[M].北京:冶金工业出版社,1980.
    [6]何焕华,蔡乔方.中国镍钴冶金.冶金工业出版社,北京,2000.
    [7]东北工学院重冶教研室.密闭鼓凤炉炼铜[M].北京:冶金工业出版社,1974.
    [8]贺家齐.铜密闭鼓夙炉熔炼强化问题探讨[J].有色金属(冶炼部分),1987,5.
    [9]沈阳冶炼厂富氧熔炼专题组,炼铜密闭鼓风炉富氧熔炼是增产节能的可行工艺[J].有色金属(冶炼部分),1982,1.
    [10]朱祖泽.现代铜冶金学[M].北京:科学技术出版社,2003.
    [11]刘水根;杨丽梅;张力.白银炉富氧自热熔炼工艺研究[J].矿冶,1996,2.
    [12]傅志华.白银熔池炼铜工艺与节能[J].冶金能源,1996,2.
    [13]余旦新;王临江.提升白银炉技术水平的探讨[J].中国有色冶金,2004,4.
    [14]赵玉敏.三菱法炼铜新技术[J].有色矿冶,1996,4.
    [15]周旦荣.三菱法的技术改进和近期生产[J].有色矿冶,1984,1.
    [16]李卫民.奥斯麦特技术-铜吹炼技术的发展[J].中国有色金属,2009,1.
    [17]李样人.澳斯麦特工艺——21世纪的铜生产工艺[J].中国有色金属,2008,1.
    [18]McDonald R G, Muir D M. Pressure oxidation leaching of chaldopyrite. Part Ⅰ. Comparison of high and low temperature reaction kinetics and products [J]. Hydrometallurgy,2007,86(3-4):191-05.
    [19]Hackle R P, Dreisinger D B, Peters E. Reverse Leaching of Chalcopyrite[J]. Hydrometallurgy and Electrometallurgy of Copper. Santiago, Chile,1987.
    [20]Padilla R, Rodriguez M, Ruiz M C. Sulfidation of chalcopyrite with elemental sulfur[J]. Metall. Mater. Trans.,2003,34B:15-23.
    [21]Nicol MJ, Mechanism of aqueous reduction of chalcopyrite by copper, iron, and lead[J]. Trans. Min. Metall.,1975,84:C206.
    [22]Hackle R P, Dreisinger D B, Peters E. Reverse Leaching of Chalcopyrite [A]. Proceedings of an International Conference[C]. Santiago, Chile,1987.
    [23]Sequeira C A C, Santos, D M F, Chen Y, et al. Chemical metathesis of chalcopyrite in acidic solutions[J]. Hydrometallurgy,2008,92(2-3):135-140.
    [24]Bala P, Tkaova K. Reactivity of mechanically activated chalcopyrite. International Journal of Mineral Processing,1998,44-45:197-208.
    [25]Price D W, Warren GW. The influence of silver ion on the electrochemical response of chalcopyrite and other mineral sulfide electrodes in sulfuric acid[J]. Hydrometallurgy,1986,15(3):303-324.
    [26]Cordoba E M, Muoz J A, Blazquez M L. et al. Leaching of chalcopyrite with ferric ion. Part Ⅲ:Effect of redox potential on the silver-catalyzed process[J]. Hydrometallurgy,2008,93(3-4):81-87.
    [27]Palmer C M, Johnson GD. The ActivoxR process:growing significance in the nickel industry[J]. JOM:The Journal of the Minerals, Metals and Materials Society, 2005,57(7):40-47.
    [28]Anderson C A. Alkaline Sulfide Recovery of Gold Utilizing Nitrogen Species Catalyzed Pressure Leaching[A]. In:Hydrometallurgy 2003-Fifth International Conference vol.1[C]. TMS, Warrendale,2003.
    [29]Anderson C G. Treatment of copper ores and concentrates with industrial nitrogen species catalyzed pressure leaching and non-cyanide precious metals recovery [J]. JOM Journal of the Minerals, Metals and Materials Society,2003,55(4): 32-36.
    [30]McDonald R G, Muir D M. Pressure oxidation leaching of chaldopyrite. Part Ⅱ. Comparison of medium temperature kinetics and products and effect of chloride ion[J]. Hydrometallurgy,2007,86(3-4):206-220.
    [31]Jones D. CESL Copper Process [A]. In:Copper 99//Cobre 99:Short Courses[C]. Phoenix, Arizona,1999.
    [32]Dreisinger D, Marsh J, Dempsey P. The Anglo American Corporation/University of British Columbia (AAC/UBC) Chalcopyrite Copper Hydrometallurgy Process[A]. In:ALTA 2002 Copper-7 Forum. Perth[C]. ALTA Metallurgical Services, Melbourne,2002.
    [33]Kofluk D K, Collins M J. Hydrometallurgical Process for the Extraction of Copper from Sulphidic Concentrates [P]. US Patent:5730776,1998-3-24.
    [34]Stiksma J, Collins MJ, Holloway P, Masters I M. Process development studies by Dynatec for the pressure leaching of HBMS copper sulfide concentrates [J]. CIM Bull.,2000,93(1041):118-123.
    [35]Marsden J O, Wilomt J C. Medium-temperature pressure leaching of copper concentrates-Part Ⅰ:Chemistry and initial process development [J]. Minerals & Metallurgical Processing,2007,24(4):193-204.
    [36]Marsden J O, Wilomt J C. Medium-temperature pressure leaching of copper concentrates-Part Ⅱ:Development of direct electrowining and an acid-autogenous process[J]. Minerals & Metallurgical Processing,2007,24(4):205-217.
    [37]Marsden J O, Wilomt J C. Medium-temperature pressure leaching of copper concentrates-Part Ⅲ:Commercial demonstratin at Bagdad, Arizona [J]. Minerals & Metallurgical Processing,2007,24(4):218-225.
