用户名: 密码: 验证码:
兔骨髓基质干细胞诱导分化修复膝关节软骨缺损
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:运用组织工程学技术进行骨髓基质干细胞(BMSCs)的提取、培养扩增、诱导分化、关节软骨缺损内植入,初步探索BMSCs在软骨修复中的作用机制及可行性。
     研究方法:穿刺抽取2月龄新西兰白兔骨髓,采用密度梯度离心+贴壁培养法分离、纯化和扩增BMSCs,检测第三代BMSCs生长曲线和贴壁率。以转化生长因子β1(TGF-β1)、维生素C和地塞米松为诱导因子,对BMSCs进行平面和立体软骨方向诱导,利用Ⅱ型胶原免疫组化和甲苯胺蓝异染性进行检测。同时检测TGF-β1和IGF-1在联合诱导过程中的作用。取平面诱导4天的BMSCs以2×10~7细胞浓度与海藻酸钠混合,经Ca~(2+)作用形成凝胶珠,随机分为2组,分别应用TGF-β1诱导液和TGF-β1和IGF-1诱导液培养6天。相同方法制作不含细胞的空白凝胶和含未诱导的BMSCs的凝胶复合体,完成植入物准备。于20只兔双侧膝关节股骨内侧髁负重面制作3.5mm×8.0mm×3.0mm的软骨缺损模型,分为4组,每组10个膝,分别为空白凝胶组、未诱导组、TGF-β1诱导组和TGF-β1和IGF-1联合作用组,分别植入相应的细胞凝胶复合体。手术后于2、4、8、12、20周进行取材,然后进行相应的组织学分析。
     研究结果:应用密度梯度离心法+贴壁培养法可以分离、纯化、扩增兔BMSCs。在TGF-β1、地塞米松和维生素C的联合诱导下,兔BMSCs可以向软骨细胞表型转化。TGF-β1和IGF-1联合作用下可以促进BMSCs增殖,细胞基质分泌增多。BMSCs在海藻酸钠凝胶中生长良好,缓慢增殖,在诱导条件下,凝胶内部BMSCs可以向软骨细胞表型转化。BMSCs诱导后复合海藻酸钠移植至软骨缺损,可以形成类软骨样组织。
     研究结论:兔骨髓基质干细胞可以向软骨细胞表型转化并对软骨缺损的修复有促进作用。
Objective Bone mesenchymal stem cells(BMSCs) were isolated,
    purificated, introduced, and transplated into cartilage defect with technology of tissue engineering, by which the machnism and feasibility of BMSCs were investigated initially in cartilage resurfacing.
    Methods Bone marrow was aspirated from two-month-old New Zealand
    white rabbit. Then BMSCs were isolated and purificated from bone marrow by density gradient centrifuge and adherence culture. When cells grew to 80% confluence, they were harvested and designated as passage 1. These cells were further expanded with 1 : 3 splitting. BMSCs at passage 3 were selected to obtain their proliferation curve and adherence rate. Exposed to transforming growth factor-pi (TGF-pl), vitamin C, and dexamethasone in monolayer and in a three-dimensional matrix, chondrocytic differentiation of mesenchymal stem cells was existed. By the immunohistochemical staining of type Ⅱ collagen and the toluidine blue metachromasia, the effect of differentiation was demonstrated. At the same time, the effects of TGF-pl and IGF-1 in the process of separate or unite introducement could be shown. BMSCs, introduced in medium containing 5ng/ml TGF-β 1 for 4 days, were suspended in 1.2% w/v alginate solution in a density of 2.107 cells per milliliter and dropped into a solution of CaCl2 . The alginate/cell susp
    ension gelled immediately and formed spherical beads. They were divided into two groups in random, one exposed to TGF-pl in a three-dimensional matrix, the other to IGF-1 and TGF-pl. By the same way, alginate gel whithout or with BMSCs can be made. Based on the difference of composition, alginate beads were divided into 4 groups. After that, the posterior weight -bearing aspect of the medial femoral condyle was exposed and a 3.5mm 8.0mm full -thickness defect was created with a low-speed burr to a depth of 3.0mm. Then the defects were filled with different alginate beads. At 2, 4, 8, 12, and 20 weeks postoperatively, the rabbits were killed and the distal femora were removed. After decalcified, the specimens were embedded in paraffin
    2
    
    
    and Sum sections were cut . Healing of the defect was investigated histologically using Safranin'O -Fast green staining and toluidine blue staining.
