用户名: 密码: 验证码:
新型锰基化合物电极材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锰有7种不同的氧化态(Mn~(7+)、Mn~(6+)、Mn~(5+)、Mn~(4+)、Mn~(3+)、Mn~(2+)、Mn~+),其对应的氧化物及其混合价态的氧化物在电、磁、催化等方面均表现出优越的物理及化学性能,是非常重要的能源材料。纳米科学的兴起为锰基氧化物的研究和应用注入了新的活力。本论文在综述当前锰基氧化物研究和应用的基础上,结合多种新兴纳米材料的制备手段构筑了一系列新型形貌和微结构的锰基氧化物,并对其电化学性能进行了测试和评价,系统地研究了材料的合成方法-微结构特征-电化学性质三者之间的关系,深入地认识了锰基化合物的结构特征及其应用,制备出一些性能优异的锰基化合物,并将其应用于化学能源系统,探讨其广泛应用的可行性。
     主要进行了以下的研究工作:
     (1)利用铜做还原剂,首次在水热反应条件下,不借助任何模板剂的作用,得到了中空结构的海胆状α-MnO_2。通过大量实验研究了反应时间、反应温度对产物结构和形貌的影响。结果发现,随着反应时间的增长,样品由实心球→空心球→纳米线逐渐转化,符合“奥斯特瓦尔德熟化”机理。随着反应温度的升高,产物由纳米线逐渐转化为规则的多面体结构,而且晶体结构也逐渐变化。这说明产物形貌的变化属于动力学控制过程,而热力学控制过程更容易引起晶体结构的变化。此外,通过比表面积、阻抗谱图分析、循环伏安和充放电测试,研究了不同形貌α-MnO_2的电化学行为。分析了样品微结构对其电化学性能的影响。
     (2)利用不同的反应介质对制备的球形γ-MnO_2进行再处理,发现反应体系的酸碱性对产物的晶体结构和形貌有很大的影响。通过大量实验,对水热反应的可控合成有了进一步的认识。
     (3)利用水热法合成了分布均匀的β-MnO_2纳米管,并以其为载体,首次合成了Pd/β-MnO_2纳米管复合材料,并研究了其作为直接甲醇燃料电池催化剂的可行性,对于拓展和开发新型的燃料电池电催化剂材料具有重要的指导意义。
     (4)以高分子聚合物作为模板,利用改进的还原法制备了中孔无定形MnO_2。并利用TG-DTG,XRD,TEM,BET和电化学测试,详细探讨了材料的微结构和化学性能之间的关系。研究结果表明,材料比表面积的提高,不但可以提高材料的双电层电容,而且其氧化还原活性位也大大增多,其法拉第电容也随之增加。为制备性能优异的多孔电极材料提供了一种简单可行的方法。
     (5)利用微波辅助高温法制备了具有理想尖晶石结构和规则形貌的LiCr_(0.15)Mn_(1.85)O_4。所得材料粒径分布均匀,颗粒表面光滑平整。采用微波对样品的前驱体进行处理,不但可以缩短样品的焙烧时间,大大节约了制备锰酸锂的成本,而且由于微波是从前驱体的内部开始升温,避免了前驱体表面碳化后,影响内部晶体的生成,也减少了晶体的团聚现象。另外微波加热速率快,可以避免材料合成过程中晶粒的异常长大,能够在短时间、低温下合成纯度高、粒度细、分布均匀的材料。
     (6)利用有特殊孔道结构的SBA-15氧化硅分子筛为模板,用蔗糖作碳源,制备了具有大比表面积和均匀孔分布的介孔碳。其表面积为1020 m~2/g,孔分布主要在3-6纳米之间,是理想的双电层电容器的电极材料。
     (7)研究了LiCr_(0.15)Mn_(1.85)O_4和介孔碳在水体系的电化学行为,并探索了将锰酸锂作为正极材料,介孔碳作为负极材料,组成水体系的电化学混合型电容器的可行性,进一步提高了电化学电容器的性能。
There are seven oxidation states (Mn~(7+)、Mn~(6+)、Mn~(5+)、Mn~(4+)、Mn~(3+)、Mn~(2+)、Mn~+) in manganese oxides, and their corresponding and mixed valence oxides show extraordinary physical and chemical properties in electricity, magnetic and catalysts. At present, it is also a kind of important power sources materials which can be used widely. In particular, the spring-up of nanomaterials further fuels-up the activity of the research and development of manganese oxides.
