用户名: 密码: 验证码:
种子发芽生态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生活史对策是植物种群生态研究的重要领域,而种子发芽是植物生活史的重要阶段,因此,研究种子发芽规律及对策,有助于认识和阐明物种进化及其生态适应特征。本论文以松嫩草原区植物为主要对象,研究了种子对恒温和每日增降温的发芽响应,比较了变温梯度模拟的全球增温对C3、C4植物种子发芽的影响,研究了植物发芽格局及在不同温度下的变化,并探讨了植物对盐和水势的发芽响应及盐和温度交互作用的发芽响应机制。另外研究了子叶对幼苗生长的光合贡献。
     根据恒温对种子发芽影响的结果,在积温模型的基础上提出了修正积温模型(modified thermal time model),补充了发芽速率恒定部分的拟合公式。C3植物的发芽速率明显低于C4植物。根据积温模型预测的发芽最低温和积温常数,C3植物的平均发芽最低温低于C4植物,但差异不显著,平均积温需要明显高于C4植物,接近显著。本研究指出,种子的发芽格局可以分为五类:速萌型、延迟型、稳定型、正态型、延迟速萌型。多数一年生植物都属于速萌型,分布于草甸草原的多年生植物属于延迟速萌型、正态型或稳定型。大部分植物在不同温度下的发芽格局是有变化的,这是对环境的一种适应对策。
     在变温梯度模拟的全球增温条件下,C3和C4植物的发芽特点均发生改变。C3植物对高温敏感,C4植物对低温敏感。从几个变温梯度的比较看,全球增温对种子发芽的影响不是温差变化在起作用,而是高温或低温部分的温度在起作用。野外条件下,松嫩草原区更多的植物种子在春季发芽而不是秋季。室内实验证明,在春季和秋季较低的温度范围5-10和10-15℃内,每日增加的温度下的发芽显著高于每日降低的温度下,植物春季发芽是自然选择下来的一种适应策略。
     虎尾草和马唐在不同温度下发芽速率和盐度之间成曲线关系,我们认为可能存在一些生理机制,使得中间盐度和高盐浓度下的渗透胁迫降低,发芽速率明显增加,产生了曲线而非直线的关系。进一步的实验表明,PEG和NaCl两种水势处理相比,种子能在更低的NaCl引起的水势下发芽且发芽比在等渗的PEG处理中快。实验用植物种子的干重随时间降低,NaCl处理中发芽种子的含水量、钠离子浓度和种子溶液钠浓度显著高于PEG处理中。NaCl处理中发芽种子和未发芽种子钠离子浓度和种子溶液钠浓度均随水势降低而增加。种子含水量、钠离子浓度、种子溶液钠浓度随时间变化而线性增加。根据实验结果提出盐度模型:θS = (Sm– S) t,其中θS是盐度常数,Sm是种子能够发芽的最高盐度值,S是外界盐浓度,t是某个盐浓度下的发芽时间。将种子对盐的响应划分为四个阶段。第Ⅰ阶段主要是渗透效应起负作用;第Ⅱ阶段是渗透效应和离子效应共同起作用,离子效用的正作用强于渗透效应的负作用;第Ⅲ阶段等渗的PEG中已经没有种子发芽,离子效应的正作用远远高于渗透效应的负作用;第Ⅳ阶段是离子效应逐渐开始起离子毒害的负作用。
     子叶光合贡献研究表明,种子吸胀时去除子叶,真叶不能生长或很快死亡,除了呼吸大于同化外,可能还涉及到激素类型的信号缺失。子叶展开前去除子叶引起幼苗个体发育补偿,根茎比降低。真叶展开后去除子叶延迟了幼苗生长发育,表明子叶在真叶长出后对幼苗仍然有光合贡献。小种子物种对子叶光合作用依赖很强,实现了早期幼苗生长过程中的较高的相对生长速率。本研究量化了子叶光合贡献占总贡献的比例,为物种竞争策略和对不同生境的适合度提供了有用指示。
     本论文结果对于预测植物发芽出土、全球变暖对植物生长分布的影响,开发利用野生植物资源策略均有理论指导意义和生产实践价值。
Life-history strategy is the significant research area of plant population ecology. Seed germination is the critical stage of plant life history. Therefore, research on seed germination rule and strategy helps to know and elucidate plant evolution and ecological adaptation traits. Plants in Songnen grassland area were used to test the responses of seed germination to constant temperature and diurnal increased or decreased temperature, the effects of global warming simulated by alternating temperature regimes on seed germination of C3 and C4 species, plant germination pattern and the changes under different constant temperature. The mechanisms of germination responses to NaCl and PEG and the interaction between salt and temperature were also studied. Photosynthetic contribution of cotyledons to seedling growth was evaluated as well.
     According to the results of constant temperature effects, we proposed the modified thermal time model on the basis of thermal time model and supplemented an equation describing germination rate constant. Germination rate of C3 species was lower than C4 species. According to thermal time model, the average base temperature of C3 species was lower than C4 species, but not significantly. The average thermal time constant of C3 species was higher than C4 species, which approached significant difference. In this study, plant seed germination pattern was divided into five categories: quick germination, delayed germination, steady germination, normal germination and delayed-quick germination. Most annual species belonged to quick germination pattern. Perennial C3 species, which distributed to meadow, belonged to delayed-quick germination pattern, normal germination pattern or steady germination pattern. Seed germination pattern of most species changed with temperature, which was an adaptive strategy to environments.
     Under global warming simulated by alternating temperature regimes conditions, germination traits of C3 and C4 species changed. C3 species was sensitive to high temperature and C4 species was sensitive to low temperature. By comparison of germination results in all the alternating temperature regimes, we found that high or low temperature, not amplitude acted an important role in the effects of global warming on seed germination. Field experiment showed that more plants germinated in spring, not autumn in Songnen grassland. Germination experiment exhibited that significant differences in germination between diurnal increased and decreased temperature in the spring and autum low ranges 5-10 and 10-15oC, with the former higher. Germination in spring is an adaptive strategy by natural selection. The relationship between germination rate and salinity under different temperatures of C. virgata and D. sanguinalis was curvilinear. We thought there may be some physiological mechanisms, which reduced osmotic stress in the middle and high salinities. This led to the obviously increasing of the germination rate. Further experiments showed that compared with PEG treatment, seeds can germinate in lower water potential induced by NaCl and germinate faster. Seed dry weight decreased with the time. Water content, seed sodium concentration and seed solution sodium concentration of NaCl treatments were significantly higher than the isotonic PEG treatments. Seed sodium concentration and seed solution sodium concentration of germinating and un-germinating seeds in NaCl treatments increased as the water potential decreased. Water content, seed sodium concentration and seed solution sodium concentration increased linearly with time.