    [38]Marsden J O, Wilomt J C. Medium-temperature pressure leaching of copper concentrates-Part IV:Application at Morenci, Arizona [J]. Minerals & Metallurgical Processing,2007,24(4):226-236.17-20.
    [39]Swinkels GM, Berezowsky R M GS, The Sherritt-Cominco copper process, Part:Ⅰ The Process [J]. CIMBull.,1978,71(790):105-121.
    [40]King J A, Dreisinger D B. Autoclaving of copper concentrates [A].In:Copper'95 International Conference[C]. Montreal,1995.
    [41]Marsden J O, Brewer R E., Hazen N. Copper concentrate leaching developments by Phelps Dodge Corporation [A]. In:Hydrometallurgy 2003-Fifth International Conference in Honor of Professor Ian Ritchie [C]. TMS, Warrendale, 2003.11
    [42]孙凤芹.分散浸出——集中萃取电积技术处低品位铜矿进展[J].有色金属冶炼部分,2000,(3):1-4.
    [43]鲁敬平.湖南地方有色金属湿法冶金现状及发展浅议[J].湖南冶金,1995,(6):29-32.
    [44]Alan Toylor.铜湿法冶金的进展和发展趋势[J].湿法冶金,1997,(1):52-55.
    [45]Anon. Duval building 32 500 tpy CLEAR Process plant [J]. Eng.Min.J.,1976, 177:245.
    [46]Kruesi P R, Allen E S, Lake J L. Cymet process-hydrometallurgical conversion of base-metalsulphides to pure metals. CIM Bull.,1973,66:81-87.
    [47]Hoffmann J E. Winning Copper via Chloride Chemistry-An Elusive Technology [J].JOM,1991,43(8):48-49.
    [48]Kruesi P R, Allen E S, Lake J L. Cymet process-hydrometallurgical conversion of base-metalsulphides to pure metals. CIM Bull.,1973,66:81-87.
    [49]Hoffmann J E. Winning Copper via Chloride Chemistry-An Elusive Technology [J].JOM,1991,43(8):48-49.
    [50]Moyes J, Houllis F, Bhappu R R. The Intec Copper Process-Demonstration Plant Operating Experience and Results from the 1999 Campaign[A]. In:The Parker Centre Hydrometallurgy Conference[C]. Perth, Australia,1999.
    [51]Hyvarinen O, Hamalainen, M. HydroCopperTM-a new technology producing copper directly from concentrate [J]. Hydrometallurgy,2005,77(1-2):61-65.
    [52]Beckstead L W, Miller J D. Ammonia, oxidation leaching of chalcopyrite reaction kinetics[J]. Metall. Trans.,1977,8B(1):19-29.
    [53]朱屯.现代铜湿法冶金[M].北京:冶金工业出版社,2002:41.
    [54]Hirato T, Majima H, Awakura Y. The bioleaching of chalcopyrite in ferric sulfate[J]. Metall. Mater. Trans.,1987, B 18B:489-496.
    [55]Rath P C, Paramguru R K, Jena P K. Kinetics of dissolution of sulphide minerals in ferric chloride solution,1:dissolution of galena, sphalerite and chalcopyrite[J]. Trans. Inst. Min. Metall.,1988,97:150-158.
    [56]Schippers A, Sand W. Bacterial leaching of metal sulfides proceeds by the indirect mechanisms via thiosulfate or via polysulfides and sulfur[J]. Appl. Environ. Microbiol,1999,65(1):319-321.42-44.
    [57]Batty J D, Rorke G V. Development and commercial demonstration of the BioCOP thermophile process[J]. Hydrometallurgy,2006,83(3):83-89.
    [58]Miller P. Bioleaching of copper concentrate [A]. In:Copper 99/Cobre 99:Short Courses[C]. Phoenix, Arizona,1999.
    [59]Pomero R, Mazuelos I, Palencia I, et al. Copper recovery from chalcopyrite concentrates by the BRISA process [J]. Hydrometallurgy,2003,70(4):205-215.
    [60]范先锋等.氧化铜矿物与氧化铁矿物浮选分离新方法及机理[J].有色金属选矿部分,990,(2):36-43.
    [61]徐晓军.硅孔雀石结构特性及浮选方法[J].云南冶金,1991,(1):12-25.
    [62]赵援等.浮选新药剂D2在氧化铜矿石浮选中的应用[J].云南冶金,1987,(4):25-28.
    [63]赵援.硅孔雀石浮选捕收剂[J].有色金属(选矿部分).976,(2):38-34.
    [64]徐晓军.硅孔雀石结果特性及浮选方法[J].云南冶金.1991,(1):12-25.
    [65]包尽忠.异羟肟酸钠浮选氧化铜矿的生产实践[J].有色金属(选矿部分),1986,(4):32-34.
    [66]韦华祖.烃基含氧肟酸盐捕收剂浮选孔雀石的研究.有色金属(选矿部分),1988,(1):39-41.
    [67]周晓东等.东川汤丹难选氧化铜矿微波辐照-常规浮选实验[J].昆明冶金高等专科学校学报,1996,(6):53-58.
    [68]罗新民等.难选氧化铜矿浮选工艺研究[J].湖南有色金属,2003,(8):12-14.
    [69]高洪山,杨奉兰.提高难选氧化铜矿有用矿物回收率的选矿工艺[J].矿冶工程,1999,6:44-46.
    [70]费九光,王庆久.内蒙古难选氧化铜矿浮选工艺的研究[J].有色矿冶,2000,(2):16-19.
    [71]罗传胜,雷鸣等.大冶铜录山低品位氧化铜矿石预处理-磨矿浮选的研究[J].广东有色金属学报,1997,(5):11-19.
    [72]金继祥.东川汤丹难选氧化铜矿石新工艺试验进展[J].云南冶金,1997,(4):22-30.