     In this thesis, we have reviewed the recent developments of manganese oxides in synthesis and application. Through the means of improving synthetic method, optimizing preparation condition, we have obtained a series of manganese oxides with different crystal structure and novel morphologies. Besides, we have investigated the structure properties, electrochemical performance and the correlations between them using different testing technologies such as TG-DTG, XRD, FESEM, TEM, HRTEM, BET as well as some electrochemical measurements. The main content is as follows:
     (Ⅰ) Various hollow sphere and urchin structuredα-MnO_2 have been synthesized by a simple and facile hydrothermal method for the first time. The effect of reaction time and reaction temperature on the structure and morphology of samples has also been studied systemically. The experimental results indicated that the products grew from solid sphere to hollow sphere, further to nanorods gradually with the increasing of reaction time, which is the result of Ostwald ripening process. With the increasing of hydrothermal reaction temperature,α-MnO_2 transformed intoβ-MnO_2, its morphology also changed correspondingly, from nanorods into polyhedral particles. The results indicated different shapedα-MnO_2 materials were kinetically controlled products, which were formed at lower temperature, whereasβ-MnO_2 was a thermodynamically controlled product, which was formed at higher temperature. The novel hollow sphere or urchin structuredα-MnO_2 materials possessed high loosely mesoporous cluster structure consisting of thin plates or nanowires and exhibited enhanced rate capacity and cycleability. The good cycleability and high rate capability coupled with the low cost and environmentally benign nature of manganese may make this material attractive for large applications. Furthermore, the hydrothermal method has excellent reliability, selectivity, and efficiency for synthesizing inorganic materials with uniform and distinct morphologies.
     (Ⅱ) Usingγ-MnO_2 sphere as raw material, by controlling reaction temperature and reaction atmosphere, different nanostructured products were prepared via hydrothermal treatment. The results of FESEM investigation indicated that the sample can maintain its spherical morphology of starting materials in ammonia solution, while it unlayed into nanowires in- water atmosphere, which revealed that the reaction atmosphere has significantly influence on the microstructure and morphology of the resulting products.
     (Ⅲ)β-MnO_2 nanotube was first proposed as catalyst supporting material in our experiment. Pd/β-MnO_2 nanotubes composites were prepared via a simple and facile reductive process. Electrochemical study indicated that Pd/β-MnO_2 composites had a better electrocatalytic activity than that of Pd/C for methanol oxidation in NaOH solution. It implies that Pd/β-MnO_2 nanotubes may be a good candidate for noble metal catalyst supports and have potential application in preparing catalysts for direct methanol fuel cells. It open a new way for searching good catalyst supporting material.
     (Ⅳ) Mesoporous amorphous MnO_2 was synthesized by an improved reduction reaction and using supramolecular as template. Its amorphous structure was determined by TEM and XRD analysis. The amorphous MnO_2 annealed at 200℃exhibited the maximum specific capacitance of 298.7 F/g in a 2 mol/L KOH electrolyte at 5 mA. The prepared mesoporous amorphous MnO_2 showed ideal capacitive nature, high specific capacitance and long cycle life, so it is suitable to be used as electrode material for electrochemical capacitors. It is believed that the main part of the capacitance comes from the pseudocapacitive surface redox process. When the specific surface area of MnO_2 electrode material increase, not only the double layer capacitance will increase, the redox active sites will also increase subsequently, so the pseudocapacitance will increase significantly.
     (Ⅴ) Spinel-type LiCr_(0.15)Mn_(1.85)O_4 has been efficiently fabricated via improved microwave assisted sintering method. The prepared LiCr_(0.15)Mn_(1.85)O_4 powders have ideal spinel structure, regular shape and narrow particle size distribution. The results of the experiments indicated that microwave not only reduced the sintering time, but also saved the cost significantly. In the microwave irradiation field, since the microwave heated not from the outside but from the inside of the precursor and thus it provided a uniform heating environment which could shorten the synthesizing time, effectively avoided the growing of crystal grain exceptionally and overcome the agglomeration of particles.
     (Ⅵ) Mesoporous carbon with large specific surface area (1020 m~2/g) and uniform pore size distribution (3-6 nm) has been successfully synthesized by using SBA-15 as template, sucrose as carbon sources. The result of electrochemical measurement indicated that it is a good electrode material for double-layer capacitor.