    Results From this experience, such results can be obtained: First, rabbit
    BMSCs may be isolated and proliferation by density gradient centrifuge and adherence culture. Exposed to TGF-pl, vitamin C, and dexamethasone, BMSCs can express markers of chondrogenesis. Second, it is the combination of TGF-pl and IGF-l that facilitates the proliferation of BMSCs and enhances the synthesis of extracellular cartilage matrix. Third, BMSCs in alginate gel grow well and have a low-rate proliferation. If in inductive culture medium, they can differentiate to type of chondrocyte. Fourth, after transplanted into cartilage defect, alginate/cell gel can transform to tissue like hyaline cartilage.
    Conclusion After introduced, BMSCs can express markers of chondrogenesis and facilitate the repair of cartilage defect in rabbit.
引文
1. Lum ZP, Hakala BE, Mort JS, Recklies AD. Modulation of the catabolic effects of interleukin-1 beta on human articular chondrocytes by transforming growth factor-beta. J Cell Physiol, 1996, 166: 351-359.
    2. Silver FH, Glasgold AI. Cartilage wound healing: an overview. Otolaryngol Clin North Am, 1995, 28: 847-864.
    3. Lebaron RG, Athanasiou KA. Ex vivo synthesis of articular cartilage. Biometerials, 2000, 21: 2575-2587.
    4. Jackson DW, Simon TM. Tissue engineering principles in orthopaedic surgery. Clin Orthop, 1999, 367S: 31-45.
    5. Shapiro F, Kiod S, Gincher G.. Cell origin and differentiation in the repair of full thickness defect of articular cartilage. J Bone Jint Surg(Am), 1993, 74(4): 532-544.
    6. Randolph MA, Anseth K, Yaremchuk MJ. Tissue engineering of cartilage[J]. Clin Plast Surg, 2003, 30(4): 519-537.
    7. Cancedda R, Dozin B, Giannoni P, Quarto R. Tissue engineering and cell therapy of cartilage and bone. Matrix Biology, 2003, 22: 81-89.
    8. Johnson LL. Arthroscopic abrasion arthroplasty: a review. Clin Orthop, 2001, 391S: 306-317.
    9. Tippet JW, Finkelstein JA, Farine I. Articular cartilage drilling and osteotomy in osteoarthritis of the knee[A]. In: Mc Ginty JB ed. Operative Arthroscopy[M]. 1st ed, New York: Raven Press, 1991: 325-339.
    10.黄华扬,尹庆水,章莹,张余,曹正霖,李菊根,刘景发.关节镜下带骨软骨镶嵌移植修复软骨病损.中华外科杂志,2002,40(9):662-664.
    11. Kotani A, Ishii Y, Sasaki S. Autogenous osteochondral grafts for osteonecrosis of the femoral condyle. J Orthop Surg(Hong Kong), 2003, 11(2): 117-122.
    12. Gross AE. Fresh osteochondral allografts for post-traumatic knee defects:
    
    surgical technique. Operative Tech Orthop, 1997, 7(2): 334-339.
    13.楼跃,潘新华,唐凯,夏榕圻,范毓华,黄禄基,张志群.自体游离骨膜移植修复关节软骨大面积缺损的实验研究,江苏医药杂志,2002,28(8):589-591.
    14.Mitsuo O,Vuji U.骨软骨的修复.中华手外科杂志,2000,16(2):76-82.
    15. Carranza-Bencano A, Garcia-Paino L, Armas-Padron JR, Cayuela Dominguez A. Neochondrogenesis in repair of full-thickness articular cartilage defects using free autogenous periosteal grafts in the rabbit. A follow-up in six months. Osteoarthritis Cartilage, 2000, 8(5): 351-358.