    [73]骆兆军,张文彬.难选氧化铜矿的多硫化钠硫化浮选研究[J].有色金属(选矿部分),1996,(4):9-12.
    [74]杨新华.探究氧化铜矿的回收[J].云南冶金,2003,(12):13-15.
    [75]汤雁斌.B-130在铜绿山矿难选氧化铜矿选矿中的应用[J].四川有色金属,2005,(6),1-4.
    [76]王毓华,钟宏,等.组合捕收剂浮选低氧化率混合铜矿石试验研究[J].矿冶工程,2001,(9):53-55.
    [77]孔胜武.某高含泥氧化铜矿石的可选性探讨[J].有色金属(选矿部分),2002,(4):1-3.
    [78]胡绍彬.消除矿泥对汤丹难选氧化铜矿浮选影响的研究进展[J].云南冶金,1999,(6):15-18.
    [79]丁长云,黄建芬.混合捕收剂浮选天水舒家坝氧化铜矿石的研究[J].甘肃有色金属,1997,(1):11-14.
    [80]何晓娟,郑少冰.铜录山低品位高含泥氧化铜矿直接浮选工艺试验[J].矿产综合利用,1999,(6):11-14.
    [81]任致伟.活化剂在氧化铜矿浮选中的应用[J].云南冶金,2003,(2):24-26.
    [82]刘述忠,李晓阳等.氧化铜矿浮选的新起泡剂[J].金属矿山,2004,(4):41-43.
    [83]罗传胜,雷鸣.新型起泡剂W-701浮选铜录山低品位高含泥氧化铜矿石的研究[J].矿产综合利用,2000,(8):25-28.
    [84]高起鹏等.氧化铜矿硫化浮选几个问题[J].有色矿冶,2003,(4):22-24.
    [85]比士瓦士(A.K. Biswas),戴文波特(W.G. Davenport)著;昆明工学院冶金系有色金属冶炼教研组译.铜提取冶金[M].北京:冶金工业出版社,1980.14-15.
    [86]谢福标.氧化铜矿搅拌浸出-萃取-电积的生产实践[J].矿冶,2001(2):45-49.
    [87]谭海明.低品位高含泥氧化铜矿的制粒堆浸新工艺研究[J].邵阳学院学报(自然科学版),2005,(3),92-93.
    [88]吕萍.低品位高含泥氧化铜矿制粒堆浸新工艺的研究[J].矿业研究与开发,2004,1,32-34.
    [89]项则传.难选氧化铜矿堆浸-萃取-电积提铜的研究和实践[J].有色金属,2004(4):1-3.
    [90]王成彦.堆浸-萃取-电积铜厂在高寒地区的生产与实践[J].有色金属,2001(6):6-9.
    [91]张大维.氧化铜矿粉的制粒及柱浸试验初探[J].矿产保护与利用,1994(3):33-35.
    [92]王中生.宁夏某氧化铜矿柱浸-置换试验研究[J].矿产保护与利用,2003(1):38-40.
    [93]江亲才.武山铜矿南山矿带氧化矿特征及就地溶浸试验[J].金属矿山,2001(7):16~18.
    [94]张峰,常晋元.低品位氧化铜矿的地下溶浸工艺与生产[J].有色金属(矿山部分),2003,(7):5-7.
    [95]余斌,曹连喜等.低品位氧化铜矿原地钻孔浸出技术试验研究[J].世界有色金属,2005,4:20-25.
    [96]余斌.原地溶浸采矿技术研究与全流程工业试验[J].黄金,2001(7):12-16.
    [97]张峰,常晋元.低品位氧化铜矿的地下溶浸工艺与生产[J].有色金属,2003(4):5-6.
    [98]杨新生.氨浸过程浅析[J].有色矿冶,1993,9(1):34.
    [99]马荣骏.湿法炼铜新技术[M].长沙:湖南科学技术出版社,1985.284-285.
    [100]李青山,刘日辉.氧化铜矿的湿法冶金及其进展[J].湿法冶金,1992(4):10.
    [101]陈国发.重金属冶金学[M].北京:冶金工业出版社,1992.
    [102]王成彦.高碱性脉石低品位难处理氧化铜矿的开发利用-浸出工艺研究[J].矿冶,2001(4):49-53.
    [103]尹才硚等.用活化浸出工艺从低品位氧化铜矿中回收铜[J].有色金属,1996,(5):54-60.
    [104]杨新华.探究氧化铜的回收[J].云南冶金,2003(6):13-15.
    [105]金继祥.东川汤丹难选冶氧化铜矿石新工艺试验进展[J].云南冶金,1997(2):22-30.
    [106]王处德,涂卫民.提高难选氧化铜矿石中铜的综合回收率的试验研究[J].矿产保护与利用,1995,(4):28-30.
    [107]曲保忠.难选氧化铜矿LPF选别工艺的研究[J].新疆有色金属,2000,14-20.
    [108]王成彦.低品位铜湿法冶炼的现状及发展趋势[J].新疆地质,2001,12.
    [109]王成彦,崔学仲.新疆砂岩型氧化铜矿的浸出工艺研究[J].新疆地质,2001,19(1):70-73.
    [110]王成彦.新疆砂岩型氧化铜矿溶剂萃取工艺研究[J].新疆地质,2001,19(2): 142-145.
    [111]王成彦.中国低品位铜矿浸出-萃取-电积工艺经济评述[J].有色金属(冶炼部分),1997,4.
    [112]向鹏成,谢英.溶浸技术在低品位矿石回收利用中的应用与发展[J].中国资源综合利用,2002,3.
    [113]Brimm E P, Johnson P H. Conference of metallurgists. Montreal, Canada. Aug. 28,1978.
    [114]招国栋,伍衡山,刘清等.浅论低品位铜矿的浸出技术及其发展趋势[J].西部探矿工程,2004,(2):65-69.