     (Ⅶ) The electrochemical performance of LiCr_(0.15)Mn_(1.85)O_4 and mesoporous carbon in aqueous electrolyte was studied respectively. A hybrid aqueous supercapacitor using LiCr_(0.15)Mn_(1.85)O_4 as anode and mesoporous carbon as cathode materials was setup in our experiment. The results of electrochemical measurement indicated that LiCr_(0.15)Mn_(1.85)O_4 has a potential as good electrode materials in hybrid aqueous supercapacitor.
引文
[1] http://www.globalsino.com/investment/zinvest99949.html
    [2] 邹雯丽,杨娟,中国锰业,2006.24(4):7.
    [3] 王尔贤,电池工业,2007.6.12(3):184.
    [4] 张泾生等,中国锰业,24(1):1.
    [5] 王尔贤,电池工业,1998,3(3):80.
    [6] 游北川,中国锰业,2001,19(3):11.
    [7] http://www.mn-cn.com/.
    [8] E.D. Goldberg, J Geol. 1954,62: 249
    [9] L. L. Richardson, C. Aguilar, K.H. Nealson, Limnol Oceanogr. 1988,33: 352.
    [10] P. Corstjens, J. P. M. de Vrind, T. Goosen, Geomicrobiol J. 1997,14: 91.
    [11] R. Caspi, B. M. Tebo, M.G Haygood, Appl Environ Microbiol. 1998, 64: 3549.
    [12] Francis CA, Casciotti KL, Tebo BM, Arch Microbiol. 2002,178: 450.
    [13] J. P. Cowen, G. J. Massoth, E. T. Baker, Nature, 1986, 322:169.
    [14] J. K. Klewicki, J.J. Morgan, Environ Sci Technol. 1998, 32: 2916.
    [15] K. Nicholson, M. Eley, Geol Soc. 1997,309.
    [16] C. W. Childs, Geoderma. 1975,13:141.
    [17] 赵玲,中国科学院研究生博士学位论文,2006。
    [18] P. M. Huang, Soil Biochem. 1990,6: 115.
    [19] R. J. Casale, M. W. Lechevallier, F. W. Pontius, Water Works Assoc. 2002,187
    [20] 宋欣民,合肥工业大学硕士学位论文,2007
    [21] J. Liu, J. Cai, Y.C. Son, J Phys Chem B, 2002,106: 9761
    [22] W. S. Kijlstra, D.S. Brands, H.I. Smit, J Catal, 1997,171:219.
    [23] M. Baldi, Appl. Catal. B-Environ.1998,17:L175.
    [24] H. M. Zang, Y. Teraoka, Catal Today, 1989,6:155.
    [25] T. Yamashita, A. Vannice, J Catal.1996,163:158.
    [26] W. M. Wang, Y.N. Yang, J.Y. Zhang, Appl. Catal A-Gen, 1995, 133:8
    [27] A. Maltha, H.F. Kist, B. Brunet, J Catal, 1995,149:356.
    [28] M. Wekesa, Y.H. Ni, Tappi Journal, 2003,2:23.
    [29]W. X. Zhang, Z. H. Yang, X. Wang, Catal Commun, 2006, 7:408.
    [30]楼伟颖,浙江工业大学硕士学位论文,2004
    [31]李清文,白朝梅,夏熙,电池工业,1996,1(1):6
    [32]王殿华,中国锰业,2006,24(2):25
    [33]K.Korde,夏熙,电池,1992,22(1):3
    [34]A.R. Despic, Electrochemistry-The past thirty and the next thirty years. New York Ana London, Plenum Press, 1997, 15
    [35]张翠芬,薛美容,电池,1999,29(6):262
    [36]李景虹,先进电池材料,北京,化学工业出版社,2004年,219.
    [37]吴玉平,万春荣,姜长印,锂离子二次电池,化学工业出版社,2002年,1.
    [38]李亚寅,张晶,市场纵横,2007,08,66
    [39]M. Lazzari, B. Scrosati, J. Electrochem. Soc. 1980,127,773.
    [40]F.G Will, US patent 3874958.
    [41]贺慧,程璇,张颖,杨勇,功能材料,2004,35,667.
    [42]T. Nagaura, K. Tozawa, Prog. Batteries Solar Cells, 1990,9,209.
    [43]周盈科,兰州大学博士论文,2003.
