用户名: 密码: 验证码:
长江河口盐沼湿地外来物种互花米草扩散方式与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
互花米草(Spartina alterniflora)作为生态工程种引种长江河口湿地,由于其极强的适应性和繁殖能力,目前已在长江口湿地大面积分布并对该区域的生物多样性与生态安全产生威胁。研究互花米草扩散方式及其入侵机理,对深入了解和掌握该物种入侵生态学过程,实施有效控制管理以维护湿地生态系统结构与功能、保护湿地生物多样性具有重要的理论意义和实践价值。
     本研究选择长江河口盐沼湿地崇明东滩为主要研究区域,自大堤向海方向、依据高程从高到低将互花米草划分为高、中、低三个潮间带分布区,分别研究不同潮间带互花米草种子产量和活性以及其种子萌发特性,种子在土壤库中的萌发与存活动态,土壤种子库时空动态及类型,互花米草在互花米草-光滩(S-M)和互花米草-海三棱藤草-光滩(S-S-M)前沿的扩散格局,治理控制区内互花米草二次入侵等,分析互花米草在崇明东滩湿地扩散的生态学过程及快速入侵机制,主要研究结果如下:
     1.种子产量、活性、萌发特性和种子漂浮力
     互花米草种子产量与活性随分布潮间带的不同而异,其中,中潮带分布的互花米草种子产量(83,638±11,852粒/m2)和活性(59.7%±3.5%)最高,高潮带种子产量(54,489±20,433粒/m2)与低潮带种子产量(41,955±8,999粒/m2)无显著差异,但高潮带种子活性(51.3%±2.9%)显著高于低潮带种子活性(28.0%±3.0%)。互花米草种子成熟后在冬季低温环境条件下不萌发,低温春化能显著提高互花米草种子萌发速度和萌发率。高潮带互花米草种子在水体中平均漂浮时间(14天)与中潮带种子漂浮时间(12天)无显著差异,两者均显著高于低潮带互花米草种子在水体中的漂浮时间(6天)。
     2.种子在土壤库中的萌发与存活及土壤种子库时空动态
     种子野外埋藏试验表明:互花米草种子2月份开始萌发,>80%的萌发率集中在3和4月份,至6月种子在土壤库中的萌发结束。种子在土壤中萌发率与其自身活性及其埋藏深度有关,而与埋藏的潮间带无关,高活性、浅埋藏的互花米草种子在土壤库中的萌发率最高,而低活性、深埋藏互花米草种子在土壤库中的萌发率最低。互花米草种子在土壤库中的存活率与种子自身活性和埋藏深度有关,高活性、深埋藏种子在土壤库中存活率相对较高、存活时间较长,而低活性、浅埋藏种子存活率低、持续时间较短。种子在土壤库中的存活率和持续时间与埋藏的潮间带无关,相同潮间带种子在不同潮间带埋藏的存活率间无显著差异。互花米草种子在土壤库中存活的时间不超过9个月。
     互花米草在不同潮间带所形成的土壤种子库大小与持续时间不同,中潮带互花米草土壤种子库规模最大、种子活性最高、持续时间最长,其次是高潮带,低潮带互花米草种子库规模最小、种子活性最低、持续时间最短,三个潮间带互花米草土壤种子库持续时间均不超过9个月,为短期土壤种子库类型。
     3.互花米草入侵前沿的扩散格局
     互花米草在崇明东滩的入侵前沿主要包括互花米草-光滩(S-M)前沿和互花米草-海三棱藨草-光滩(S-S-M)前沿。互花米草主要通过实生苗扩散与定居,以及从连续植物群落边缘通过分蘖和根状茎生长向前沿扩散。5月份,互花米草实生苗随着潮水作用向前沿传播并定居,而连续群落边缘通过无性繁殖向前沿的扩散主要集中在5-8月份,但两种扩散方式在不同前沿的作用不同。在S-M前沿,互花米草主要通过实生苗的传播在前沿光滩定居,其定居密度随着连续植物群落边缘向海距离的增加而逐渐降低(8.2±0.7株/m2→0.2±0.4株/m2),定居距离>50m。实生苗在光滩上定居后,其存活率较高(80.6%—86.7%),并通过快速分蘖(30±4—40±5/株)和根状茎生长形成斑块。经过一个生长季,在实生苗定居密度较高的区域,其分蘖和根状茎生长所形成的斑块不断连接而逐渐形成连续植物群落,向光滩扩散距离达23.4±3.2 m,而从原有连续植物群落边缘通过无性繁殖向光滩扩散的距离仅为2.0±0.4 m。在S-S-M前沿,由于本地种海三棱藨草的竞争作用,互花米草实生苗在海三棱藨草群落中定居的密度较低,其定居主要集中在海三棱藨草边缘的光滩,并随着向海距离的增加降低,实生苗定居密度(1.5±1.7株/m2→0.1±0.3株/m2)和距离(45m)较S-M前沿低,定居后的实生苗存活率在80.0%—84.0%之间。经过一个生长季,互花米草实生苗在S-S-M前沿扩散所形成的斑块不能连接形成连续植物群落,从连续植物群落边缘通过无性繁殖向前沿扩散的距离为2.7±0.5 m,为整个S-S-M前沿扩散距离,显著低于S-M前沿扩散的距离;S-M前沿是崇明东滩互花米草快速扩散的主要区域,整体呈现为连续锋面状的扩散模式,实生苗的传播与定居是互花米草在前沿实现种群快速入侵的基础。
     4.治理控制区内的互花米草二次入侵
     实生苗在治理控制区内的扩散与定居是互花米草实现快速二次入侵的基础。5月份,在破堤恢复水文的互花米草治理控制区内,相邻互花米草群落中种子与实生苗通过潮水作用带到治理控制区内,大量实生苗定居后、通过快速分蘖和根状茎生长形成种群斑块,并不断扩大连接而形成连续分布的群落。通过两年的二次入侵,互花米草再次占据所有已治理控制区内的裸地,并形成连续群落,实现整个控制区域的二次入侵。二次入侵两年后,互花米草群落结构和以及种子产量有关的繁殖参数与对照群落无显著差异,而通过无性繁殖从相邻连续植物群落边缘向治理控制区扩散的距离<1m,在种群二次入侵过程中贡献较小。互花米草二次入侵主要是依靠实生苗和种子的扩散实现空间拓植,实生苗的分蘖和根状茎生长实现其新种群的建立。防止互花米草二次入侵的关键是控制互花米草实生苗和种子向治理控制区内传播。
Spartina alterniflora was introduced to the Yangtze Estuary for the purpose of land reclamation and has expanded rapidly thereafter. The rapid expansion of this exotic plant has threatened the native species richness and ecological security. Both the sexual reproduction by seeds and asexual propagation by tillering and rhizoming are the two main approaches by which Spartina aterniflora can keep fast rate of geographic spread. Therefore, studies on the spreading patterns and its role played on invasion of Spartina alterniflora will help understand their invasive ecological procession and mechanism, provide a scientific basis and guideline at a strategic control of this species to maintain the wetland ecological structure and function as well as the wetland biodiversity.