    [115]刘坚.铜矿峪矿低品位铜矿石地下溶浸工业试验[J].采矿技术,2003(1):19-21.
    [116]张峰,常晋元.低品位氧化铜矿的地下溶浸工艺与生产[J].有色金属(矿山部分),2003(4):526.
    [117]徐浩.工业微生物学基础及其应用[M].北京:科学出版社,1991,57-60.
    [118]Murr,L E, Torma A E,Brierly J A. Metallurgical Application of Bacterial Leaching and Related Microbiological Phenomena[J]. Academic,1978, 82(6):104-105.
    [119]Fuerstenau D W.选矿领域的创新和面临的挑战[J].国外金属矿选矿,1990,(3):35.
    [120]Arpad E Torma.生物湿法冶金的现状和未来的挑战[J].国外金属矿选矿,1990,(10):1-7.
    [121]Ross W Smit h, Manoranjan Misra. Resent Developments in The Bioprocessing of Mineral Processing and Extract Metallurgy Review[J]. Academic.1993, (12):37-60.
    [122]Colmer A R, Temple K L, Hinkle H E. An Iron-oxidizing Bacterium from the Acid Drainage of Some Bituminous Coal Mines[J]. Bacteriol,1950,59(2):317-328.
    [123]刘大星.我国铜湿法冶金技术的进展[J].有色金属(矿山部分),2002,(3):6-10.
    [124]孙业志,吴爱祥,黎建华.微生物在铜矿溶浸开采中的应用[J].金属矿山,2001,(1):3-5.
    [125]徐茗臻.湿法炼铜技术在江西铜业公司的应用[J].湿法冶金,2000,19(4):26-30.
    [126]李壮阔,桂斌旺,段希祥.德兴铜矿堆浸厂的生产实践及技术研究[J].矿冶工程,2002(1):46-48.
    [127]吴在玖.生物堆浸技术在紫金山铜矿的应用[C].紫金矿业股份公司2001 年论文集:212-216.
    [128]巫銮东.紫金山铜矿细菌浸出试验研究[C].紫金矿业股份公司2001年论文集:199-205.
    [129]柏全金,熊英.陕西何家岩难浸金精矿细菌预氧化提金试验研究报告[C]陕西省地质矿产试验研究所,2001.
    [130]金继祥.东川汤丹难选氧化铜矿石新工艺试验进展[J].云南治金,1997,26(2):22-30.
    [131]刘殿文,张文彬.东川汤丹难处理氧化铜矿加工利用技术进步[J].中国工程科学,2005,7(增刊):162-562.
    [132]东川矿务局中心试验所.东川汤丹矿床“浮选、水冶对比试料”单一浮选小型、连续、中试报告[R].1978年6月:4.
    [133]荣生,张文彬,徐晓军.东川汤丹难选氧化铜矿石的选冶处理方法的研究现状[J].国外金属矿选矿,1998(4):16-18.
    [134]胡绍彬.乙二胺磷酸盐浮选东川氧化铜矿的生产实践[J].云南冶金,1981,(2):27-29.
    [135]东川氧化铜矿的二次活化浮选[J].云南冶金,1983(6):56-57.
    [136]张文彬.氧化铜矿浮选研究和实践[M].中南工业大学出版社.1992.
    [137]胡绍彬.关于汤丹难选氧化铜浮选过程中连生体的浮选问题[J].云南冶金,1999,28(1):25-27.
    [138]胡绍彬.消除矿泥对汤丹难选氧化铜浮选造影响的研究进展[J].云南冶金,1999,28(3):15-18.
    [139]胡绍彬,罗才高.深度活化浮选汤丹氧化铜矿的研究及应用[J].云南冶金,1997,26(3):172-4.
    [140]戈保梁,张文彬.氧化铜选矿研究进展[J].云南冶金,1994(4):13-17.
    [141]东川矿务局、北京矿冶研究总院、昆明工学院.汤丹一期工程选矿试验研究报告[R].1992:8.
    [142]芮宗瑶.中国目前铜矿资源的现状和发展[A].2001年国际铜工业峰会论文集[C].88-108.
    [143]陈家铺,杨守志,柯家骏.等.湿法冶金的研究与发展[M].北京:冶金工业出版社.1998:2-10.
    [144]王荣生,张文彬,徐晓军.东川汤丹难选氧化铜矿石的选冶处理方法的研究现状[J].国外金属矿选矿,1998(4):16-18.
    [145]康有才.氧化铜矿处理方法述评[J].云南冶金,1996(4):26-31.
    [146]金继祥.东川汤丹难选氧化铜矿石新工艺试验进展[J].云南冶金,1997,(26):22-30.
    [147]赵涌泉.氧化铜矿的处理[M].北京:冶金工业出版社,1982年6月:30-31.
    [148]金继祥,张如仙.难选氧化铜矿处理工艺研究及经济评估[J].云南冶金,1995(3):21-28.
    [149]北京矿冶研究总院,东川矿务局.东川氧化铜矿采取加压氨浸-萃取-电积工艺生产电解铜中试(综合报告)[R].1991.
    [150]李文孝,王德华.汤丹难选氧化铜矿选矿的研究与实践[J].云南冶金,1995,(3):29-32.
    [151]张振健.汤丹铜精矿焙烧-氨浸-萃取电积新工艺研究.有色金属(冶炼部分),1999,(4):16-20.
    [152]尹才娇,蒋训雄,李新财.用活化浸出工艺从低品位氧化铜矿中回收铜[J].有色金属,1996,48(2):54-60.
    [153]杨耀宗等.处理难选氧化铜矿石新工艺-氨浸硫化沉淀浮选法和水热硫化浮选法的研究[J].云南冶金,1989(1):18-20.
    [154]程琼,章晓林,刘殿文等.某高碱性氧化铜矿常温常压氨浸试验研究[J].湿法冶金,2006,25(2):74-77.