    [44]GM. Ehrlich, C.M. Orndrof, R.M. Hellen, in: 1997 ECS and ISE Joint International Meeting Abstracts, vol. 97-2, Abst. No.1997,217.
    [45]管从胜,杜爱玲,杨玉国,北京,化学工业出版社,2005年,303.
    [46]彭波,刘素琴等,电源技术,2005,29(8):531
    [47]刘立清,浙江大学硕士论文,2005.
    [48]吕鸣祥,化学电源,1996.
    [49]宋文顺,夏熙,化学电源工艺学,1998.
    [50]夏熙,电池,35(1):27.
    [51]夏熙,电池,134(16):411.
    [52]夏熙译,二氧化锰手册,四川成都出版社,1994,138.
    [53]P. M. De Wolff, R. Giovanoli, Brutsch Chimica. 1978 , 32,257.
    [54]P. M. De Wolff, Acta Crgstallogr. 1959, 12, 341.
    [55]S. Turner, Science, 1979,203,341.
    [56]J. D. Kondrashev, A. Iguest, S. R. Nauk, Ser Phys. 1951,15,179.
    [57] R.G. Iffordr, Progress in Batteries & Solar Cells, 1990,9: 1.
    [58] P. Kulesza, J. Lipkowski, Progress in Batteries & Battery Materials 1992(11): 51
    [59] L. Pauling, Amer Mineral, 1982(67): 817.
    [60] R. Giovanoli, Chim Acta, 1970(53): 453.
    [61] 林磊,龚张,三明高等专科学校学报,2002(12):1.
    [62] 夏熙,电池,35(2):105.
    [63] I.Y. Tatsuj,V. Albert, J. Catal.,1996,161:254.
    [64] A.M.Yamamot, A.O. Nishimur, T. Kotanigawa, Applied Cataiysis A:Gernal,1998,174:41.
    [65] W.T. Jeong, J.H. Joo, K.S. Lee, J. Alloys and Compounds,2003,358:294.
    [66] Y.Y.Xia, M.Yoshio, J. Power Source, 1995,57:125.
    [67] 杨涛,河南大学硕士论文,2007,56.
    [68] E.J.W. Verwey, J.H. De Boer, Rec. Trav. Chim. Pays.-Bas, 1936, 55:531.
    [69] Y.Y Wang, L. C. Feng, H.M. Xiong, Y.Y. Xia, Chem. Mater. 2007,19,2095.
    [70] C.H. Hare, M.G. Fernald, Mod Paint Coat, 1984, 74:40.
    [71] L. Sanchez, J.P. Pereira-Ramos, Electrochim Acta, 1997,42:531.
    [72] K.S. Krishnan, S. Banerjee, Trans. Faraday Soc, 1993,35:385.
    [73] C. Drotschmann, Chem. Week blad. 1960, 56:754.
    [74] M.J. Buerger, Z. Kristallogr., 1963,95:163.
    [75] H. Dachs, Z. Kristallogr, 1963,95:163.
    [76] J.E. Post, R.B. Von Dreele, PR. Buseck, Acta Cryst.1982, 38:1056.
    [77] W.S. Glaunsinger, H.S. Horowitz, J.M. Longo, J. Sol. State Chem. 1979, 29:117.
    [78] 康慨,戴受惠,万玉华,化学研究与应用,2000,12,581.
    [79] R. Koksbang, J. Barker, M.Y. Saidi, K. West, B. Zachau-Christiansen, S. Skaarup,Solid State Ionics, 1996,83,151.
    [80] W. David, J.B. Goodenough, M.M. Thackeray, M.G.S.R. Thomas, Rev. Chem.Miner. 1983, 20,636.
    [81] M. Armand, F. Dalard, D. Reroo, C. Mouliom, Solid State Ionics, 1985,15,205.
    [82] X.M. Wu, X.H. Li, Z.B. Xiao, J.B. Liu, WB. Yan, M.Y. Ma, Mater. Chem. Phys.2004, 84,228.
    [83] 马淳安,楼颖伟,赵峰呜,褚有群,朱英红,中国有色金属学报,2004,14(10):1736.
    [84] X.L.Hong, G.Y.Zhang, Y.Y. Zhu, Mater Res Bull, 2003, 38:1695.
    [85] 王积森,孙金全,鲍英,2003,22(2):27,32.