     In this study, the high, middle and low intertidal zones were divided from 1998 dyke to mudflat seaward according to their elevations, respectively. Using field investigation and laboratory test, the spreading patterns of exotic Spartina alterniflora at Chongming Dongtan Nature Reserve were studied, which included in seed production, viability and germination characteristic, seed floatation, spatial-temporal dynamic and type of soil seed bank, seed fate respecting to seed germination and survivor in soil after across intertidal dispersal, the range expansion patterns by sexual and asexual propagation at the advancing fronts and the reinvasion at controlled area. The ecological process and mechanism of Spartina alterniflora invasion by sexual and asexual reproduction were also discussed. The main results were as follows:
     1. Seed production, viability, germination characteristics and seed floatation
     Seed production and viability of Spartina aterniflora varied along an intertidal gradient, the middle intertidal zone (MIT) had the largest seed production (83638±11852 no./m2) and highest viability (59.7%±3.5%), the seed production and viability of high intertidal zones (HIT) were 54489±20433 no./m2 and 51.3%±2.9%,41955±8999 no./m2 and 28.0%±3.0% for low intertidal intertidal zones (LIT). The seed germination did not occurred at low temperature, the chilling treatment (at low temperature and in moist conditions) could significantly enhance the germinability of Spartina alterniflora seeds and shorten the time of onset seed germination. The seeds from the site MIT had much higher germinability than the sites of LIT and HIT. Spartina alterniflora seeds have capacity to remain afloat in water, the floating time differed among seeds from different intertidal zones, which were 14 d,12 d and 6 d for the site of HIT, MIT and LIT, respectively. There were no significant differences in floating time between the HIT and MIT, but both were significantly higher than that of LIT, which has very important role for good quality seed to survive in winter and increase the validity of seed dispersal on spring tides.
     2. Seasonal changes in seed germination and persistence in soil and spatial-temporal dynamics of soil seed bank
     Seed germination in soil started in February and ended in June whatever their burial depths (5cm,10cm and 20cm), over 80% germination occurred in March and April. The germinations significantly correlated with seed quality and burial depth, the MIT seeds buried at depth of 5 cm have the largest values, and the seed germination percentages decreased with increased burial depth, while the seed germination of LIT with 20cm burial depth was the lowest one. The germination was independent on the intertidal zones where they were buried, no significant differences in germination among the same burial depths across intertidal burial. Before the spring flush of germination, seed survival correlated with seed quality and was independent on the intertidal zones and burial depths. The seed survival decreased quickly at 5 cm burial with the flush germination in field, which were much lower than that of 10 cm and 20 cm burial. However, seeds of Spartina alterniflora did not survive 9 months even buried at 20 cm burial depth and no germinable seed were recorded after July.
     The size of soil seed bank of Spartina alterniflora depends on the seed production, viability and elevation of zones. The highest density and seed viability of soil seed bank was recorded at the site of MIT, where had the highest seed production, then the HIT, the smallest soil seed bank was at the site of LIT. By July, before there was any replenishment with fresh seeds from the current year, the soil seed bank was completely exhausted and the persistent time of soil seed bank for Spartina alterniflora was less than 9 months, which is in agreement with that of the transient seed bank.