    [155]方建军,李艺芬,鲁相林.低品位氧化铜矿石常温常压氨浸工艺影响因素研究与工业应用结果[J].矿冶工程,2008,28(3):26-38.
    [156]程琼.东川汤丹高钙镁难处理氧化铜“氨浸-浮选”试验研究及机理初探[A].昆明理工大学硕士论文,2005.
    [157]北京矿冶研究院.化学物相分析.北京:冶金工业出版社,1979:102-118.
    [158]方建军.东川汤丹难选氧化铜矿物质组成及浮选工艺研究.昆明理工大学硕士学位论文,1999.
    [159]胡绍彬.关于汤丹难选氧化铜矿浮选过程中连生体的浮选问题[J].云南冶金,1999,28(1):15-27.
    [160]刘殿文,张文彬,方建军.试论东川汤丹难选氧化铜矿的工艺矿物学特征及可选性[J].云南冶金,2003,32(3).
    [161]罗绥明、胡宁吉雪。氨浸液中总按及碳酸根的测定[J].化工冶金,1983,4.
    [162]北京矿冶研究院.化学物相分析.北京:冶金工业出版社,1979:102-118.
    [163]Kragten,1978. Atlas of Metal-Ligand Equilibria in Aqueous Solution; Ellis Horwood:New York.
    [164]Liu H.X. and Zhang C.F.,2001. Computation of multi-component E-pH predominance diagrams. Calphad 25(3),363-380.
    [165]Fu C.Y. and Zheng D.J.,1979. Thermodynamic Study on the System Cu-NH3-H2O. Journal of Central South University of Technology(Natural Science) 1, 27-36.
    [166]Zhang Y.Z., and Yang X.W.,1998. The solubilities of poorly soluble electrolytes in complex solutions. Hydrometallurgy 50,103-110.
    [167]Limpo J.L., Figueiredo J.M. and Amer S.L.,1992. The CENIM-LNETI process: a new process for the hydrometallurgical treatment of complex sulphides in ammonium chloride solutions. Hydrometallurgy 28 (2),149-161.
    [168]Olper M.,1994. The EZINEX.RTM. Process. in:G.W.Warren (Ed.), EPD Congress, The Minerals, Metals and Materials Society 513-519.
    [169]Nila C. and Gonzalez I.,1996. Thermodynamics of Cu-H2SO4-Cl--H2O and Cu-NH4Cl-H2O based on predominance-existence diagrams and Pourbaix-type diagrams. Hydrometallurgy 42(1),63-82.
    [170]Solis J.S., Hefter G. and May P.M.,1995. Chemical Speciation in the Copper (I)-Ammonia-Chloride System. Australian Journal of Chemistry 48(7),1283-1292 Jorge V.A., Isabel L. and Roel C.,2007. Electrochemical study of binary and ternary copper complexes in ammonia-chloride medium. Electrochimica Acta 52(20), 6106-6117.
    [171]Tang M.T. and Zhao T.C.,1988. A thermodynamic study of the basic and negative potential fields of the systems of Sb-S-H2O and Sb-Na-S-H2O. Journal of Central South University(Science and Technology 19(1),35-43.
    [172]Yang S.H. and Tang M.T.,2000. Thermodynamics of Zn(Ⅱ)-NH3-NH4Cl-H2O system. Transactions of Nonferrous Metals Society of China 6,830-833.
    [173]Robert M.S., Arthur E.M.. Critical Stability Constants. Inorganic Complexes (Vol 4)(New York and London:Plenum Press,1976),31-133.
    [174]Kiseleva, LA., et al.. Thermodynamic properties of chrysocolla[J]. Transactions of the University of Moscow, Series 4:Geology,1991,1:55-64.
    [175]Staffan Sjijberg. Silica in aqueous environments[J]. Journal of Non-Crystalline Solids,1996,196:51-57.
    [176]Bryden, K.O.. Ammonium Sulphate Leaching of Malachite and Chrysocolla[J]. M.S. Thesis, Dept. of Metallurgical Engineering, University of Utah, Salt Lake City, UT,1975.
    [177]Mena, M., Olson, F.A.. Leaching of chrysocolla with ammonia-ammonium carbonates solutions[J]. Metallurgical transaction B,1985,16:441-448.
    [178]Pauld, O., Ferron, A.O.. Leaching Kinetics of Malachite in Ammonium Carbonate Solutions[J]. Metallurgical transaction B,1983,14:33-40.
    [179]Yartasi, A., Copur, M.. Dissolution Kinetics of Copper (II) Oxide in Ammonium Chloride Solutions[J]. Minerals engineering,1996,9:639-698.
    [180]Ekmekyapar, A, Oya, R... Dissolution kinetics of an oxidized copper ore in ammonium chloride solution[J]. Chemical and biochemical engineering quarterly, 2003,17:261-266.
    [181]Kiinkul, M.M. Kocakerim, S. Yapici, A. Demirbag. Leaching kinetics of malachite in ammonia solutions[J]. International Journal of Mineral Processing,1994, 41:167-182.
    [182]Arzutug M.E., Kocakerim M.M.. Leaching of malachite ore in NH3-saturated water[J]. Industrial & Engineering Chemistry Research,2004,43:4118-4123.
    [183]Bingola, D., Canbazoglub, M. and Aydogan, S.. Dissolution kinetics of malachite in ammonia/ammonium carbonate leaching[J]. Hydrometallurgy,2005, 76:55-62.
    [184]巨少华.MACA体系中铜、镍和金的冶金热力学及低品位矿物在其中的堆浸工艺研究.中南大学博士学位论文,2006.
    [185]Xuin G H, Yu D Y, Su Y F. Leaching of Scheelite by hydrochloric acid in the presence of phosphate[J].Hydrometallurgy,1986,16(1):27~40.