    [86] Y.C Zhang, T. Qiao, X.Y. Hu. J Solid State Chem, 2004,177:4093.
    [87] B. Foleh, J. Larionova, Y. Guari, J Solid State Chem, 2005,178:2368.
    [88] X. Wang, YD. Li, J. Am. Chem. Soc. 2002,124(12): 2880.
    [89] Y.J. Xiong, Y. Xie, Z.Q. Li, C.Z. Wu, Chem. Eur. J. 2003,9,7
    [90] X. Wang, YD .Li, Chem. Eur. J. 2003, (9), 300 1
    [91] Z. Fang, K.B. Tang, D. Wang, Mater. Res. Bull., 2007, 32,635.
    [92] F.Y. Cheng, J.Z. Zhao, W.N. Song, C.S Li, H. Ma, J. Chen, P.W. Shen Inorg.Chem., 2006,45(5):2038.
    [93] Z. Li, Y. Ding, Y. Xiong, Q. Yang, Y. Xie, Chem. Commun. 2005, 918.
    [94] B.X Li, GX Rong, Yi Xie, L.F Huang, C.Q. Feng, Inorg. Chem. 2006,45,6404.
    [95] N. Wang, X. Cao, L. He, W. Zhang, L. Guo, C.P Chen, R.M Wang, S.H Yang, J.Phys. Chem. C, 2008, 112, 365.
    [96] S. Jana, S. Basu, S. Pande, S. Kumar Ghosh, T. Pal, J. Phys. Chem. C, 2007, 111,16272.
    [97] J.Y. Luo, J.J. Zhang, Y.Y Xia, Chem. Mater. 2006,18, 5618.
    [98] Y.P. liu, Y.T. Qian, Y.H. Zhang, M.W. Zhang, C.S. Wang, L.Yang, Mater. Res. Bull.,1997,32(8):1055.
    [99] 俞建群,贾殿增,无机化学学报,1999,15(1):95.
    [100] 李娟,李清文,夏熙,曹雅丽,应用科学学报,1999,17(2):245.
    [101] 龚良玉,夏熙,电源技术,2002,26(4):263.
    [102] L.J. Yuan, Z.C Li, J.T Sun, K.L Zhang, Y.H Zhou, Materials Letter, 2002,4093:1.
    [103] T. Xue, C.L Xu, D.D. Zhao, X.H Li, H.L. Li, J. Power Sources, 2007, 164,2, 953.
    [104] 崔作林,张志琨.科学时报,2001(2):6.
    [105] 盖轲,李锡恩,刘文君,甘肃教育学院学报(自然科学版),2002,16(1),43.
    [106]段亚东,张志戚,徐项凌,化学通报,1998(12):21.
    [107]李春喜,王子镐,化学通报,2001,(5):268.
    [108]贺本林,兰州大学博士论文,2007,43.
    [109]包淑娟,兰州大学博士论文,2006,36.
    [110]王真,吉林大学博士论文,1994,57.
    [111]Tabib, Azar, J. Mater. Eval. 2001,59(1),70.
    [112]Kubra, Kovaiv, J. Anal. Chem. 2000,55(12),1113.
    [113]金钦汉,微波化学,北京科学出版社,1999年,98.
    [114]P.M. Michael, R.B. David, J. Chem. Soc. Rev. 1991,20, 1.
    [115]M. Leskela, J. Suikkanen, J. Less. Comm. Met. 1985,112,71.
    [116]张秀凤,涂华民,河北师范大学学报(自然科学版),2002,26,610.
    [117]李永红,化工时刊,2005,19,53.
    [118]戴德昌,李沅英,蔡少华,高等学校化学学报,1995,16(6),844.
    [119]李沅英,戴德昌,蔡少华,中国稀土学报,1998,16(3),284.
    [120]R.R. Sebrans, [p]. US 6207024,2001-03-27.
    [121]一ノ赖升,尾畸文治著,超微粒子导论,武汉工业大学出版社,1989.
    [122]E.A.Culliver, J. Am. Ceram. Soc, 1991,74(5):4479.
    [123]J.B. Blum, J. Mater. Sci., 1985,20:4479.
    [124]G. Pacheco-Malagon, J. Mat. Res., 1995,10(50): 1264.
    [125]王育华等,兰州大学学报,(自然科学版),1994,30(3):53.
    [126]K.S. Mazdiyasni, J. Am. Ceram. Soc, 1969,52(10):523.