     3. Range expansion patterns of Spartina alterniflora at advancing fronts
     Two types of advancing fronts of Spartina alterniflora, i.e. Spartina alterniflora-mudflat (S-M front) and Spartina alterniflora-Scirpus mariqueter-mudflat (S-S-M front) could be found at the Chongming Dongtan nature reserve. Both sexual reproduction by seeds and asexual propagation by tillering and rhizoming were the two main means by which Spartina aterniflora maintained a fast rate of geographic spread at their advancing fronts, the roles which sexual reproduction and asexual propagation might play in the range expansion were probably dependent on their location and the type of habitat as well as local abiotic and biotic factors. Initial recruitment of seedlings did not occur until May, when seeds transported by the tidal water germinated in front of the continuous edge of dense Spartina alterniflora meadow. Comparing the seedling recruitment occurred at these two fronts, the mean number of seedling recruitment was much higher at the S-M (8.2±0.7 no./m2→0.2±0.1 no./m2) front than the S-S-M front (1.5±1.7 no./m2→0.1±0.3 no./m2). Once established, the seedling survivorship was high and there were no significant differences in seedling survivorship between the S-M (80.6%±86.7%) and S-S-M fronts (80.0%—84.0%). Once the seedlings established at the front of the continuous Spartina alterniflora meadows in May, they quickly formed tussocks by vegetative tillering and rhizoming and finally merged into dense meadows at S-M front. The mean distance of range expansion of Spartina alterniflora after one growing season at the S-M front was 25.4±3.1 m/year, while 2.7±0.5 m/year at the S-S-M front. The range expansion rate at the S-S-M front was much slower than the S-M front. These two patterns of range expansion of Spartina alterniflora on an expansion front scale revealed from this study confirmed the pattern on a large scale of range expansion of Spartina alterniflora at the salt marshes in the Yangtze Estuary. The colonization behaviors of Spartina alterniflora at the expansion fronts differed as a reaction to various external and internal factors.
     4. The reinvasion by Spartina alterniflora in the controlled area
     Seeds and seedlings in the neighbouring Spartina alterniflora community were the basis for fast reinvasion of Spartina alterniflora in controlled area. Seeds and seedlings were transported by tidal water to occupy empty niches and quickly formed tussocks through vegetative propagation, and finally merge into dense continuous meadows. After two years'reinvasion by Spartina alterniflora, there were no significant differences in culm density, vegetation height, above biomass and sexual parameters between new formed continuous meadow and the former continuous meadow. However, the spreading distance by vegetative propagation from neighbouring continuous meadow edges were less than 1 m for two years, which contributed little to reinvasion. Since Spartina alterniflora mainly achieved reinvasion by seed and seedling dispersal, the most effective measures of controlling the reinvasion of Spartina alterniflora should be taken by preventing the dispersal of seeds and seedlings by tidal water.
引文
1. Auge H, Brandl R,1997. Seedling recruitment in the invasive clonal shrub, Mahonia aquifolium Pursh (Nutt). Oecologia,110 (2):205—211.
    2. Ayres D R, Smith D L, Zaremba K, et al.,2004. Spread of exotic cordgrasses and hybrids (Spartina sp.) in the tidal marshes of San Francisco Bay, California, USA. Biological Invasion,6:221—231.
    3. Baskin C C, Baskin J M,2003. Seed germination and propagation of Xyris tennesseensis, a federal endangered wetland species. Wetlands,23:116—124.
    4. Baskin C C, Baskin J M, Chester E W,2003. Ecological aspects of seed dormancy-break and germination in Heteranthera limosa (Pontederiaceae), a summer annual weed of rice fields. Weed Research,43:103—107.
    5. Baskin J M, Baskin C C,1993:The annual dormancy cycle in buried weed seeds:A continuum. BioScience,35:492—498.
    6. Baumel A, Ainouche M L, Levasseur J E,2001. Molecular investigations in populations of Spartina anglica C.E. Hubbard (Poaceae) invading coastal Brittany (France). Molecular Ecology,10:1689—1701.
    7. Beggs J R, Wilson P R,1991. The kaka Nestormeridionalis, a New Zealand parrot endangered by introduced wasps and mammals. Biological Conservation,56: 23—38.
    8. Benvenuti S, Macchia M,1995. Effect of hypoxia on buried weed seed germination. Weed Research,35:343—351.
    9. Benvenuti S, Macchia M, Miele S,2001. Quantitative analysis of emergence of
    seedlings from buried weed seeds with increasing soil depth. Weed Science,49: 528—535.
    10. Bertness M D,1984. Habitat and community modofication by an introduced
    herbivorous snail. Ecology,65:370—381.
    11. Bertness M D,1991. Zonation of Spartina patens and Spartina alterniflora in a
    New England salt marsh. Ecology,72:138—148.
    12. Bertness M D, Shumway S W,1992. Consumer driven pollen limitation of seed production in marsh grasses. American Journal of Botany,79:288—293.
    13. Bischoff A, Vonlanthen B, Steinger T, et al.,2005. Seed provenance matters-effects on germination of four plant species used for ecological restoration. Basic and Applied Ecology,7:1—13.
    14. Broome S W, Woodhouse J R, Seneca E D,1974. Propagation of smooth cordgrass, Spartina alterniflora, from seed in North Carolina. Chesapeake Science, 15:214—221.
    15. Callaway J C, Josselyn M N,1992. The introduction and spread of smooth cordgrass(Spartina alterniflora) in South San Francisco Bay. Estuaries,15: 218—226.
    16. Carey J R,1996. The incipient Mediterranean fruit fly population in California: implications for invasion biology. Ecology,77 (6):1690—1697.
    17. Cavieres L A, Arroyo T K,2000. Seed germination response to cold stratification period and thermal regime in Phacelia secunda (Hydrophyllaceae). Plant Ecology, 149:1—8.
    18. Chambers J C,1995. Relationships between seed fates and seedling establishment in an alpine ecosystem. Ecology,76:2124—2133.