     According to the results, we proposed salinity model:θS = (Sm– S) t, in whichθS is salinity constant, Sm is the maximum salinity above which seed can’t germinate, S is the external salinity, and t is germination time. The germination response of seed to salt was divided into four stages. The first stage mainly involved negative osmotic effect. In the second stage, ionic effect and osmotic effect existed together, with ionic effect stonger. In the third stage, no seed germinated in PEG treatment and ionic positive effect was largely higher than osmotic effect. In the fourth stage, ionic effect gradually began to harm the seed.
     Cotyledon photosynthetic contribution experiments showed that loss of cotyledons in seed imbibition stage, first leaf development did not proceed following early loss of cotyledons, but the reason did not appear to be an excess of respiration over assimilation, so a hormonal type signal may be involved; loss of cotyledons prior to cotyledon expansion, and so presumably before any substantive photosynthesis, induced seedling ontogenetic compensation (increase in shoot:root ratio); loss of cotyledons at the first leaf stage of seedling growth delayed seedling development without changing seedling ontogeny, indicating an ongoing photosynthetic contribution of cotyledons. The data highlighted the way in which almost total reliance on the photosynthetic role of cotyledons in small seeded species confered the possibility to achieve a very high relative growth rate during early seedling development, and raised the possibility that quantitative determination of the ratio between the photosynthetic contribution of cotyledons to seedling development and total (photosynthetic plus reserve) contribution may provide a useful indicator of species competitive strategy and fitness for different habitats.
     This study has theoretical significances and practical value for predicting plant germination and emergence, testing effects of global warming on plant distribution characteristics and developing and utilizing wild plant resources.
引文
Ampofo ST, Moore KG, Lovell PH 1976. The role of the cotyledons in four Acer species and in Fagus sylvatica during early seedling development. New Phytologist 76: 31–49.
    Barratt BIP 1985. Effect of cotyledon damage on nodulation and growth of white clover over sown into native grassland in Central Otago, New Zealand. In: RB Chapman ed. Proceedings of the 4th Australasian Conference on Grassland Invertebrate Ecology. Christchurch, Caxton Press. Pp. 127–132.
    Burris JS, Knittle KH 1975. Partial reversal of temperature-dependant inhibition of soybean hypocotyl elongation by cotyledon excision. Crop Science 15: 461–462.
    Chin HF, Neales TF, Wilson JH 1977. The effects of cotyledon excision on growth and leaf senescence in soya-bean plants. Annals of Botany 41: 771–777.
    Collins WJ, Wilson JH 1974. The effect of cotyledon excision on reproductive development in pea (Pisum sativum L.). Annals of Botany 38: 181–188.
    Grime J 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 111: 1169–1194.
    Hanley ME, Fenner M, Whibley H, Darvill B 2004. Early plant growth: identifying the end point of the seedling phase. New Phytologist 163: 61– 66.
    Harris M, Smith DL, Mackender RO 1986. Growth analysis of soybean seedlings during the lifespan of the cotyledons. Annals of Botany 57: 69–79.
    Hunt R 1978. Plant growth analysis. In: Arnold E ed. Growth analysis of individual plants. London, England. Pp. 9–22.
    Ibarra-Manríquez G, Ramos MM, Oyama K 2001. Seedling functional types in a lowland rain forest in Mexico. American Journal of Botany 88: 1801–1812.
    Kitajima K 2003. Impact of cotyledon and leaf removal on seedling survival in three tree species with contrasting cotyledon functions. Biotropica 35: 429–434.
    Lamont BB, Groom LK 2002. Green cotyledons of two Hakea species control seedling mass and morphology by supplying mineral nutrients rather than organic compounds. New Phytologist 153: 101–110.
    Lovell PH, Moore KG 1970. A comparative study of cotyledons as assimilatory organs. Journal of Experimental Botany 21: 1017–1030.
    Lovell PH, Moore KG 1971. A comparative study of the role of the cotyledon in seedling development. Journal of Experimental Botany 22: 153–162.
    Murfet IC 1973. Flowering in Pisum: the effect of cotyledon removal on genotypes lf E Sn hr and lf e Sn hr. Australian Journal of Biological Science 26: 669–673.
    Troughton A 1960. Further studies on the relationship between shoot and root systems of grasses. Journal of British Grassland Society 15: 41 – 47.
    Wu BG 1993. Utilization of Medicago falcata. Chinese Agricultural Science Bulletin 9: 50–52.
    Ampofo ST, Moore KG, Lovell PH 1976a. The role of the cotyledons in four Acer species and in Fagus sylvatica during early seedling development. New Phytologist 76: 31-39.
    Ampofo ST, Moore KG, Lovell PH 1976b. Cotyledon photosynthesis during seedling development in Acer. New Phytologist 76: 41-52.
    Ampofo ST, Moore KG, Lovell PH 1976c. The influence of leaves on cotyledon photosynthesis and export during seedling development in Acer. New Phytologist 76: 247-255.
    Bonfil C 1998. The effects of seed size, cotyledon reserves and herbivory on seedling survival and growth in Quercus rugosa and Q. laurina (Fagaceae). American Journal of Botany 85: 79-87.
    Fenner M 1985. Seed ecology. New York, USA, Chapman and Hall.
    Fenner M 1986. A bioassay to determine the limiting minerals for seeds from nutrient-deprived Senecio vulgaris plants. Journal of Ecology 74: 497-505.
    García-Cebrián F, Esteso-Martínez J, Gil-Pelegrín E 2003. Influence of cotyledon removal on early seedling growth in Quercus robur L. Annals of Forest Science 60: 69-73.
    Garwood NC 1996. Functional morphology of tropical tree seedlings. In: Parthenon MD, eds. The ecology of tropical forest tree seedlings. England, Parthenon, Carnforth. Pp. 59-129.
    Grime JP 1979. Plant strategies and vegetation processes. Wiley, Chichester.
    Hanley ME, May OC 2006. Cotyledon damage at the seedling stage affects growth and flowering potential in mature plants. New Phytologist 169: 243-250.
    Harper JL 1977. Population biology of plants. London, UK, Academic Press.
    Harris M, Smith DM, Mackender RO 1986a. Growth analysis of Soybean seedlings during the lifespan of the cotyledons. Annals of Botany 57: 69-79.
    Harris M, Mackender RO, Smith DL 1986b. Photosynthesis of cotyledons of soybean seedlings. New Phytologist 104: 319-329.
    Hladik A, Miquel S 1990. Seedling types and plant establishment in an African rain forest. In: Bawa KS, Hadley M ed. Carnforth, England, Parthenon. Pp. 261-282.
    Hocking PJ, Steer BT 1989. Effects of seed size, cotyledon removal and nitrogen stress on growth and on yield components of oilseed sunflower. Field Crops Research 22: 59-75.
    Hunt R 1978. Plant growth analysis. In: Arnold E ed. London, England, the Camelot Press. Pp. 9-22.
    Ibarra-Manríquez G, Ramos MM, Oyama K 2001. Seedling functional types in a lowland rain forest in Mexico. American Journal of Botany 88: 1801-1812.
    Kidson R, Westoby M 2000. Seed mass and seedling dimensions in relation to seedling establishment. Oecologia 125: 11-17.