    16. O'Driscoll SW, Saris DB, Ito Y, Fitzimmons JS. The chondrogenic potential of periosteum decreases with age. J Orthop Res, 2001, 19(1): 95-103.
    17. Homminga GN, Bulstra SK, Bouwmeester PS, van der Linden AJ. Perichondrial grafting for cartilage lesions of the knee. J Bone Joint Surg Br, 1990, 72(5): 1003-1007.
    18. Bouwmeester PS, Kuijer R, Homminga GN, Bulstra SK, Geesink RG. A retrospective analysis of two independent prospective cartilage repair studies: autogenous perichondrial grafting versus subchondral drilling 10 years post-surgery. J Orthop Res, 2002, 20(2): 267-273.
    19. Chesterman PJ, Smith AU. Homotransplantation of articular cartilage and isolate chondrocytes: an experimental study in rabbite. J Bone Joint Surg(Br), 1968, 50: 184-193.
    20. Brittberg M, Lindabl A, Nillsson A. Treatment of deep cartilage defects in the knee with autologous chondrocyte implantation. N Engl J Med, 1994, 331(14): 889-895.
    21. Visna P, Pasa L, Hart R, Kocis J, Cizmar I, Adler J. Treatment of deep chondral defects of the knee using autologous chondrocytes cultured on a support preparation of the cartilage graft. Acta Chir Orthop Traumatol Cech, 2003, 70(6): 350-355.
    22. Cao YL, Vacanti JP, Paige KT. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue engineered cartilage in the shape of a
    
    human ear. Plast Reconstr Surg, 1997, 100(2): 287-293.
    23. Saadeh PB, Brent B, Mehrara BJ, Steinbrech DS, Ting V, Gittes GK, Longaker MT. Human cartilage engineering: chondrocyte extraction, proliferation, and characterization for construct development. Ann Plast Surg, 1999, 42(5): 509-513.
    24. Langer R. Tissue Engineering. Mol Ther, 2000, 1(1): 12-15.
    25. Caplan A, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends in Molecular Medicine, 2001, 7(5): 259-264.
    26. Ringe J, Haupl T, Sittinger M. Mesenchymal stem cells for tissue engineering of bone and cartilage. Meal Kiln(Munich), 2003, 98(Supp12): 35-40.
    27. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells:nature, biology, and potential application. Stem cells, 2001, 19(3): 180-192.
    28. Naumann A, Dennis J, Staudenmaier R, Rotter N, Aigner J, Ziegelaar B, Happ T, Rasp G. Caplan AI. Mesenchymal stem cells—a new pathway for tissue engineering in reconstructive surgery. Laryngorhinootologie, 2002, 81(7): 521-527.
    29. Grande DA, Breitbart AS, Mason J, Paulino C, Laser J, Schwartz RE. Cartilage tissue engineering: Current limitations and solutions. Clin Orthop, 1999, 367S: 176-185.
    30. Angele P, Kujat R, Nerlich M, Yoo J, Goldberg V, Johnstone B. Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge. Tissue Eng, 1999, 5(6): 545-554.
    31. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autologousculture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects inosteoarthritic knees. Osteoarthritis Cartilage, 2002, 10(3): 199-206.
    32. Barry F, Boynton RE, Liu B, Murphy JM. Chonduogenic differentiation of mesenchymal stem cells from bone morrow: differentiation-dependent gene
    
    expression of matrix components. Exp Cell Res, 2001, 268(2): 189-200.
    33. Martin I, Padera RF, Vunjak-Novakovic G, Freed LE. In vitro differentiation of chick embryo bone marrow stromal cells into cartilaginous and bone-like tissues. J Orthop Res, 1998, 16(2):181-189.
    34. Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, Goldberg VM. Mesenchymal cell based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am, 1994, 76(4): 579-592.
    35. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymai stem cells. Science, 1999, 284(5411): 143-147.