    19. Chambers J C,2000. Seed movements and seedling fates in disturbed sagebrush steppe ecosystems:implications for restoration. Ecological Applications,5: 1400—1413.
    20. Chang E R, Jeferies R L, Carletcsa T J,2001. Relationship between vegetation ration and soil seed banks in an artic coastal marsh. Journal of Ecology,89:367— 384.
    21. Chen Z Y, Li B, Zhong Y, et al.,2004. Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences. Hydrobiologia, 528,99—106.
    22. Wang C H, Tang L, Fei S F, et al.,2009. Determinants of seed bank dynamics of two dominant helophytes in a tidal salt marsh. Ecological Engineering,35, 800—809.
    23. Chung C H,1993. Thirty years of ecological engineering with Spartina plantations in China. Ecological Engineering,2:261—289.
    24. Chung C H, Zhuo R Z, Xu G W,2004. Creation of Spartina plantations for reclaiming Dongtai, China, tidal flats and offshore sands. Ecological Engineering, 23:135—150.
    25. Cohen A N, Carlton J T,1998. Accelerating invasion rate in a highly invaded estuary. Science,279:555—558.
    26. Consuelo B,1998. The effects of seed size, cotyledon reserves and herbivory on seedling survival and growth in Quercus rugosa and Q. laurina(Fagaceae). American Journal of Botany,85 (1):79—87.
    27. Costanza R, d'Arge R, de Groot R, et al.,1997. The value of the world's ecosystem services and natural capital. Nature,387:253—260.
    28. Curnutt J L,2000. Host-area specific climatic-matching: similarity breeds exotics. Biological Conservation,94:341—351.
    29. Daehler C C,1998. Variation in self-fertility and the reproductive advantage of self-fertility for an invading plant (Spartina alterniflora). Evolutionary Ecology, 12(5):553—568.
    30. Daehler C C,1999. Inbreeding depressing in smooth cordgrass (Spartina aterniflora, Poaceae) invading San Francico Bay. American Journal of Botany,86: 131—139.
    31. Daehler C C, Strong D R,1994. Variable reproductive output among clones of Spartina alterniflora (Poaceae) invading San Francisco Bay, California:The influence of herbivory, pollination and establishment site. American Journal of Botany,81:307—313.
    32. Daehler C C, Strong D R,1996. Status, Prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific Estuaries, USA. Biological Conservation,78:51—58.
    33. Davis H G, Taylor C M, Civille J C,2004. An Allee effect at the front of a plant invasion:Spartina in a Pacific estuary. Journal of Ecology,92:321—327.
    34. Dumbauld B R, Peoples M, Holomb L, et al,1995. The potential influence of cordgrass Spartina alterniflora on clam resources in Willapa Bay, Washington. Journal of Shellfish Research,14:1—278.
    35. Edwards K R, Proffitt C E, Travis S E,2005. Ecological and genetic impacts of a large-scale marsh dieback on Spartina alterniflora (smooth cordgrass) in the northern Gulf of Mexico. Estuaries,28:204—214.
    36. Elsey-Quirk T, Middleton B A, Proffitt C E,2009a. Seed dispersal and seedling emergence in a created and natural salt marsh on the Gulf of Mexico coast in southwest Louisiana, USA. Restoration Ecology,17(3):422—432.
    37. Elsey-Quirk T, Middleton B A, Proffitt C E,2009b. Seed flotation and germination of salt marsh plants:The effects of stratification, salinity, and/or inundation regime. Aquatic Botany,91:40—46.
    38. Eriksson O, Ehrlen J,1992. Seed and microsite limitation of recruitment in plant populations. Oecologia,91:360—364.
    39. Evans P R,1986. Use of herbicide'Dalapon' for control of Spartina encroaching on intertidal mudflats:Beneficial effects on shorebirds. Colonial Waterbirds,9: 171—175.
    40. Fang X B, Subudhi P K, Venuto B C, et al,2004. Mode of pollination, pollen germination, and seed set in smooth cordgrass (Spartina alterniflora, Poaceae). International Journal of Plant Sciences,165 (3):395—401.
    41. Feist B E, Simenstada C A,2000. Expansion rates and recruitment frequency of exotic smooth cordgrass, Spartina alterniflora (Loisel) colonizing unvegetated littoral flats in Willapa Bay, Washington. Estuaries,23 (2):267—274.
    42. Gao Z G, Zhang L Q,2006. Multi-seasonal spectral characteristics analysis of coastal salt marsh vegetation in Shanghai. China. Estuarine, Coastal and Shelf Science,69:217—224.
    43. Gilbert B, Lechowicz M J,2005.Invasibility and abiotic gradients:the positive correlation between native and exotic plant diversity. Ecology,86:1848—1855.
    44. Goodson J M, Gurnell A M, Angold P G, et al.,2001. Riparian seed banks: structure, process and implications for riparian management. Progress in Physical Geography,25:301—325.
    45. Greenberg C H, Smith L M, Levey D J,2001. Fruit fate, seed germination and growth of an invasive vine-An experimental test of'sit and wait' strategy. Biological Invasions,3:363—372.
    46. Greene D F, Johnson E A,1995. Long-distance wind dispersal of tree seeds. Canadian Journal of Botany,73:1036—1045.
    47. Greenwood M E, DuBowy P J,2005. Germination characteristics of Zannichellia palustris from New South Wales, Australia. Aquatic Botany,82:1—11.