    Kitajima K 1992. Relationship between photosynthesis and thickness of cotyledons for tropical tree species. Functional Ecology 6: 582-599.
    Kitajima K 1996. Cotyledon functional morphology, patterns of seed reserve utilization and regeneration niches of tropical tree seedlings. In: Swaine MD ed. Carnforth, England, Parthenon. Pp. 193-210.
    Kitajima K 2002. Do shade-tolerant tropical tree seedlings depend longer on seed reserves? Functional growth analysis of three Bignoniaceae species. Functional Ecology 16: 433-444.
    Kitajima K 2003. Impact of cotyledon and leaf removal on seedling survival in three tree species with contrasting cotyledon functions. Biotropica 35: 429-434.
    Krigel I 1967. The early requirement for plant nutrients by subterranean clover seedlings (Trifolium subterraneum). Australian Journal of Agricultural Research 18: 879-886.
    Lane HC, Hesketh JD 1977. Cotyledon photosynthesis during seedling growth of cotton, Gossypium hirsutum L. American Journal of Botany 64: 786-790.
    Li JR, Proctor TA, Murr DP 1985. Effects of cotyledon removal on apple seedling growth and distribution of 14C-labelled photosynthates. Canadian Journal of Botany 63: 1736-1739.
    Lovell PH, Moore KG 1970. A comparative study of cotyledons as assimilatory organs. Journal of Experimental Botany 21: 1017-1030.
    Lovell PH, Moore KG 1971. A comparative study of the role of the cotyledon in seedling development. Journal of Experimental Botany 22: 153-162.
    Machado AD, Williams WA, Tucher CL 1974. Dry matter contribution by cotyledons of Lima Beans and other epigeal Legumes. Crop Science 14: 90-93.
    Marshall PE, Kozlowski TT 1976. Importance of photosynthetic cotyledons for early growth of Woody angiosperms. Physiologia Plantarum 37: 336-340.
    Metcalfe DJ, Grubb PJ 1995. Seed mass and light requirement for regeneration in South-East Asian rainforest. Canadian Journal of Botany 73: 817-826.
    Silvertown J, Franco M, Pisanty I, Mendoza A 1993. Comparative plant demography. Relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. Journal of Ecology 81: 465-476.
    Williams RF 1946. The physiology of plant growth with special reference to the concept of net assimilation rate. Annals of Botany 37: 41-72.
    [1] 胡晋. 种子生物学[M]. 北京:高等教育出版社,2006.
    [2] Dunnet G M, Gimingham C H. Seed ecology [M]. London: Chapman and Hall Press. 1992.
    [3] Bewley J D, Black M. Seeds: Physiology of Development and Germination [M]. New York and London: Plenum Press, 1994.
    [4] 周纪纶,郑师章,杨持. 植物种群生态学[M]. 北京:高等教育出版社,1991.
    [5] 张景光,王新平,李新荣等. 荒漠植物生活史对策研究进展与展望[J]. 中国沙漠,2005, 25 (3): 306-314.
    [6] 刘志民,蒋德明,高红英等. 植物生活史繁殖对策与干扰的关系[J]. 应用生态学报,2003, 14 (3): 418-422.
    [7] Fenner M, Thompson K. The ecology of seeds [M]. UK: Cambridge University Press, 2005.
    [8] Baskin C C, Baskin J M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination [M]. San Diego: Academic Press, 1998.
    [9] 颜启传. 种子学[M]. 北京:中国农业出版社,2001.
    [10] Heydecker W. Seed ecology [M]. London: Butterworths, 1973.
    [11] Wang R Z, Earle A R. Effects of grazing on a Leymus chinensis grassland on the Songnen plain of north-eastern China [J]. Journal of Arid Environments, 1997, 36: 307-318.
    [12] 姜世成,周道玮,靳英华. 松嫩平原盐碱化草地消融期土壤水盐运移特征[J]. 东北师大学报,2006, 38: 124-128.
    [13] 渠晓霞,黄振英. 盐生植物种子萌发对环境的适应对策[J]. 生态学报,2005, 25 (9): 2389-2398.
    [14] Northam F E, Callihan R H. Interpreting germination results based on differing embryonic emergence criteria [J]. Weed Science, 1994, 42: 474-481.
    [15] Bewley J D. Seed germination and dormancy [J]. The Plant Cell, 1997, 9: 1055-1066.
    [16] 张春庆,王建华. 种子检验学[M]. 北京:高等教育出版社,2006.
    [17] ISTA. Intenational Rules for Seed Testing [S]. International Seed Testing Association. Seed Science and Technology, 2004.
    [18] 刘志民,李雪华,李荣平等. 科尔沁沙地 31 种 1 年生植物萌发特性比较研究[J]. 生态学报,2004, 24 (3): 648-653.
    [19] 盛海燕,葛滢,常杰等. 环境因素对伞形科两种植物种子萌发的影响[J]. 生态学报,2004, 24 (2): 221-226.
    [20] 黄振英,Gutterman Y, 胡正海等. 白沙蒿种子萌发特性的研究Ⅱ环境因素的影响[J]. 植物生态学报,2001, 25 (2): 240-246.
    [21] 曾彦军,王彦荣,萨仁等. 几种旱生灌木种子萌发对干旱胁迫的响应[J]. 应用生态学报,2002, 13 (8): 953-956.
    [22] 由文辉,宋永昌. 淀山湖 3 种沉水植物的种子萌发生态[J]. 应用生态学报,1995, 6 (2): 196-200.
    [23] Czabator F J. Germination value: an index combining speed and completeness of pine seed germination [J]. Forest Science, 1962, 8: 386-396.
    [24] Nichols M A, Heydecker W. Two approaches to the study of germination data [J]. Proceedingsof the International Seed Testing Association, 1968, 33: 531-540.
    [25] Goodchild N A, Walker M G. A method of measuring seed germination in physiological studies [J]. Annals of Botany, 1971, 35: 615-621.
    [26] Brown R F, Mayer D G. Representing cumulative germination. 1. A critical analysis of single-value germination indices [J]. Annals of Botany, 1988, 61: 117-125.
    [27] Ranal M A, Santana D G. How and why to measure the germination process [J]. Revista Brasilian Botany, 2006, 29: 1-11.
    [28] Timson J. New method of recording germination data [J]. Nature, 1965, 207: 216-217.
    [29] Khan M A, Ungar I A. The effect of salinity and temperature on the germination of polymorphic seeds and growth of Atriplex triangularis willd [J]. American Journal of Botany, 1984, 71: 481-489.
    [30] Khan M A, Gul B, Weber D J. Germination responses of Salicornia rubra to temperature and salinity [J]. Journal of Arid Environments, 2000, 45: 207-214.
    [31] Gulzar S, Khan M A. Seed germination of a halophytic grass Aeluropus lagopoides [J]. Annals of Botany, 2001, 87: 319-324.
    [32] Goloff J R, Bazzaz F A. A germination model for natural seed populations [J]. Journal of Theoretical Biology, 1975, 52: 259-283.