    36. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from human marrow. Bone, 1992, 13(1): 69-74.
    37. Kadiyala S, Young RG, Thiede MA, Bruder SP. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Science, 2000, 113: 1161-1170.
    38. Bianchi G, Banfi A, Mastrogiacomo M, Notaro R, Luzzatto L, Cancedda R, Quarto R. Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp Cell Res, 2003, 287(1): 98-105.
    39. Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp Hematol, 2000, 28(6): 707-715.
    40. Martin DR, Cox NR, Hathcock TL, Niemeyer GP, Baker HJ. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Experimental Hematology, 2002, 30: 879-886.
    41. Lindenhayn K, Perka C, Spitzer R, Heiimann H, Pommerening K, Mennicke J, Sittinger M. Retention of hyaluronic acid in alginate beads: Aspect for in vitro cartilage engineering. J Biomed Mater Res, 1999, 44: 149-155.
    42. Margaret AS, Luciano RF. Evaluation of different staining procedures for the quantification of fibroblasts cultured in 96-well plates. Analytical Biochemistry,
    
    1991, 198: 80-85.
    43. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res, 1998, 238(1): 265-272.
    44. Weber M, Steinert A, Jork A, Dimmler A, Thurmer F, Schutze N, Hendrich C, Zimmerman U. Formation of cartilage matrix proteins by BMP-transfected murine mesenchymal stem cells encapsulated in a novel class of alginates. Biomaterials, 2002, 23(9): 2003-2013.
    45. Worster AA, Brower-Toland BD, Fortier LA, Bent SJ, Williams J, Nixon AJ. Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-B1 in monolayer and insulin-like growth factor-1 in a three-dimensional matrix. J Orthop Res, 2001, 19(4): 738-749.
    46. Worster AA, Nixon AJ, Brower-Toland BD, Williams J. Effect of transforming growth factor β1 on chondrogenic differentiation of cultured equine mesenchymal stem cells. Am J Vet Res, 2000, 61(9): 1003-1010.
    47. Tacchetti C, Tavella S, Dozin B, Quarto R, Robino G, Cancedda R. Cell condensation in chondrogenic differentiation. Exp Cell Res, 1992, 200(1): 26-33.
    48. van der Kraan PM, Buma P, van Kuppevelt T, van den Berg WB. Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis Cartilage, 2002, 10(8): 631-637.
    49.王万明,胡蕴玉,卢森桂.体外培养骨髓基质细胞向软骨细胞分化的研究.中华外科杂志,2000,38(2):160-161.
    50. Shalhoub V, Conlon D, Tassinari M, Quinn C, Partridge N, Stein GS, Lian JB. Glucocorticoids promote development of the osteoblast phenotype by selectively modulating expression of cell growth and differentiation associated genes. J Cell Biochem, 1992, 50(4): 425-440.
    51. Silbermann M, von der Mark K, Maor G, van Menxel M. Dexamethasone impairs growth and collagen synthesis in condylar cartilage in vitro. Bone Miner, 1987, 2(2): 87-106.
    
    
    52. Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res, 1998, 254:317-330.
    53. Ringe J, Kaps C, Schmitt B, Buscher K, Barrel J, Smolian H, Schultz O, Burmester GR, Haupl T, Sittinger M. Porcine mesenchymal stem cells. induction of distinct mesenchymal lineages. Cell Tissue Res, 2002, 307(3): 321-327.
    54. Majumdar MK, Banks V, Peluso DP, Morris EA. Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol, 2000, 185(1): 98-106.
    55. Hui W, Rowan AD, Cawston T. Transforming growth factor beta I blocks the release of collagen fragments from bovine nasal cartilage stimulated by oncostatin M in combination weth 1L-lalpha. Cytokine, 2000, 12: 765-769.
    56. Jesus. Differential effects of transforming growth factors β1, β2, β3 and β5 on chondrogenesis in mouse limb bud mesenchymal cells Int. Dev. Biol, 1997, 41: 91-102.