    [186]Pohlman S L, Olson F A. A kinetic study of acid leaching of Chrysocolla using a weight loss technique [A]. Solution Mining Symposium [C], AIME, New York, 1974, pp.447~460.
    [187]Wen C. Noncatalytic heterogeneous solid fluid reaction model[J]. Ind Eng Chem.,1968,60(9):35~54.
    [188]Kunkul A, Muhtar K M, Yapici M, et al. Leaching kinetics of malachite in ammonia solutions[J]. Mineral processing,1994,41 (3):167~182.
    [189]李希明,陈家铺.机械化学在资源和材料化工及环保中的应用[J].化工冶金,2000,21(4):443-448.
    [190]赵中伟.含金硫化矿的机械化学及其浸出工艺研究[D].长沙:中南工业大学,1995.
    [191]李冷,曾宪滨.粉碎机械力化学的进展及其在材料开发中的应用[J].武汉工业大学学报,1993,15(1):23-26.
    [192]李冷,日下英史,中广吉孝.硅灰石的微粉碎与物性研究[J].中国粉体技术,1999,5(4):15-18.
    [193]孔德玉.机械力化学表面改性叶蜡石填料的性质及应用[J].非金属矿,1998,21(5):19-20,29.
    [194]杨慧芬,周张健,蒋胜昔等.伊利石的机械力化学改性研究[J].中国矿业,1998,7(2):62-64.
    [195]Pajakoff S. Mechanochemical reaction Ⅱ [J]. Oesterr Chem. Z,1985, 86(3):48-51
    [196]Mendelovici E, Villalba R, Sagarzazu A. Distinetive Mechanochemical Transformation of Manganosite into Manganite by mortar dry grinding[J]. Materials Research Bulletin,1994,29(2):167-174.
    [197]Wu Z H, Matsuoka M, Lee D Y, et al. Mechanochemistry of lignin VI Mechanochemical reactions of β-1 lignin model compounds[J]. Mokuzai Gakkaishi, 1991,37(2):164-171.
    [198]金强,金人海,朱敏等.摩擦化学的应用与进展[J].化工时刊,1997,11(7):10-13.
    [199]欧凤,李晓.应用摩擦化学的节能润滑技术[M].北京:中国标准出版社,1991.
    [100]郑林庆.摩擦学原理[J].北京:高等教育出版社,1994.
    [201]Dong J X, Xin Z M, Zhou C H, et al. Study on organic silicides Used as Friction-Modifier in Lubricating Oil[J]. Lubrication Engineering,1990, 46(12):777-782.
    [202]Schaffer G B, Mc Cormick P G. Mechanical Alloging[J]. Materials Forum,1992, 16:91-97.
    [203]师昌绪.90年代的新型材料[J].化工进展,1991,(5):12-20.
    [204]Ding J, McCormick P G, Street R. Magnetization Proeesses in Hig Coercivity SmCo5 and Sm2Fe17 Nx Prepared by Mechanical Alloying[A]. Proc IUMRS International Conference on Advanced Materials[C].Tokyo,1993.
    [205]徐嘻.新技术在高分子材料科学与工程中的应用[J].化工进展,1995,(4):11-13.
    [206]Millet P, Calka A, Williams J S. Formation of Gallium Nitride by a Novel Hot Mechanical Alloying process[J]. Appl. Phys. Lett,1993,63(18):1-4.
    [207]陈世馆.机械活化及其在浸出过程中的应用[J].上海有色金属,1998,19(2):91-96.
    [208]黄云峰,王文潜,钱鑫.机械化学及其在矿物加工中的应用[J].金属矿山,1999,(5):17-20.
    [209]刘友勤,陈莲.对边磨边浸氰化提金工艺的探讨[J].甘肃有色金属,1998,(2):6-8,12.
    [210]李运蛟,李洪桂,刘茂盛等.平果铝土矿机械活化溶出的研究切[J].中南矿冶学院学报,1994,25(1):49-54.
    [211]Pawlek F. The leaching behavior of bauxite during mechanical-chemical-treament[J]. Light Metals,1992, (2):91-95.
    [212]刘今,巩前明,吴若琼等.低品位铝土矿预脱硅工艺及动力学研究[J].中南工业大学学报,1998,29(2):145-148.
    [213]杨华明,邱冠周.搅拌磨机械化学法处理铝渣的新工艺[J].中国铝业,1998,22(3):13-15.
    [214} Aglietti E F, Porto Lopez J M, Pemira E. Mechanochemical effects in kaolinite grinding I:Textural and Physicochemical aspects [J]. International Journal of Mineral Processing,1986,16:125-133.
    [215]郑水林.超细粉碎原理、工艺设备及应用[M].北京:中国建材工业出版社,1993.
    [216]Berger A, Boldyrev V, Menzheres L. Mechanical activation of β-spodumene[J]. Material Chemistry and Physics,1990,25(4):339-350.
    [217]李运娇,李洪桂,刘茂盛等.浅谈机械活化在湿法冶金中的应用闭[J].稀有金属与硬质合金,1993,(3):38-42.
    [218]Amer A M. Investigation of the direct hydrometallurgical Processing of mechanically activated complex sulphide ore, Akarem area, EgyPt[J]. Hydrometallurgy,1995,38(3):225-234.
    [219]陈世馆.机械活化及其在浸出过程中的应用[J].上海有色金属,1998,19(2):91-96.
    [220]Maurice D, Hawk J A. Ferric chloride leaching of mechanieally activated chalcopyrite [J]. Hydrometallurgy,1998,49(1-2):103-123.
    [221]Maurice D, Hawk J A. Ferric chloride leaching of a mechanically activated pentlandite-chalcopyrite concentrate [J]. Hydrometallurgy,1999,52(3):289-312.