    [33] Quintanilla L G, Pajaron S, Pangua E, et al. Effect of temperature on germination in northeanmost population of Culcita macrocarpa and Woodwardia radicans [J]. Plant Biology, 2000, 2: 612-617.
    [34] Edwards T I. Temperature relations of seed germination [J]. Quarterly Review of Biology, 1932, 7: 428-443.
    [35] Thompson P A. Characterization of the germination response to temperature of species and ecotypes [J]. Nature, 1970, 225: 827-831.
    [36] Simon E, Minchim A, Mcmenamin M M, et al. The low temperature limit for seed germination [J]. New Phytologist, 1976, 77: 301-311.
    [37] Scott S J, Jones R A, Willians W A. Review of data analysis for seed germination [J]. Crop Science, 1984, 24: 1192-1199.
    [38] Drake D R. Germination requirements of Metrosideros polymorpha, the dominant tree of havaiian lava flows and rain forest [J]. Biotropica, 1993, 25: 461-467.
    [39] Maguire J D. Speed of germination-aid in selection and evaluation for seedling emergence and vigor [J]. Crop Science, 1962, 2: 176-177.
    [40] Labouriau L G, Valadares M E B. On the germination of seeds of Calotropis procera (Ait.) [J]. Anais da Academia Brasileira de Ciencias, 1976, 48: 263-284.
    [41] Janssen J G M. A method of recording germination curves [J]. Annals of Botany, 1973, 37: 705-708.
    [42] Richter D D, Switzer G L. A technique for determining quantitative expressions of dormancy in seeds [J]. Annals of Botany, 1982, 50: 459-463.
    [43] Schimpf D J, Flint S D, Palmblad I G. Representation of germination curves with the logistic function [J]. Annals of Botany, 1977, 41: 1357-1360.
    [44] Campbell R K, Sorensen F C. A new basis for characterizing germination [J]. Seed Science and Technology, 1979, 4: 24-34.
    [45] Berrie A M M, Taylor G C D. The use of population parameters in the analysis of germination of lettuce seed [J]. Plant Physiology, 1981, 51: 229-233.
    [46] Harper J L. Population Biology of Plants [M]. London, New York, San Fransico: Academic Press, 1977.
    [47] 李荣平,刘志民,闫巧玲. 科尔沁沙地西部草甸植物萌发特征[J]. 草业学报,2006, 15 (1): 22-28.
    [48] Cohen D. Optimizing reproduction in a randomly varying environment [J]. Journal of Theoretical Biology, 1966, 12 (1): 119-129.
    [49] 张大勇. 理论生态学研究[M]. 北京: 高等教育出版社,海德堡:施普林格出版社,2000.
    [50] Bulmer M. Theoretical Evolutionary Ecology [M]. US: Sinauer Associates Inc, 1994.
    [51] Smith M J, Price G R. The logic of animal conflict [J]. Nature, 1973, 246: 15-18.
    [52] 李良,王刚. 种子萌发对策:理论与实验[J]. 生态学报,2003, 23 (6): 1165-1174.
    [53] McKeon G M. Seed dynamics of some pasture species in a dry monsoonal climate [D]. PhD Thesis, Griffith University, Brisbane, Qld, 1978.
    [54] McKeon G M, Brook K. Establishment of Stylosanthes species: Changes in hardseededness and potential speed of germination at Katherine, NT [J]. Australian Journal of Agricultural Research, 1983, 34: 491-504.
    [55] Alvarado V, Bradford K J. A hydrothermal time model explains the cardinal temperatures for seed germination [J]. Plant, Cell and Environment, 2002, 25: 1061-1069.
    [56] 郑光华,史忠礼,赵同芳等. 食用种子生理学 [M]. 北京:农业出版社,1990.
    [57] 张树新,邹受益,杨美霞. 梭梭种子发芽特性试验研究[J]. 内蒙古林学院学报,1995, 17 (2): 56-63.
    [58] 黄振英,张新时,Gutterman Y 等. 光照、温度和盐分对梭梭种子萌发的影响[J]. 植物生理学报,2001, 27 (3): 275-280.
    [59] Helen H. Effects of light on the seed germination of two New Zealand plant species: Melicytus ramiflorus and Leptospermum scoparium [D]. Thesis, 1999.
    [60] Baskin C C, Baskin J M. Germination ecophysiology of herbaceous plant species in a temperate region [J]. American Journal of Botany, 1988, 75: 286-305.
    [61] Cony M A, Trione S O. Germination with respect to temperature of two Argentinian Prosopis species [J]. Journal of Arid Environments, 1996, 33: 225-236.
    [62] El-Keblawy A, Al-Rawai A. Effects of salinity, temperature and light on germination of invasive Prosopis juliflora (Sw.) D.C [J]. Journal of Arid Environments, 2005, 61: 555-565.
    [63] Khan M A, Ungar I A. Influence of salinity and temperature on the germination of Haloxylon recurvum [J]. Annals of Botany, 1996, 78: 547-551.
    [64] Khan M A, Ungar I A. Effect of salinity on the seed germination of Triglochin maritime under various temperature regimes [J]. Great Basin Naturalist, 1999, 59: 144-150.
    [65] Gul B, Weber D J. Effect of salinity, light and thermoperiod on the seed germination of Allenrolfea occidentalis [J]. Canadian Journal of Botany, 1999, 77: 240-246.
    [66] Khan M A, Gul B, Weber D J. Germination responses of Salicornia rubra to temperature and salinity [J]. Journal of Arid Environments, 2000, 45: 207-214.
    [67] Gulzar S, Khan M A, Ungar I A. Effect of salinity and temperature on the germination of Urochondra setulosa (Trin.) C.E. Hubbard [J]. Seed Science and Technology, 2001, 29: 21-29.
    [68] 鱼小军,王彦荣,曾彦军等. 温度和水分对无芒隐子草和条叶车前种子萌发的影响[J]. 生态学报,2004, 24 (5): 883-887.
    [69] Khan M A, Ungar I A. Seed germination and dormancy of Polygonum aviculare L. as in fluenced by salinity, temperature, and gibberellin acid [J]. Seed Science and Technology, 1998, 26: 107-117.
    [70] 余玲. 虎尾草种子萌发特性的研究[J]. 草业科学,1999, 16 (3): 51-54.
    [71] Thompson K, Grime J P. A comparative study of germination response to diurnally-fluctuatingtemperatures [J]. Journal of Applied Ecology, 1983, 20: 141-156.
    [72] Totterdell S, Roberts E H. Characteristics of alternating temperatures with stimulate loss of dormancy in seeds of Rumex obtusifolius L. and Rumex crispus L [J]. Plant, Cell and Environment, 1980, 3 (1): 3-12.
    [73] Ekstam B, Forseby A. Germination response of Phragmites australis and Typha latifolia to diurnal fluctuations in temperature [J]. Seed Science Research, 1999, 9: 157-163.