    [127]K.S., Mazdiyasni, Ceram. Bull. 1984,63(4):591.
    [128]笠井纪宏,窑业协会志,1987,93(10):912.
    [129]X. Wang, M. Zhao, J.Alloy Compd., 1994,204:33.
    [130]余忠青,无机材料学报,1994,9(4):475.
    [131]F. Fievet, J.P. Lagier, Solid State Ionics, 1989,32/33:198.
    [132]范福康,硅酸盐通报,1993,6:17.
    [133]顾达,硅酸盐通报,1995,32:14.
    [134]卢培珍,陶瓷研究,1995,10(2):75.
    [135]赵振国,应用化学,1993,10(2):99.
    [136]周竹发,中国陶瓷,1992,1:49.
    [137]刘惠文,科学通报,1996,4(6):510.
    [138]M.R. De Guire, J. Mater.Res., 1993, 8(9):2327.
    [139]周根陶等,无机化学学报,1996,1(1):96.
    [140]D. Jezequel, J. Mater. Res., 1995,10(1):77.
    [141]Matijevic, S. Cimas, Colloid Polym. Sci., 1987,265:155.
    [142]C. Ducamp-Sanguesa, Solid State Ionics, 1993,25:63.
    [143]C. Ducamp-Sanguesa, J.Solid State.Chem., 1992,100:272.
    [144]F. Fievet, J.Mater.Chem., 1993,9: 627.
    [145]钱逸泰,金属学报,1991,27(6):B446.
    [146]K. R. Venkatachari, J. Mater. Res., 1995,10:748.
    [147]A. Chakraborty, J. Mater. Res., 1994,9:986.
    [148]李春忠,胡黎明,陈敏恒等,硅酸盐学报,1993,21(1):93.
    [149]朱宏杰等,无机材料学报,1995,10(1):43.
    [150]李晓红,兰州大学博士论文,2002.
    [151]J. Kong, H. Son, A. Cassell, C.F. Quate, H.J. Dai, Nature, 1998,395:878.
    [152]P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, Chem.Phys. Lett., 1999,313:91.
    [153]J.F.Colomer, C.Stephan, S.Lefrant, GV.Tendeloo, I. Willems, et al., Chem. Phys.Lett., 2000, 317:83.
    [154]M. Su, B. Zheng, J. Liu, Chem. Phys. Lett., 2000, 322:321.
    [155]N. Franklin, H.J. Dai, Adv. Mater., 2000,12:890.
    [156]H. J. Dai, Appl.Phys., 2001: 29.
    [157]Y.K. Zhou, J. Huang, H.L. Li, Appl.Phys. A, 2003,76:53.
    [158]D.H.Qin, L.Cao, Q.Y.Sun, Y. Huang, H.L.Li., Chem. Phys. Lett., 2002,358: 484.
    [159]G. Liu, J. Ding, S. Stewart. Angewandte Chemie, 1999, 38: 835.
    [160]V. M. Cepak, C. R. Martin. J.Phys.Chem.B, 1998,102:9985.
    [161]C. J. Patrissi, C. R. Martin. J. Electrochem. Soc, 1999,146:3176.
    [162]K.B. Jirage, J.C. hulteen, C.R. Martin, Science, 1997,278:655.
    [163] J. Kong, H.T. Soh, A.M. Cassell, et al., Nature, 1998, 395:878.
    [164] W.Z. Li, S.S. Xie, L.X. Qian, Science, 1996,274:1701.
    [165] Z.W. Pan, S.S. Xie, B.H. Chang, Nature, 1998,394:631.
    [166] D. Routkevitch, A. A. Tager, J. Haruyama, IEEE Transactions on Electron Devices. 1996,43:1646.
    [167] GA. Ozin. Adv. Mat, 1992, 4:612.
    [168] Z. Wang and H.L. Li, Appl. Phys. A, 2002,74(2):201.
    [169] Z. Wang, Y.K. Su and H.L. Li, Appl. Phys. A, 2002,74(4):563.
    [170] Z. Wang, M. Chen and H.L. Li, Mater. Sci. Eng. A, 2002,328(l-2):33.
    [171] Y. Zhou, C. Shen, H. Li, Solid State Ionics, 2002,146:81.
    [172] Y. Zhou, H. Li, J.Mater.Chem, 2002,12:681.