    48. Grime J P, Mason G, Curtis A V, et al.,1981. A comparative study of germination characteristics in a local flora. Journal of Ecology,69:1017—1059.
    49. Groom M J,1998. Allee effects limit population viability of an annual plant. American Naturalist,151:487—496.
    50. Grosholz E,2002. Ecological and evolutionary consequences of coastal invasions. Trends in Ecology and Evolution,17:22—27.
    51. Grundy A C, Mead A, Burston S,1999. Modelling the effect of cultivation on seed movement with application to the prediction of weed seedling emergence. Journal of Applied Ecology,36:663—678.
    52. Henderson C B, Petersen K E, Redak R A,1988. Spatial and temporal patterns in the seed bank and vegetation of a desert grassland community. Journal of Ecology, 76:717—728.
    53. Herranz J M, Ferrandis P, Copete M A,2003. Influence of light and temperature on seed germination and ability of the endangered plant species Sisymbrium cavanillesianum to form persistent soil seed banks. EcoScience,10:532—541.
    54. Herrera C M, Jordano P, Lopez-Soria L, et al.,1994. Recruitment of a mast-fruiting, bird dispersed tree:bridging frugivore activity and seedling establishment. Ecological Monographs,64:315—344.
    55. Hertling U M, Lubke R A,2000. Assessing the potential for biological invasion —the case of A mmophila arenaria in South Africa. South African Journal of Science,96 (9-10):520—527.
    56. Hir P L, Roberts W, Cazaillet O, et al,2000. Characterization of intertidal flat hydrodynamics. Continental Shelf Research,20 (12-13):1433—1459.
    57. Holzel N, Otte A,2004. Ecological significance of seed germination characteristics in flood-meadow species. Flora,199:12—24.
    58. Honnay O, Bossuyt B,2005. Prolonged clonal growth:escape route or route to extinction? Oikos,108:427—432.
    59. Hovestadt T, Yao P, Linsenmair K E,1999. Seed dispersal mechanisms and the vegetation of Forest Island in a West African Forest-Savanna mosaic (Comoe National Park, Ivory Coast). Plant Ecology,144:1—25.
    60. Huang H M, Zhang L Q, Guan Y J, et al.,2008. A cellular automata model for population expansion of Spartina alterniflora at Jiuduansha Shoals, Shanghai, China. Estuarine, Coastal and Shelf Science,77:47—55.
    61. Huiskes A H L, Koutstaal B P, Herman P M J, et al.,1995. Seed dispersal of halophytes in tidal salt marshes. Journal of Ecology,83:559—567.
    62. Ikeda H, Itoh K,2001. Germination and water dispersal of seeds from a threatened plant species Penthorum chinense. Ecological Research,16:99—106.
    63. Jessie J C, Moore K A,2008. Influence of environmental factors on Vallisneria americana seed germination. Aquatic Botany,88:283—294.
    64. John M P, Thomas W J,1992. Dispersion of seedlings of the prairie compass plant, Silphium laciniatum (Asteraceae). American journal of botany,79:133—137.
    65. Kennedy T A, Naeem S, Howe K M, et al,2002. Biodiversity as a barrier to ecological invasion. Nature,417:636—638.
    66. Lambrinos J G, Bando K J,2008. Habitat modification inhibits conspecific seedling recruitment in populations of an invasive ecosystem engineer. Biological Invasions,10:729—741.
    67. Levey D J, Tewksbury J J, Bolker B M,2008. Modelling long-distance seed dispersal in heterogeneous landscapes. Journal of ecology,96:599—608.
    68. Levin S A,1992. The problem of pattern and scale in ecology. Ecology,73:1943 —1967.
    69. Levine J M, Brewer J S, Bertness M D,1998. Nutrients, competition and plant zonation in a New England salt marsh. Journal of Ecology,86:285—2921.
    70. Li H P, Zhang L Q,2008. An experimental study on physical controls of an exotic plant Spartina alterniflora in Shanghai, China. Ecological Engineering,32:11—21.
    71. Lord J M, Westoby M, Leishman M,1995. Seed size and phylogeny in six temperature floras:constrains, niche conservatism, and adaptation. The American Naturalist,146:349—364.
    72. Ma Z J, Li B, Jing K, et al.,2004. Are artificial wetlands good alternatives to natural wetlands for waterbirds? —A case study on Chongming Island, China. Biodiversity and Conservation,13:333—350.
    73. Mack R N, Simberloff D, Lonsdale W M, et al.,2000. Biotic invasions:causes, epidemiology, global consequences, and control. Ecological Applications,10(3): 689—710.
    74. Maun M A,1994. Adaptations enhancing survival and establishment of seedlings on coastal dune systems. Vegetatio,111:59—70.
    75. Metcalfe W S, Ellison A M, Bertness M D,1986. Survivorship and spatial development of Spartina alterniflora Loisel. (Gramineae) seedlings in a New England salt marsh. Annals of Botany,58:249—258.
    76. Michael L C, Brook G M, Allan E S,2000. Long-distance seed dispersal in plant populations. American Journal of Botany,87:1217—1227.
    77. Mooring M T, Cooper A W, Seneca E D,1971. Seed germination response and evidence for height ecophenes in Spartina alterniflora from North Carolina. American Journal of Botany,58:48—55.
    78. Nathan R,2006. Long-Distance Dispersal of Plants. Science,313:786—788.
    79. Nathan R, Casagrandi R,2004. A simple mechanistic model of seed dispersal, predation and plant establishment:Janzen-Connell and beyond. Journal of Ecology, 92:733—746.