    [74] McDonald C K. Germination response to temperature in tropical and subtropical pasture legumes. 2. Alternating temperatures [J]. Australian Journal of Experimental Agriculture, 2002, 42: 421-429.
    [75] 鱼小军,师尚礼,龙瑞军等. 生态条件对种子萌发影响研究进展[J]. 草业科学,2006, 23 (10): 44-49.
    [76] Ellis R H, Barrett S. Alternating temperatures and rate of seed germination in Lentil [J]. Annals of Botany, 1994, 74: 519-524.
    [77] Ekstam B, Johannesson R, Milberg P. The effect of light and number of diurnal temperature fluctuations on germination of Phragmites australis [J]. Seed Science Research, 1999, 9: 165-170.
    [78] Markus B. The role of temperature in the regulation of dormancy and germination of two related summer-annual mudflat species [J]. Aquatic Botany, 2004, 79: 15-32.
    [79] Baskin J M, Baskin C C. Seasonal-changes in germination response of Cyperus inflexus seeds to temperature and their ecological significance [J]. Botanical Gazette, 1978, 139: 231-235.
    [80] Roberts H A, Neilson J E. Seasonal-changes in the temperature requirements for germination of buried seeds of Aphanes arvensis L [J]. New phytologist, 1982, 92: 159-166.
    [81] Washitani I, Takenaka A. Germination responses in non-dormant seed population of Amarathus patulus Bertol. to constant temperatures in the sub-optimal range [J]. Plant, Cell and Environment, 1984, 7: 353-358.
    [82] Covell S R H, Ellis R H, Roberts E H, et al. The influence of temperature on seed germination rate in grain legumes. 1. A comparison of chickpea, lentil, soyabean and cowpea at constant temperatures [J]. Journal of Experimental Botany, 1986, 37: 705-715.
    [83] Bierhuizen J F, Wagenvoort W A. Some aspects of seed germination in vegetables. 1. The determination and application of heat sums and minimum temperature for germination [J]. Scientia Horticulturae, 1974, 2: 213-219.
    [84] 孙儒泳. 普通生态学[M]. 北京:高等教育出版社,1993.
    [85] Garcia-Huidobro J, Monteith J L, Squire G R. Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H.). 1. Constant temperature [J]. Journal of Experimental Botany, 1982, 33: 288-296.
    [86] Washitani I, Takenaka A. Mathematical description of the seed germination dependency on time and temperature [J]. Plant, Cell and Environment, 1984, 7: 359-362.
    [87] Ellis R H, Covell S, Roberts E H, et al. The influence of temperature on seed germination rate in grain legumes. 2. Intraspecific variation in chickpea (Cicer arietinum L.) at constant temperatures [J]. Journal of Experimental Botany, 1986, 37: 1503-1515.
    [88] Trudgill D L, Perry J N. Thermal time and ecological strategies-a unifying hypothesis [J]. Annals of Applied Biology, 1994, 125: 521-532.
    [89] Steinmaus S J, Prather T S, Holt J S. Estimation of base temperatures for nine weed species [J]. Journal of Experimental Botany, 2000, 51: 275-286.
    [90] Trudgill D L, Squire G R, Thompson K. A thermal time basis for comparing the germination requirements of some British berbaceous plants [J]. New Phytologist, 2000, 145: 107-114.
    [91] McDonald C K. Germination response to temperature in tropical and subtropical pasture legumes. 1. Constant temperature [J]. Australian Journal of Experimental Agriculture, 2002, 42: 407-419.
    [92] Larsen S U, Bibby B M. Differences in thermal time requirement for germination of three turfgrass species [J]. Crop Science, 2005, 45: 2030-2037.
    [93] Hardegree S P, van Vactor S S, Pierson F B, et al. Predicting variable temperature response of non-dormant seeds from constant-temperature data [J]. Journal of Range Management, 1999, 52: 83-91.
    [94] Murdoch A J, Roberts E H, Goedert C O. A model for germination responses to alternating temperatures [J]. Annals of Botany, 1989, 63: 97-111.
    [95] Pritchard H W, Tompsett P B, Manger K R. Development of a thermal time model for the quantification of dormancy loss in Aesculus hippocastanum seeds [J]. Seed Science Research, 1996, 6: 127-135.
    [96] Pritchard H W, Steadman K J, Nash J V, et al. Kinetics of dormancy release and the high temperature germination response in Aesculus hippocastanum seeds [J]. Journal of Experimental Botany, 1999, 50: 1507-1514.
    [97] Bauer M C, Meyer S E, Allen P S. A simulation model to predict seed dormancy loss in the field for Bromus tectorum L [J]. Journal of Experimental Botany, 1998, 49: 1235-1244.
    [98] Steadman K J, Pritchard H W. Germination of Aesculus hippocastanum seeds following cold-induced dormancy loss can be described in relation to a temperature-dependent reduction in base temperature (Tb) and thermal time [J]. New Phytologist, 2004, 161: 415-425.
    [99] Batlla D, and Benech-Arnold R L. A quantitative analysis of dormancy loss dynamics in Polygonum aviculare L. seeds: Development of a thermal time model based on changes in seed population thermal parameters [J]. Seed Science Research, 13: 55-68.
    [100] Steadman K J, Bignell G P, and Ellery A J. Field assessment of thermal after-ripening time for dormancy release prediction in Lolium rigidum seeds [J]. Weed Research, 2003, 43: 458-465.
    [101] Leblanc M L, Cloutier D C, Stewart K A, et al. The use of thermal time to model common lambsquarters (Chenopodium album) seedling emergence in corn [J]. Weed Science, 2003, 51: 718-724.
    [102] Qiu J, Bai Y, Coulman B, et al. Using thermal time models to predict seedling emergence of orchardgrass (Dactylis glomerata L.) under alternating temperature regimes [J]. Seed Science Research, 2006, 16: 261-271.
    [103] Hardegree S P, Van Vactor S S. Predicting germination response of four cool-season range grasses to field-variable temperature regimes [J]. Environmental and Experimental Botany, 1999, 41: 209-217.
    [104] Hsu F H, Nelson CJ, Chow W S. A mathematical model to utilize the logistic function in germination and seedling growth [J]. Journal of Experimental Botany, 1984, 35: 1629-1640.
    [105] Roche C T Thill D C, Shafii B. Estimation of base and optimum temperatures for seed germination in common crupina (Crupina vulgaris) [J]. Weed Science, 1997, 45: 529-533.
    [106] Orozco-Segovia A, Gonzalez- Zertuche L, Mendoza A, et al. A mathematical model that uses Gaussian distribution to analyze the germination of Manfreda brachystachya (Agavaceae) in a thermogradient [J]. Physiologia Plantarum, 1996, 98: 431-438.
    [107] Marshall B, Squire G R. Non-linearity in the rate-temperature relations of germination in oilseed rape [J]. Journal of Experimental Botany, 1996, 302: 1369-1375.
    [108] Hardegree S P. Predicting germination response to temperature. 1. Cardinal-temperature models and subpopulation-specific regression [J]. Annals of Botany, 2006, 97: 1115-1125.