    [173] Y. Zhou, H. Li, J. Solid State Chem., 2002,165:247.
    [174] D. H. Qin, C. W. Wang, Q. Y. Sun, H. L. Li, Appl. Phys. A, 2002, 74(4):761.
    [175] M.Lu, X.H. Li, B.Z. Yu, H.L. Li, J. Colloid Interf.Sci., 2002,248:376.
    [176] H. Xu, D.H. Qin, Z. Yang, H.L. Li, Mater. Chem. Phys., 2003,80:524.
    [177] M. Lu, M.K. Li, L.B. Kong, X.Y. Guo, H.L. Li, Chem. Phys. Lett., 2003,374:542.
    [178] L.B. Kong, M. Lu, M.K. Li, H.L. Li, J. Mate. Sci. Lett., 2003,22:701.
    [179] L.B. Kong, M. Lu, X.Y. Guo, H.L. Li, Chinese Phys. Lett., 2003,20(5): 763.
    [180] 张凯峰,兰州大学博士论文,2007,2.
    [181] 沈曾民,新型碳材料,化学工业出版社,北京,2003.
    [182] http://www.21 jxhg.com/Article/xinxi/200606/Article 13319.shtml
    [183] 张飞豹,兰州大学博士论文,2007
    [184] 杨小勤,赵永男,材料导报,2006,20,90.
    [185] A.W. Xu, Y.P. Fang, L.P. You, J Am Chem So c, 2003,125(6):1494 27
    [186] B. Zhang, X. C. Ye, W. Dai, W. Y. Hou, Y. Xie, Chem. Eur. J. 2006 (12): 2337.
    [187] B. Zhang, X. C. Ye, W. Y. Hou, Y. Zhao, Y. Xie, J. Phys. Chem. B 2006(110):8978.
    [188] M. Jayalakshmi, M. M. Rao, J. Power Source 2006 (157):624.
    [189] F. Tao, Y. Q. Zhao, G. Q. Zhang, H.L. Li, Electrochem. Commun. 2007(9): 1282.
    [190] J. Wang, S. H. Ng, G. X. Wang, J. Chen, L. Zhao, Y. Chen, H. K. Liu, J. Power Source 2006(159):287.
    [191] Cheon, J.; Kang, N. J.; Lee, J. H.; Yoon, J. H.; Oh, S. J. J. Am. Chem. Soc. 2004,126,1950.
    [192] Y.Y. Li, J.W. Wang, Z.X. Deng, J Am Chem Soc, 2001,123(40):9904.
    [193] W. Z. Wang, C .K. Xu, G H .Wang, Adv Mater,2002,14(11):837.
    [194] A.Upendra, Joshi, J.S. Lee, Small, 2005,1(12): 172.
    [195] 黄晖,罗宏杰,杨明,硅酸盐通报,2000,19(4):8.
    [196] W.X. Zhang, Z.H Yang. J.H. Zhan, Mater Lett, 2001,47(6):367.
    [197] 李涛,电子元件与材料,2004,23(10):52.
    [198] S.H. Yu, B. Liu, M.S. Mo, Adv Funct Mater, 2003,13(8):63.
    [199] K. Sattler. Carbon, 1995,33(7):915.
    [200] A. Krishnan, E. Dujardin, M.M.J. Treacy, J. Hugdahl, S. Lynum, T.W. Ebbesen,Nature, 1997; 388 (6641): 451.
    [201] N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, G A. J. Amaratunga. Nature,2001,414(6683):506
    [202] J. Shim, D. Y. Yoo, J. S. Lee. Electrochim Acta, 2000,45 (12):1943
    [203] R. Ryoo, S. H. Joo, S. Jun. J. Phys Chem B, 1999,103(37):7743
    [1] B.J.Andrew, J. Power Sources, 2000,91(1), 34.
    [2] B.E.Conway, V.Birss, J.Wojtowicz, J. Power Sources, 1997,66(1-2), 1.
    [3] W.G.Pell, B.E.Conway, W.A.Adams, J.Oliveira, J. Power Sources, 1999, 80(1-2),134.
    [4] J.O. M. Bockris, A.K.N.Reddy, Modern Electrochemistry. New York, plenum Press,1970.
    [5] B.E.Conway, Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications, New York: Plenum Press, 1999.
    [6] B.E.Conway, J. Electrochem. Soc. 1991,138(6), 1539.