    80. Nathan R, Muller-Landau H C,2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology and Evolution, 15:278—285.
    81. Nystrand O, Geranstrom A,2000. Predation on Pinus sylvestris seeds and juvenile seedlings in Swedish boreal forest in relation to stand disturbance by logging. Journal of Applied Ecology,37:449—463.
    81. Olvera-Carrillo Y, Marquez-Guzman J, Sanchez-Coronado M E, et al.,2009. Effect of burial on the germination of Opuntia tomentosa's (Cactaceae, Opuntioideae) seeds. Journal of Arid Environments,73:421—427.
    83. Onaindia M, Amezaga I,2000. Seasonal variation in the seed banks of native woodland and coniferous plantations in Northern Spain. Forest Ecology and Management,126:163—172.
    84. Partridge, T.R.,1987. Spartina in New Zealand. New Zealand Journal of Botany, 25:567—575.
    85. Pimentel D, Lorilach, Zuniga R, et al.,2000. Environmental and economic costs of nonindigenous species in the United States. Bioscience,50(1):53—65.
    86. Plyler D B, Carrick K M,1993. Site-specific seed dormancy Spartina alterniflora in (Poaceae). American Journal of Botany,80 (7):752—756.
    87. Proffitt C E, Travis S E, Edwards K R.2003. Genotype and elevation influence Spartina alterniflora colonization and growth in a created salt marsh. Ecological Applications,13(1):180—192.
    88. Rand T A,2000. Seed dispersal, habitat suitability and the distribution of halophytes across a salt marsh tidal gradient. Journal of Ecology,88:608—621.
    89. Ren J, Tao L, Liu X M,2002. Effect of sand burial depth on seed germination and seedling emergence of Calligonum L. species. Journal of Arid Environments,51: 603—611.
    90. Richard P D, Jeffrey M D, Jon J S, et al,2009. Safe sites, seed supply, and the recruitment function in plant populations. Ecology,90:2129—2138.
    91. Robert S C, Roslyn S, Gregory J B, et al.,2007. Aquatic plant community invisibility and scale-dependent patterns in native and invasive species richness. Ecology,88:3135—3143.
    92. Roser D, Montserrat V,2008. Cortaderia selloana seed germination under different ecological conditions, Spain. Acta oecologica,33:93—96.
    93. Russell S K, Schupp E W,1995. Effects of microhabitat patchiness on pattern of seed dispersal and seed predation of Cercocapus ledifolius (Rosaceae). Oikos,81: 434—443.
    94. Sala O, Chapin F, Armesto J, et al.,2000. Biodiversity—Global biodiversity scenarios for the year 2100. Science,287:1770—1774.
    95. Sanchez J M, SanLeon D G, Izco J,2001. Primary colonization of mudflat estuaries by Spartina maritima (Curtis) Fernald in Northwest Spain:vegetation structure and sediment accretion. Aquatic Botany,69:15—25.
    96. Sayce K,1988. Introduced cordgrass, Spartina alterniflora Loisel., in salt marshes and tidelands of Willapa Bay, Washington. Ilwaca, Washington:Willapa National Wildlife Refuge Report.
    97. Sayce K, Dumbauld B R, Hidy J,1997. Seed dispersal in drift of Spartina alterniflora. In:K. Pattened. Second International Spartina Conference Washington State University, Pullman, WA:27—31.
    98. Sayce K, Mumford T E,1990. Identifying the Spartina species. In:Mumford T F, Peyton P, Sayce J R, Harbells S eds. Spartina Workshop Record Washington Sea Grant Program University of Washington, Seattle:9—14.
    99. Schupp E W, Fuentes M,1995. Spatial patterns of seed dispersal and the unification of plant population ecology. Ecoscience,2:267—275.
    100. Shi Z, Pethick J S, Burd F, et al.,1996. Velocity profiles in a salt marsh canopy. Geo-Marine Letters,16:319—323.
    101. Simenstad C A, Thom R M,1995. Spartina alterniflora (smooth cordgrass) as an invasive halophyte in Pacific Northwest estuaries. Hortus Northwest:A Pacific Northwest Native Plant Directory and Journal,6:9—13.
    102. Somer G F, Grant D,1981. Influence of seed source upon phenology of flowering of Spartina alterniflora Loisel and the likelihood of cross pollination. American Journal of Botany,68 (1):6—9.
    103. Tamado T, Schutz W, Milberg P,2002. Germination ecology of the weed Parathenium hysterophorus in eastern Ethiopia. Annals of Applied Biology,140: 263—270.
    104. Taylor C M, Hastings A,2004. Finding optimal control strategies for invasive species:a density-structured model for Spartina alterniflora. Journal of Applied Ecology,41:1049—1057.
    105. Taylor I N, Walker S R, Adkins S W,2005. Burial depth and cultivation influence emergence and persistence of Phalaris paradoxa seed in an Australian sub-tropical environment. Weed Research,45:33—40.
    106. Thompson K, Grime J P,1979. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. Journal of Ecology,67:893—921.
    107. Trnka S, Zedler J B,2000. Site conditions, not parental phenotype, determine the height of Spartina foliosa. Estuaries,23:572—582.
    108. Tsuyuzaki S,1991. Survival characteristics of buried seeds 10 years after the eruption of the Usu volcano in northern Japan. Canadian Journal of Botany,69: 2251—2256.