    57. Junkawai. Effects of transforming growth factor-β signaling on chondrogenesis in mouse chondrogenic EC cells. ATDC 5 European Jourmal of cell Biology, 1999, 78: 707-714.
    58. Chofield JN, Wdpert L. Effect of TGF-β1, TGF-β2 and bFGF on chick cartilage and muscle cell differentiation. Exp Cell Res, 1990, 191:144-149.
    59. Yong GZ, Shi BL, Ji FW. The expression ofBMP, TGF-β and bFGF in fracture healing. Zhonghua Chuangshang Zazhi, 2000, 16(3): 170-172.
    60. MarteI-Pelletier J, Di Battista JA, Lajeunesse D, Pelletier JP. IGF/IGFBP axis in cartilage and bone in osteoarthritis pathogenesis. Inflamm Res, 1998, 47(3): 90-100.
    61. Gooch KJ, Biunk T, Courter DL, Sieminski AL, Bursac PM, Vunjak-Novakovic G, Freed LE. IGF-Ⅰ and mechanical environment interact to modulate engineered cartilage development. Biochem Biophys Res Commun, 2001, 286(5): 909-915.
    
    
    62. Loeser RF. Chondrocyte integrin expression and function. Biorheology, 2000, 37(1-2): 109-116.
    63. Fortier LA, Mohammed HO, Lust G, Nixon AJ. Insulin-like growth factor-Ⅰ enhances cell-based repair of articular cartilage. J Bone Joint Surg Br, 2002, 84(2): 276-88.
    64. Wakitani S, Kimura T, Hirooka A, Ochi T, Yoneda M, Owaki H, Ono K, Yasui N. Repair of rabbit articular surface with allograft chondrocyte embedded in collagen gel. J Bone Joint Surg[Br], 1989, 71-B: 74-80.
    65.郭晓东,杜靖远,郑肩新,刘勇,段德宇,全大萍,卢泽俭.转化生长因子β1基因修饰的间充质干细胞/仿生基质材料的体外复合培养.中国医学科学院学报,2001,23(4):373-377.
    66. Guo JF, Jourdian GW, MacCallum DK. Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connecttissue Res, 1989, 19(2-4): 277-297.
    67. Paige KT, Cima LG, Yaremchuk MJ, Vacanti JP, Vacanti CA. Injectable cartilage. Plast Reconstr Surg, 1995, 96(6): 1390-1400.
    68. Im GL, Kim DY, Shin JH, Hyun CW, Cho WH. Repair of cartilage defect in the rabbit weth cultured mesenchymal stem cells from bone marrow. J Bone Joint Surg[Br], 2001, 83-B: 289-294.
    69. Liechty K W, MacKenzie TC, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med, 2000, 6(11): 1282-1286.
    70. Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP. Gelatin- based resorbable sponge as a carrier matrix for human mesenchymalstem cells in cartilage regeneration therapy. J Biomed Mater Res, 2000, 52 (2): 246-255.
    71. Bolano L, Kopta JA. The immunology of bone and cartilage transplantation. Orthopedics, 1991, 14: 987-996.
    72. Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B. Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiation in vitro. Journal of Orthopaedic
    
    Research, 2003, 21(3): 451-457.
    73. Wang Q, Breinan HA, Hsu HP, Spector M. Healing of defects in canine articular cartilage: distribution of nonvascular alpha-smooth muscle actin-containing cells. Wound Repair Regen, 2000, 8(2): 145-158.
    74. Lee CR, Breinan HA, Nehrer S, Spector M. Articular cartilage chondrocytes in type Ⅰ and type Ⅱ collagen-GAG matrices exhibit contractile behavior in vitro. Tissue Eng, 2000, 6(5): 555-565.
    75. Kinner B, Spector M. Smooth muscle actin expression by human articular chondrocytes and their contraction of a collagen-glycosaminoglycan matrix in vitro. J Orthop Res, 2001, 19(2): 233-241.
    76. Kinner B, Zaleskas JM, Spector M. Regulation of smooth muscle actin expression and contraction in adult human mesenchymal stem cells. Exp Cell Res, 2002, 278(1): 72-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700