    [222]Balaz P, Achimovicova M, Bastl Z, et al. Influence of mechanical activation on the alkaline leaching of enargite concentrate [J]. Hydrometallurgy,2000, 54(2):205-216.
    [223]Balaz P, Sekula F, Jakabsky, etal. Application of attrition grinding in alkaline leaching of tetrahedrite[J]. Minerals Engineering,1995,8(11):1299-1308.
    [224]Balaz P. Mechanochemical Proeessing of complex sulphide ores[J]. Materials Science Forum,1999,312:215-220.
    [225]Balaz P, Briancin J, Sepelak V, et al. Non-oxidative leaching of mechanically activated stibnite [J]. Hydrometallurgy,1992,31(3):201-212.
    [226]Balaz P. Influence of solid state Properties on ferric chloride leaching of mechanically activated galena[J]. Hydrometallurgy,1996,40(3):359-368
    [227]Balaz P, Ebert I. Oxidative leaching of mechanically activated sphaierite [J]. Hydrometallurgy,1991,27(2):141-150.
    [228]Kammel R, Pawlek F, Simon M, et al. Oxidizing leaching of sphalerite under atmospheric pressure[J]. Metall,1987,41(2):158-161.
    [229]李希明,陈家铺,Kammel R等.机械活化对铁酸锌浸取行为的影响[J].有色金属,1991,43(2):44-47.
    [230]赵中伟,赵天从,李洪桂等.机械活化对硫化锌精矿浸出动力学的影响[J].有色金属,1995,47(2):81-83,107.
    [231]李洪桂,杨家红,赵中伟等.黄铜矿的机械活化浸出[J].中南工业大学学报,1998,29(1):28-31.
    [232]周金云.锌浸出渣的选择性酸浸研究[D].长沙:中南工业大学,1995.
    [233]陈世馆.机械活化及其在浸出过程中的应用[J].上海有色金属,1998,19(2):91-96.
    [234]Todorovsky D, Terziev A, Milanova M. Influence of mechanoactivation on rare earths leaching from phosphogypsum[J]. Hydrometallurgy,1997,45(1-2):13-19.
    [235]李军,李洪桂,刘茂盛等.氢氧化钠与黑钨矿反应动力学研究[J].中南矿冶学院学报,1985,16(4):128-136.
    [236]刘茂盛,李洪桂,孙培梅等.机械活化苏打溶液分解白钨中矿试验研究[J].中南矿冶学院学报,1994,23(3):321-325.
    [237]李洪桂,刘茂盛,思泽全等.白钨精矿及黑白钨混合矿碱分解工艺及设备[P].中国专利:CN85100350.8,1985-4-1.
    [238]陈天鸽.热球磨碱分解高钙黑钨矿及白钨精矿技术在我厂的应用[J].江西冶金,1998,18(3):11-12.
    [239]赵中伟,李洪桂,刘茂盛等.柿竹园钨中矿处理方法选择明[J].稀有金属与硬质合金,1996,(1):1-3.
    [240]张贵清,张启修,肖连生等.处理高铝白钨精矿生产APT的新工艺[J].中国有色金属学报,1998,8(增刊2):472-474
    [241]孙培梅,李洪桂,李运姣等.机械活化苛性钠分解柿竹园白钨矿的研究[J].中南工业大学学报,1999,30(3):248-251.
    [242]李希明,陈家铺,Kammel R.细磨活化对白钨矿浸取行为的影响[J].金属学报,1991,27(6):B371-375.
    [243]Zhizhaev A M, Kim A P. Effect of mechanical activation on thermal transformation of pyrite concentrate [J]. Fiziko-Tekhnicheskie Problemy RaZrabotki Polezngkh Iskopaemykh,1992, (3):96-100.
    [244]Eymery J P, Ylli F. Study of a mechanochemical transformation in iron Pyrite[J] Journal of Alloys and compounds,2000,298:306-309.
    [245]Balaz P, Brianein J. Reactivity of mechanically activated pyrite[J]. Solid state Ionics,1993,63-65:296-300.
    [246][Balaz P, Balassaova M. Thermal decomposition of mechanically activated arsenopyrite [J]. Journal of Thermal Analysis,1994,41(5):1101-1107.
    [247]Rossovsky S N. Alkaline leaching of refractory gold arseno-sulphide concentrate[J].CIM Bulletin,1993,86:971-972.
    [248]陈世馆.机械活化及其在浸出过程中的应用[J].上海有色金属,1998,19(2):91-96.
    [249]李洪桂,赵中伟,赵天从.机械活化黄铁矿的物理化学性质[J].中南工业大学学报,1995,26(3):349-352.
    [250]赵中伟.含金硫化矿的机械化学及其浸出工艺研究[J].长沙:中南工业大学,1995.
    [251]闵小波,柴立元,钟海云.浅淡机械球磨在难处理金矿浸出中的应用[J].中国有色金属学报,1998,8(增刊2):587-590.
    [252]邱冠周,毛暗章,唐漠堂等.某难处理金精矿浸金新工艺试验研究[J].黄金,1997,18(6):32-35.
    [253]黄云峰,王文潜,钱鑫.超细磨预处理难浸金矿石的研究[J].黄金,1999,20(3):28-31.
    [254]Thiessen P A, Meyer K, Heinieke G. Principles of Tribochemistry[M]. Berlin: Akad.Verlag,1967.
    [255]郑林庆.摩擦学原理[J].北京:高等教育出版社,1994.
    [256]Heinicke G. Triboehemistry[M].Berlin:Hanser,1984.
    [257]方全国.高岭土细磨过程机械力化学与助磨剂吸附特性的研究[J].矿冶,1997,6(3):37-41.
    [258]林海,陈秀枝,松全元等.煤系锻烧高岭土颗粒湿法超细化过程的机械力化学效应[J].中国矿业,1998,7(5):54-57.