    [109] Hardegree S P, Winstral A H. Predicting germination response to temperature. 2. Three-dimensional regression, statistical gridding and iterative-probit optimization using measured and interpolated-subpopulation data [J]. Annals of Botany, 2006, 98: 403-410.
    [110] Hardegree S P, Winstral A H. Predicting germination response to temperature. 3. Model validation under field-variable temperature conditions [J]. Annals of Botany, 2006, 98: 827-834.
    [111] Chapman V J. Salt marshes and salt deserts of the world [M]. J. Cramer Verlag, 1974.
    [112] Ungar I A. Seed germination and seed-bank ecology of halophytes [M]. New York: 1995.
    [113] Hester M W, Mendelssohn I A, McKee K L. Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: morphological and physiological constraints [J]. Environmental and Experimental Botany, 2001, 46: 277-297.
    [114] Hu L, Lu H, Liu Q L, et al. Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol [J]. Tree Physiology, 2005, 25: 1273-1281.
    [115] Garthwaite A J, von Bothmer R, Colmer T D. Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots [J]. Journal of Experimental Botany, 2005, 56: 2365-2378.
    [116] Ren ZH, Gao JP, Li LG, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter [J]. Nature Genetics, 2005, 37: 1141-1146.
    [117] 段德玉,刘小京,冯凤莲等. 不同盐分对盐地碱蓬种子萌发的效应[J]. 土壤肥料科学, 2003, 19 (6): 168-172.
    [118] Masuda M, Maki M, Yahara T. Effects of salinity and temperature on seed germination in a Japanese endangered Halophyte Triglochin maritimum (Juncaginaceae) [J]. Journal of Plant Research, 1999, 112: 457-461.
    [119] 段德玉,刘小京,冯凤莲等. 盐分和水分胁迫对盐生植物灰绿藜种子萌发的影响[J]. 植物资源与环境学报,2004, 13 (1): 7-11.
    [120] 张建锋,李吉跃,邢尚军等. 盐分胁迫下盐肤木种子发芽试验[J]. 东北林业大学学报,2003, 31 (3): 79-80.
    [121] Welbaum G E, Tissaoui T, Bradford K J. Water Relations of Seed Development and Germination in Muskmelon (Cucumis-Melo L) .3. Sensitivity of Germination to Water Potential and Abscisic-Acid During Development [J]. Plant Physiology, 1990, 92: 1029-1037.
    [122] Werner J E, Finkelstein R R. Arabidopsis Mutants with Reduced Response to Nacl and Osmotic-Stress [J]. Physiologia Plantarum, 1995, 93: 659-666.
    [123] Fricke W, Akhiyarova G, Wei W X, et al. The short-term growth response to salt of the developing barley leaf [J]. Journal of Experimental Botany, 2006, 57: 1079-1095.
    [124] Neumann P. Salinity resistance and plant growth revisited [J]. Plant Cell and Environment, 1997, 20: 1193-1198
    [125] Dodd G L, Donovan L A. Water potential and ionic effects on germination and seedling growth of two cold desert shrubs [J]. American Journal of Botany, 1999, 86: 1146 – 1153.
    [126] 阎顺国,沈禹颖. 生态因子对碱茅种子萌发期耐盐性影响的数量分析[J]. 植物生态学报,1996, 20 (5): 414-422.
    [127] Tobe K Zhang L P, Qiu G Y, et al. Characteristics of seed germination in five non-halophytic Chinese desert shrub species [J]. Journal of Arid Environments, 2001, 47: 192-201.
    [128] Glenn E P, Brown J J, Blumwald E. Salt tolerance and crop potential of halophytes [J]. Critical Reviews in Plant Sciences, 1999, 18: 227-255
    [129] Horie T, Schroeder J I. Sodium transporters in plants: diverse genes and physiological functions [J]. Plant Physiology, 2004, 136: 2457-2462.
    [130] Rea P A, Kim Y C, Sarafian V, et al. Vacuolar H+-Translocating Pyrophosphatases - a New Category of Ion Translocase [J]. Trends in Biochemical Sciences, 1992, 17: 348-353.
    [131] Serrano R, Gaxiola R. Microbial Models and Salt Stress Tolerance in Plants [J]. Critical Reviews in Plant Sciences, 1994, 13: 121-138.
    [132] De Villiers A J, Van Rooyen M W, Theron G K, et al. Germination of three Namaqualand Pioneer species, as influenced by salinity, temperature and light [J]. Seed Science and Technology, 1994, 22: 427-433.
    [133] Aiazzi M T, Carpane P D, Di Rienzo J A, et al. Effects of salinity and temperature on the germination and early seedling growth of Atriplex cordobenisis Gandoger et Stuckert (Chenopodiaceae) [J]. Seed Science and Technology, 2002, 30: 329-338.
    [134] Khan M A, Gul B, Weber D J.Seed germination in relation to salinity and temperature in Sarcobatus vermiculatus [J]. Biologia Plantarum, 2002, 45: 133-135.
    [135] Khan M A, Gulzar S. Light, salinity, and temperature effects on the seed germination of perennial grasses [J]. American Journal of Botany, 2003, 90: 131-134.
    [136] Khan M A, Gul B. High salt tolerance in germination dimorphic seeds of Arthrocnemum indicum [J]. International Journal of Plant Science, 1998, 159: 826-832.
    [137] Mwale s s, Azam-ali S N, Clark J A, et al. Effect of temperature on the germination of sunflower (Helianthus annuus L.) [J]. Seed Science and Technology, 1994, 22: 565-571.
    [138] Crauford P Q, Ellis R H, Summerfield R J, et al. Development in cowpea (Vigna unguiculata). 1. The influence of temperature on seed germination and seedling emergence [J]. Experimental Agriculture, 1996, 32: 1-12.
    [139] Roundy B A, Biedenbender S H. Germination of warm season grasses under constant and dynamic temperatures [J]. Journal of Range Management, 1996, 49: 425-431.
    [140] Mott J J, Groves R H. Germination strategies. In ‘The biology of Australian plants’ [M]. Perth: University of Western Australia Press, 1981.
    [141] Hochman Z, Helyar K R. Climatic and edaphic constraints to the persistence of legumes in pastures. In ‘Persistence of forage legumes’ [M]. USA: American Society of Agronomy, 1989.
    [142] 宋松泉,Fredlund K M, M?ller I M. 温度对甜菜种子萌发速率和线粒体活性的影响[J]. 中山大学学报,2002, 41 (1): 59-63.
    [143] 钱春梅,伍贤进,陈玲等. 高温胁迫对番茄种子萌发的影响[J]. 种子,2002, 5: 88-89.
    [144] Gao Q, Yang X S. A modelling study on optimal harvest intensity of alkaline grassland ecosystems under climate change [J]. Journal of Biogeography, 1995, 22: 509-514.
    [145] Murtagh G J. Effect of temperature on the germination of Glycine javanica [C]. Brisbane: University of Queensland Press, 1970.