    109. Tsuyuzaki S,2006. Survival and Changes in Germination Response of Rumex obtusifolius Polygonum longisetum and Oenothera biennis during Burial at Three Soil Depths. American Journal of Environmental Sciences,2:74—78.
    110. Venable D L, Brown J S,1993. The population dynamic functions of seed dispersal. Vegetatio,107/108:31—55.
    111. Vitousek P M,1990. Biological invasions and ecosystem process—towards an intergration of population biology and ecosystem studies. Oikos,57:7—13.
    112. Vitousek P M, D'Antonio C M, Loope L L, et al.,1996. Biological invasions as global environmental change. American Scientist,84:218—228.
    113. Vitousek P M, Dantonio C M, Loope L L, et al.,1997. Introduced species:A significant component of human-caused global change. New Zealand Journal of Ecology,21:1—16.
    114. Vivian-Smith G, Stiles E W,1994. Dispersal of salt marsh seeds on the feet and feathers of waterfowl. Wetlands,14(4):316—319.
    115. Wendy P,2002. Seed size, number and habitat of a fleshy-fruited plant. Consequence for Seedling Establishment. Ecology,83 (3):794—808.
    116. Wijte A H B M, Gallagher J L,1996. Effect of oxygen availability and salinity on early life history stages of salt marsh plants. Different germination strategies of Spartina alterniflora and Phragmites australis (Poaceae). American Journal of Botany,83 (10):1337—1342.
    117. Williamson M, Fitter A,1996a. The characters of successful invaders. Biological Conservation,78:163—170.
    118. Williamson M, Fitter A,1996b. The varying success of invaders. Ecology,77 (6): 1661—1666.
    119. Xiao D R, Zhang L Q, Zhu Z C,2009. A study on seed characteristics and seed bank of Spartina alterniflora at saltmarshes in the Yangtze Estuary, China. Estuarine, Coastal and Shelf Science,83:105—110.
    120. Yang S L,1999. Sedimentation on a growing intertidal island in the Yangtze River mouth. Estuarine, Coastal and Shelf Science,49:401—410.
    121.陈吉余,陈沈良,2002.中国河口海岸面临的挑战.海洋地质动态,18(1):1—5.
    122.陈中义,高慧,吴涵等,2005.模拟遮荫对互花米草和海三棱藨草种子萌发及幼苗生长的影响.湖北农业科学,82—84.
    123.陈中义,李博,陈家宽,2004.米草属植物入侵的生态后果及管理对策.生物多样性,12(2):280—289.
    124.陈中义,李博,陈家宽.2005.互花米草与海三棱藨草的生长特征和相对竞争能力.生物多样性,13(2):130—136.
    125.陈中义,李博,陈家宽,2005.长江口崇明东滩土壤盐度和潮间带高程对外来种互花米草生长的影响.长江大学学报(自科版),2(2):6—9.
    126.崔现亮,王桔红,齐威等,2008.青藏高原东缘灌木种子的萌发特性.生态 学报,28(11):5294—5302.
    127.党伟光,高贤明,王瑾芳等,2008.紫茎泽兰入侵地区土壤种子库特征.生物多样性,16(2):126—132.
    128.邓雄,杨期和,叶万辉等,2003.生物入侵的适应性进化及其影响.中山大学学报(自然科学版),42(增刊):204—210.
    129.邓自发,安树青,智颖飙等,2006.外来种互花米草入侵模式与爆发机制.生态学报,26(8):2678—2686.
    130.董宽虎,米佳,2006.白羊草种群繁殖的数量特征.草地学报,14(3):210—213.
    131.范继辉,蒋莉,程根伟,2005.我国南方生物入侵的问题与对策.应用生态学报,16(3):568—572.
    132.高增祥,季荣,徐汝梅等,2003.外来种入侵的过程、机理和预测.生态学报,23(3):559—570.
    133.韩有志,王政权,2002.天然次生林中水曲柳种子的扩散格局.植物生态学报,26(1):51—57.
    134.何池全,赵魁义,余国营,1999.湿地克隆植物的繁殖对策与生态适应性.生态学杂志,18(6):38—46.
    135.何军,赵聪蛟,清华等,2009.土壤水分条件对克隆植物互花米草表型可塑性的影响.生态学报,29(7):3518—3524.
    136.何小勤,戴雪荣,顾成军,2009.崇明东滩不同部位的季节性沉积研究.长江流域资源与环境,18(2):157—162.
    137.黄桂林,何平,侯盟.2006.中国河口湿地研究现状及展望.应用生态学报,17(9):1751—1756.
    138.黄华梅,2009.上海滩涂盐沼植被的分布格局和时空动态研究.博士论文,华东师范大学河口海岸学国家重点实验室.
    139.黄华梅,张利权,高占国,2005.上海滩涂植被资源遥感分析.生态学报,25(10):2686—2693.
    140.黄华梅,张利权.2007.上海九段沙互花米草种群动态遥感研究.植物生态学报,31(1):75—82.
    141.黄建辉,韩兴国,杨亲二等,2003.外来种入侵的生物学与生态学基础的若干问题.生物多样性,11(3):240—247.
    142.黄正一,孙振华,虞快等,1993.上海鸟类资源及其生境.上海:复旦大学出版社.
    143.李博,陈家宽.2002.生物入侵生态学:成就与挑战.世界科技研究与发展,24(2):26—36.