    [259]Otsuka Makoto, Kaneniwa Nobuyoshi. Noncrystallization of chloramphenicol palmitate crystals by grinding and its mechanism[J]. J.Soc. Powder Technology Japan.1986,23(2):63-67.
    [260]莫鼎成.冶金动力学[M]1长沙:中南工业大学出版社.1987:301.
    [261]Arijit Mitra, J. Donald Rimstidt. Solubility and dissolution rate of silica in acid fluoride solutions[J]. Geochimica et Cosmochimica Acta,2009,73:7045-7059.
    [262]蒋汉瀛.湿法冶金过程物理化学[M].北京:冶金工业出版社,1984.180-181.
    [263]邓天龙,汪模辉,廖梦霞.从低品位铜矿浸出液中回收铜的技术进展[J].矿产综合利用,1999(1):19-22.
    [264]朱屯.溶剂萃取手册[M].北京:化学工业出版社,2001,399-429.
    [265]Alguacil F J, Alonso M. Recovery of Copper from Ammoniacal Ammonium Sulfate Medium by LIX54 [J]. J. Chem. Technol. Biotechnol.,1999,74(12): 1171-1175.
    [266]朱屯.萃取与离子交换[M].北京:冶金工业出版社,2005.280-281.
    [267]Breembroek G R M, Van Straalen A, Witkamp G J. Extraction of Cadmium and Copper Using Hollow Fiber Supported Liquid Membranes [J]. J. Membr. Sci.,1998, 146(2):185-195.
    [268]Hu S Y B, Wiencek J M. Emulsion-Liquid-Membrane Extraction of Copper [J]. AIChE J.,1998,44(3):570-581.
    [269]Reddy R B, Priya N D. Process Development for the Separation of Copper(II), Nickel(Ⅱ) and Zinc(Ⅱ) from Sulphate Solutions by Solvent Extraction Using LIX84I [J]. Sep. Purif. Technol.,2005,45(2):163-167.
    [270]Mackenzie M, Virnig M, Feather A. The Recovery of Nickel from High-pressure Acid Leach Solutions Using Mixed Hydroxide Product-LIX(?)84-INS Technology [J]. Miner. Eng.,2006,19(12):1220-1233.
    [271]Lee J C, Jeong J, Park J T. Selective and Simultaneous Extractions of Zn and Cu Ions by Hollow Fiber SLM Modules Containing HEH (EHP) and LIX84 [J]. Sep. Sci. Technol.,1999,34(8):1689-1701.
    [272]Sarangi K, Parhi P K, Padhan E. Separation of Iron(Ⅲ), Copper(Ⅱ) and Zinc(Ⅱ) from a Mixed Sulphate/Chloride Solution Using TBP, LIX84I and Cyanex 923 [J]. Sep. Purif. Technol.,2007,55(1):44-49.
    [273]Parhia P K, Sarangi K. Separation of Copper, Zinc, Cobalt and Nickel Ions by Supported Liquid Membrane Technique Using LIX84I, TOPS-99 and Cyanex 272 [J]. Sep. Purif. Technol.,2008,59(2):169-174.
    [274]Sengupta B, Bhakhar M S, Sengupta R. Extraction of Copper from Ammoniacal Solutions into Emulsion Liquid Membranes Using LIX84I(?) [J] Hydrometallurgy, 2007,89(3/4):311-318.
    [275]Parija C, Reddy B R, Bhaskara Sarma P V R. Recovery of Nickel from Solutions Containing Ammonium Sulphate Using LIX84-I [J]. Hydrometallurgy,1998, 49(3):255-261.
    [276]Pandey B D, Kumar V, Bagchi D. Extraction of Nickel and Copper from the Ammoniacal Leach Solution of Sea Nodules by LIX64N [J]. Ind. Eng. Chem. Res., 1989,28(11):1664-1669.
    [277]Bhaskara Sarma P V R, Nathsarma K C. Extraction of Nickel from Ammoniacal Solutions Using LIX 87QN [J]. Hydrometallurgy,1996,42(1):83-91.
    [278]Parija C, Bhaskara Sarma P V R. Separation of Nickel and Copper from Ammoniacal Solutions through Co-extraction and Selective Stripping Using LIX84 as the Extractant [J]. Hydrometallurgy,2000,54(2/3):195-204.
    [279]里特瑟GM,阿什鲁布克AW.溶剂萃取原理和在冶金工艺中的应用[M].孙方玖,邓佐卿,张帆,译.北京:原子能出版社,1985.111-119.
    [280]王成彦.高碱性脉石低品位氧化铜矿的溶剂萃取工艺研究[J].有色金属(冶炼部分),2003,3:2-6.
    [281]杨声海.Zn(Ⅱ)-NH3-NH4Cl-H2O体系制备高纯锌理论及应用[D].中南大学博士学位论文,2003.
    [282]王瑞祥.MACA体系中处理低品位氧化锌矿理论和工艺研究[D].中南大学博士学位论文,2008.
    [283]S. Gelinas, J.A. Finch and S.R. Rao. Electrowinning of nickel and copperfrom ethylenediamine complexes[J].Canadian Metallurgical Quarterly,2002,41(3):319-326.
    [284]Li D L, Wang D Z, Finch J A. Selectively leaching Cu(Ⅱ) and Ni(Ⅱ) from acid mine drainage sludge by using ethylenediamine-ammonium sulfate[J]. Transactions of Nonferrous Metals Society of China,2002,12(6):1176-1179.
    [285]Jorge Vazquez and Roel Cruz, Electrochemical Study of Copper(Ⅱ) Reduction from Ammonia-Chloride Solutions[J]. The Electrochemical Society,2006,2(3): 355-364.
    [286]Serdar Aksu and Fiona M.Doyle. Electrochemistry of Copper in Aqueous Glycine Solutions[J]. Journal of The Electrochemical Society.2001.148(1):B51-B57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700