    [146] Mayer A M, Poljakoff-Mayber A. The germination of seeds (third edition) [M]. Oxford: Pergammon Press, 1982.
    [147] Roberts E H. Temperature and seed germination. In ‘Plants and temperature’ [M].UK, Cambridge: Company of Biologists, 1988.
    [148] 殷立娟,祝玲. 中国东北草原地区的牧草资源中的 C3 和 C4 植物[J]. 内蒙古草业,1990, (2): 32-40.
    [149] Trudgill D L. Why do tropical poikilothermic organisms tend to have higher threshold temperatures for development than temperate ones [J]? Functional Ecology, 1995, 9: 136-137.
    [150] Grime J P, Mason G, Curtis A V, et al. A comparative study of germination characteristics in alocal flora [J]. Journal of Ecology, 1981, 64: 1017-1059.
    [151] Easterling D R, Meehl G A, Parmesan C, et al. Climate extremes: observations, modeling, and impacts [J]. Science, 2000, 289: 2068-2074.
    [152] 牛书丽,韩兴国,马克平等. 全球变暖与陆地生态系统研究中的野外增温装置[J]. 植物生态学报,2007, 31 (2): 262-271.
    [153] Intergovernmental Panel on Climate Change (IPCC). Climate change 2001: the scientific basis: summary for policymakers. IPCC WGI Third Assessment Report [N]. World Meteorological Organization/United Nations Environmental Programme, Geneva, Switzerland, Cambridge University Press, 2001.
    [154] Shaver G R, Canadell J, Chapin iii F S, et al. Global warming and terrestrial ecosystems: a conceptual framework for analysis [J]. Bioscience, 2000, 50 (10): 871-882.
    [155] Minorsky P V. The hot and the classic [J]. Plant Physiology, 2002, 129: 1421-1422.
    [156] Abu-Asab M S, Peterson P M, Shetler S G , et al. Earlier phlant flowering in spring as a response to global warming in the Washington, DC, area [J]. Biodiversity Conservation, 2001, 10: 597-612.
    [157] Silvertown J W, Lovett-Doust J L. Introduction to Plant Population Biology [M], London: Blackwell, 1993.
    [158] Mayer A M, Poljakoff-Mayber A. The germination of seeds (fourth edition) [M]. Oxford: Pergamon Press, 1989.
    [159] 李美荣。气候变化与 C4 植物资源。资源开发,全球变化与持续发展(中国科学技术协会第二届青年学术论文集。资源与环境科学分册)[C]。北京:中国科学技术出版社,1995,291-294.
    [160] 殷丽娟,李美荣. 中国 C4 植物的地理分布与生态学研究. 1. 中国 C4 植物及其与气候环境的关系[J]. 生态学报,1997, 17 (4): 350-363.
    [161] Collatz G J, Berry J A and Clark J S. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future [J]. Oecologia, 1998, 114: 441-454.
    [162] Karl T R, Jones P D, Knight R W, et al. A new perspective on recent global warming: asymmetric trends of daily maximum and minimum temperature [J]. Bulletin of the American Meteorological Society, 1993, 74 (6): 1007-1023.
    [163] Garcia-Huidobro J, Monteith J L, Squire G R. Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H.). 2. Alternating temperature [J]. Journal of Experimental Botany, 1982, 33: 297-302.
    [164] McIvor J G. Germination characteristics of seven Stylosanthes species [J]. Australian Journal of Experimental Agriculture and Animal Husbandry, 1976, 16: 723-728.
    [165] Stotzky G, Cox E A. Seed germination studies in Musa. 2. Alternating temperature requirement for the germination of Musa balbisiana [J]. American Journal of Botany, 1962, 49: 763-770.
    [166] Crocker W. Role of seed coats in delayed germination [J]. Botanical Gazette, 1906, 42: 265-291.
    [167] Morinaga T. Effect of alternating temperatures upon the germination of seeds [J]. American Journal of Botany, 1926, 13: 141-158.
    [168] Ransom E R. The interrelations of catalase, respiration, after-ripening, and germination in some dormant seeds of the Polygonaceae [J]. American Journal of Botany, 1935, 22: 815-825.
    [169] Griesbach R A, Voth P D. On dormancy and seed germination in Hemerocallis [J]. Botanical Gazette, 1957, 118: 223-237.
    [170] Stoller E W, Wax L M. Periodicity of germination and emergence of some annual weeds [J]. Weed Science, 1973, 21: 574-580.
    [171] Masuda M, Washitani I A. Comparative ecology of the seasonal schedules for reproduction by seeds in a moist tall grassland community [J]. Functional Ecology, 1990, 4: 169-182.
    [172] Washitani, I and Masuda, M. A comparative study of the germination characteristics of seeds from a moist tall grassland community [J]. Functional Ecology, 1990, 4: 543-557.
    [173] Baskin J M, Baskin C C. Germination ecophysiology of Hydrophyllum appendiculatum, a mesic forest biennial [J]. American Journal of Botany, 1985, 72: 185-190.
    [174] Grime J P. Plant strategies, vegetation processes and ecosystem properties [M]. Wiley and Ltd, Chichester, 2001.
    [175] Baskin J M, Baskin C C. Seasonal changes in the germination responses of buried Lamium amplexicaule seeds [J]. Weed Research, 1981, 21: 299-306.
    [176] Masuda M, Washitani I A. Differentiation of spring emerging and autumn emerging ecotypes in Galium spurium L. var. echinospermon [J]. Oecologia, 1992, 89: 42-46.
    [177] Walck J L, Baskin, C C and Baskin, J M. A comparative study of the germination biology of a narrow endemic and two geographically-widespread species of Solidago (Asteraceae). 1. Germination phenology and effect of cold stratification on germination [J]. Seed Science Research, 1997, 7: 47-58.
    [178] Shimono A, Washitani I. Seedling emergence patterns and dormancy / germination physiology of Primula modesta in a subalpine region [J]. Ecological Research, 2004, 19: 541-551.
    [179] Todd P E, Ungar I A. The effects of temperature and seasonal change on the germination of two salt marsh species, Atriplex prostrate and Salicornia europaea, along a salinity gradient [J]. International Journal of Plant Science, 1999, 160: 861-867.
    [180] Washitani, I. A convenient screening-test system and a model for thermal germination responses of wild plant seeds – behaviour of model and real seeds in the system [J]. Plant Cell and Environment, 1987, 10: 587-598.
    [181] Venable D L. Modeling the evolutionary ecology of seed banks. In ‘Ecology of soil seed banks’ [M]. Califonia, San Diego: Academic Press, 1989.
    [182] Chauhan B S, Gill G., Preston C. Seedling recruitment pattern and depth of recruitment of 10 weed species in minimum tillage and no-till seedling systems [J]. Weed Science, 2006, 54: 658-668.
    [183] Ungar I A. Halophyte seed germination [J]. Botanical Review, 1978, 44: 233-264.
    [184] Huang J, Reddman R E. Salt tolerance of Hordeum and Brassica species during germination and early seedling growth [J]. Canadian Journal of Plant Science, 1995, 75: 815-819.