    144.李博,徐炳声,陈家宽.2001.从上海外来杂草区系剖析植物入侵的一般特征.生物多样性,9(4):446—457.
    145.李贺鹏,张利权,王东辉,2006.上海地区外来种互花米草的分布现状.生物多样性,14(2):114—120.
    146.梁霞,张利权,赵广琦,2006.芦苇与外来植物互花米草在不同CO2浓度下的光合特性比较.生态学报,26(3):842—848.
    147.刘春悦,张树清,江红星等,2009.江苏盐城滨海湿地外来种互花米草的时空动态及景观格局.应用生态学报,20(4):901—908.
    148.刘志民,蒋德明,高红瑛等,2003.植物生活史繁殖对策与干扰关系的研究.应用生态学报,14(3):418—422.
    149.陆健健,1997.长江口的水鸟与亚太候鸟迁徙路线.见:中国鸟类学会.湿地与水禽保护国际研讨会论文集.北京:中国林业出版社.19—25.
    150.欧健,卢昌义,2006.厦门市外来物种入侵现状及其风险评价指标体系.生态学杂志,25(10):1240—1244.
    151.彭闪江,黄忠良,彭少麟等,2003.不同空间尺度下的肉果植物扩散过程和机理.生态学报,23(4):777—786.
    152.彭少麟,向言词,1999.植物外来种入侵及其对生态系统的影响.生态学报,19(4):560—568.
    153.钱国桢,崔志兴,1988.长江口鸻形目鸟类的生态研究.考察与研究,8:59—67.
    154.钦佩,经美德,张正仁等,1985.美国互花米草(Spartina alterniflora)三个生态型的种子耐盐萌发试验.南京大学学报,237—246.
    155.曲向荣,贾宏宇,张海荣等,2000.辽东湾芦苇湿地对陆源营养物质净化作 用的初步研究.应用生态学报,11(2):270—272.
    156.商栩,管卫兵,张国森等,2009.互花米草入侵对河口盐沼湿地食物网的影响.海洋学报,31(1):132—142.
    157.沈有信,赵春燕,2009.中国土壤种子库研究进展与挑战.应用生态学报,20(2):467—473.
    158.孙书存,蔡永立,刘红,2001.长江口盐沼海三棱草在高程梯度上的生物量分配.植物学报,43(2):178—185.
    159.覃盈盈,蒋潇潇,李峰等,2008.山口红树林区互花米草有性繁殖期的生物量动态.生态学杂志,27(12):2083—2986.
    160.覃盈盈,梁士楚,2009.红树林保护区中互花米草结实器官数量特征研究.安徽农业科学,37(8):3516—3517,3575.
    161.万方浩,郭建英,王德辉,2002.中国外来入侵生物的危害与管理对策.生物多样性,10(1):119—125.
    162.王东辉,张利权,管玉娟,2007.基于CA模型的上海九段沙互花米草和芦苇种群扩散动态.应用生态学报,18(12):2807—2813.
    163.王刚,梁学功,1995.沙坡头人工固沙区的种子库动态.植物学报,37(3):231—237.
    164.王辉,任继周,2004.子午岭主要森林类型土壤种子库研究.干旱区资源与环境,18(3):130—136.
    165.王卿,安树青,马志军等,2006.入侵植物互花米草——生物学、生态学及管理.,植物分类学报,44(5):559—588.
    166.王文琪,王进军,赵志模,2006.紫茎泽兰种子种群动态及萌发特性.应用生态学报,17(6):982—986.
    167.王正文,祝延成,2002.松嫩草地水淹干扰后的土壤种子库特征及其与植被关系.生态学报,22(9):1392—1398.
    168.吴春梅,黎云祥,张洋等,2008.淫羊藿种子产量与生境的关系.广西植物,28(2):206—210.
    169.辛沛,金光球,李凌等,2009.崇明东滩盐沼潮沟水动力过程观测与分析.水科学进展,20(1):74—79.
    170.闫巧玲,刘志民,李雪华等,2007.埋藏对65种半干旱草地植物种子萌发特性的影响.应用生态学报,18(4):777—782.
    171.于顺利,蒋高明,2003.土壤种子库的研究进展及若干研究热点.植物生态学报,27(4):552—560.
    172.袁琳,张利权,肖德荣等,2008.刈割与水位调节集成技术控制互花米草的示范研究.生态学报,28(11):5723—5730.
    173.苑泽宁,石福臣,李君剑等,2008.天津滨海滩涂互花米草有性繁殖特性.生态学杂志,27(9):1537—1542.
    174.曾雪琴,陈鹭真,谭凤仪等,2008.深圳湾引种红树植物海桑的幼苗发生和扩散格局的生态响应.生物多样性,16(3):236—244.
    175.张东,杨明明,李俊祥等,2006.崇明东滩互花米草的无性扩散能力.华东师范大学学报(自然科学版),(2):130—135.
    176.张利权,雍学葵,1992.海三棱藨草的物候与分布格局研究.植物生态学与地植物学学报,16(1):43—51.
    177.张亦默,王卿,卢蒙等,2008.中国东部沿海互花米草种群生活史特征的纬度变异与可塑性.生物多样性,16(5):462—469.
    178.郑勇奇,张川红,2006.外来树种生物入侵研究现状与进展.林业科学,42(11):114—122.
    179.周晓,葛振鸣,施文等,2007.长江口新生湿地大型底栖动物群落时空变化格局.生态学杂志,26(3):372—377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700