    [185] Ungar I A. Germination ecology of halophytes [M]. In ‘Contribution to the ecology of halophytes’. The Hague, Junk, 1982.
    [186] Keiffer C W, Ungar I A. Germination responses of halophyte seeds exposed to prolonged hyper saline conditions [M]. In ‘Biology of Salt Tolerant Plants’. University of Karachi, Pakistan. 1995.
    [187] Song J, Feng G, Zhang FS. Salinity and temperature effects on germination for three salt-resistant euhalophytes, Halostachys caspica, Kalidium foliatum and Halocnemum strobilaceum [J]. Plant Soil, 2006, 279: 201-207.
    [188] Rivers W G, Weber D J. The influence of salinity and temperature on seed germination in Salicornia bigelovii [J]. Physiologia Plantarum, 1971, 24: 73-75.
    [189] Badger K S, Ungar I A. The effects of salinity and temperature on the germination of the inland halophyte Hordeum jubatum [J]. Canadian Journal of Botany, 1989, 67: 1420-1425.
    [190] Khan M A, Ungar I A. Germination of salt tolerant shrub Suaeda fruticosa from Pakistan: Salinity and temperature responses [J]. Seed Science and Technology, 1998, 26: 657-667.
    [191] 盛岩,杨允菲. 松嫩平原两种群落虎尾草种群有性繁殖的比较[J]. 东北师大学报,2000, 32: 51-54.
    [192] 余玲. 虎尾草种子萌发特性的研究[J]. 草业科学,1999, 16: 51-54.
    [193] Mahmood K, Malik K A. Seed germination and salinity tolerance in plant species growing on saline wastelands [J]. Biologia Plantarum, 1996, 38: 309-315.
    [194] Pirovano L, Morgutti S, Espen L, et al. Differences in the reactivation process in thermosensitive seeds of Phacelia tanacetifolia with germination inhibited by high temperature (30 oC) [J]. Physiologia Plantarum, 1997, 99: 211-220.
    [195] Bradbeer J W. Seed Dormancy and Germination [M]. Blackie, Glasgow, 1988.
    [196] Makino A, Mae T, Ohira K. Effect of Nitrogen, Phosphorus or Potassium on the Photosynthetic Rate and Ribulose-1,5-Bisphosphate Carboxylase Content in Rice Leaves During Expansion [J]. Soil Science and Plant Nutrition, 1984, 30: 63-70.
    [197] Qiu NW, Chen M, Guo JR,et al. Coordinate up-regulation of V-H+-ATPase and vacuolar Na+/H+ antiporter as a response to NaCl treatment in a C-3 halophyte Suaeda salsa [J]. Plant Science, 2007, 172: 1218-1225.
    [198] Kanai M, Higuchi K, Hagihara T, et al. Common reed produces starch granules at the shoot base in response to salt stress [J]. New Phytologist, 2007, 176: 572-580.
    [199] Silvertown J, Franco M, Harper J L. Plant life histories: ecology, phylogeny and evolution [M]. Cambridge: Cambridge University Press, 1997.
    [200] 班勇. 植物生活史对策进化[J]. 生态学杂志,1995, 14: 33-39.
    [201] Grime J P. Vegetation classification by reference to strategies [J]. Nature, 1974, 250: 26-31.
    [202] Grime J P. Plant strategies and vegetation processes [M]. Chichester: Wiley, 1979.
    [203] Huang Z Y, Gutterman Y. Comparison of germination strategies of Artemisia ordosica with its two congeners from deserts of China and Israel [J]. Acta Botanica Sinica, 2000, 42: 71-80.
    [204] 王宗,王刚,刘新民. 5 种沙漠植物种子的萌发生态学研究[J]. 中国沙漠,1997, 17: 16-20.
    [205] 刘志民,李雪华,李荣平等. 科尔沁沙地 15 种禾本科植物种子萌发特性比较[J]. 应用生态学报,2003, 9 (14): 1416-1420.
    [206] 李雪华,蒋德明,刘志民等. 温带半干旱地区一年生植物种子的萌发特性[J]. 生态学报,2006, 26 (4): 1194-1199.
    [207] 殷秀琴,王海霞,周道玮. 松嫩草原区不同农业生态系统土壤动物群落特征[J]. 生态学报,2003, 23 (6): 1071-1078.
    [208] 刘兴土. 松嫩平原退化土地整治与农业发展[M]. 北京:科学出版社, 2001.
    [209] Hegarty T W. Effects ofof fertilizer on the seedling emergence of vegetable crops [J]. Journal of the Science of Food and Agriculture, 1976, 27:962-968.
    [210] Gummerson R J. The effect of constant temperature and osmotic potentials on the germination of sugar beet [J]. Journal of Experimental Botany, 1986, 37: 729-741.
    [211] Rowse H R, Mckee M T, Higgs E C. A model of the effects of water stress on seed advancement and germination [J]. New Phytologist, 1999, 143: 273-279.
    [212] Kebreab E, Murdoch A J. Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds [J]. Journal of Experimental Botany, 1999, 50: 655-664.
    [213] Larsen S U, Bailly C, Come D, et al. Use of the hydrothermal time model to analyse interacting effects of water and temperature on germination on three grass species [J]. Seed Science Research, 2004, 14: 35-50.
    [214] Rowse H R, Finch-Savage W E. Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub- and supra-optimal temperatures [J]. New Phytologist, 2003, 158: 101-108.
    [215] 王新伟. 同盐浓度对马铃薯试管苗的胁迫效应[J]. 马铃薯杂志,1998, 12 (4): 203-207.
    [216] 许兴,李树华,惠红霞等. NaCl 胁迫对小麦幼苗生长、叶绿素含量及 Na+、K+吸收的影响[J]. 西北植物学报,2002, 22 (2): 278-284.
    [217] Munns R. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses [J]. Plant Cell Environments, 1993, 16: 15-24.
    [218] Kuiper D J. Actual cytokine in content ration in plant tissue as an indicator for salt resistance in cereals [J]. Plant Soil, 1990, 123: 243-250.
    [219] 杨少辉,季静,王罡宋等. 盐胁迫对植物影响的研究进展[J]. 分子植物育种,2006, 4 (3): 139-142.
    [220] 李彦,张英鹏,孙明等. 盐分胁迫对植物的影响及植物耐盐机理研究进展[J]. 植物生理科学, 2008, 24 (1): 258-265.
    [221] 苏永全,吕迎春. 盐分胁迫对植物的影响研究简述[J]. 甘肃农业科技,2007, 5 (3): 23-27.
    [222] 谢德意,王惠萍,王付欣等. 盐胁迫对棉花种子萌发及幼苗生长的影响[J]. 种子,2000, 3: 10-12.
    [223] 赵檀方,闫先喜,胡延吉. 盐胁迫对大麦种子吸胀萌发及根尖细胞结构的影响[J]. 大麦科学,1994, 41 (4): 17-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700