    [7] J.P.Zheng, T.R.Jow, JElectroehem. Soc. 1995,142(1), L6.
    [8] R.A.Huggins, Solid state Ionies, 2000, 134(1-2), 179.
    [9] 南俊民,杨勇,林祖赓,电源技术,1996,20(4),152.
    [10] E.Faggioli, P.Rena, V.Danel, et.al. J. Piwer Sources, 1999, 84(2), 261.
    [11] A.Chu, P. BraatZ, J. Power Sources, 2002,112(1), 236.
    [12] A.K.Shukla, A.S.Arie6, V.Antonueei, Renewable and Sustainable Energy Reviews,2001, 5(2), 137.
    [13] R. K(?)tz, M.Carlen, Electrochim. Acta, 2000,45(15-16), 2483.
    [14] B.E.Conway, W·G.Pell, J. PowerSources, 2002,105(2), 67.
    [15] W.G.Pell, B.E.Conway, J. Power Sources, 2001,96(1), 57.
    [16] L.T.Lam, R.H.Newnham, H.ozgun,et.al. J. Power Sources, 2000, 88(1), 92.
    [17] K.V.Schaller, C.Gruber, C. Gruber, Fuel Cells Bulletin, 2000, 3(27), 9.
    [18] G.Gutmann, J. Power Sources, 1999, 84(2), 275.
    [19] 吴浩青,李永舫,电化学动力学,高等教育出版社,施普林格出版社.
    [20] G. Gouy, J. Phys. Radium, 1910, 9,457.
    [21] G. Gouy, Compt Rend, 1910,149,654.
    [22] D. L. Chapman, Phil Mag, 1913,25,475.
    [23] O.Z. Stern, Electrochem. 1924, 30, 508.
    [24] D.C. Grahame, Chem. Rev., 1947,41,441.
    [25] J.O.M. Bockris, M.A. Devanathan, K. Muller, Proc. Roy. Soc, 1963, A247, 55
    [26] 王晓峰,解晶莹,孔祥华,“超电容”电化学电容器研究进展,电源技术,2001,25,166.
    [27] 梁逵,碳纳米管及氧化镍超级离子电容器的研究,博士论文,2001.
    [28] Aurelien Du Pasquier, Irene Plitz, John Gural, Serafin Menocal, Glenn Amatucci,J. Power Sources, 2003,113, 62.
    [29] Aurelien Du Pasquier, Irene Plitz, Serafin Menocal, Glenn Amatucci, J. Power Sources, 2003,115,171.
    [30] Y.G. Wang, Z.D. Wang, Y.Y. Xia, Electrochim. Acta, 2005, 50, 5641.
    [31] A.Rudge, I.Raistriek, S.Gottesfeldetal. Eletrochim. Acta,1994,39(2),273.
    [32] S. Venkat, J Electrochem. Soc, 1999,146(5), 1650.
    [33] Anon, Electrochemicam Society, Extended abstracts of 188th Fall meting, 1995:313.
    [34] R. Saliger, U. Fischer, J. Non-Crystalline Solids, 1998,225: 81.
    [35] S. T. Mayer, R. W. Pekala, J. L. Kaschitter, J. Electrochem. Soc, 1993, 140:446.
    [36] S. H. Yoon, J. W. Lee, T. W. Hyeon, J. Electrochem. Soc, 2000,147,7: 2507.
    [37] M. G. Sullivan, B. Schnyder, M. Barisch, J. Electrochem. Soc, 2000,147: 2636.
    [38] C. Niu , E. K. Sichel, R. Hoch, D. Moy, H. Tennent, Appl. Phys. Lett., 1997, 70:1480.
    [39] I. Tarahashi, A. Yoshida, A. Nishino, J. Electrochem. Soc, 1990, 137: 3052.
    [40] B. Pillay, J. Newman. J. Electrochem. Soc, 1996,143: 1806.
    [41] I. Bispo-Fonseca, J. Aggar, C. Sarrazin, P. Simon, J. F. Fauvarque, J. Power Sources, 1999, 79: 238.
    [42] H. Nakagava, A. shudo, K. Miura, J. Electrochem. Soc, 2000, 147: 38.
    [43] J. Chen, K. Aoki, T. Totsuka, J. Appl. Electrochem., 1999,29: 1457.
    [44] 朱修锋,王君,景晓燕,张密林,化工新型材料,2002,30:5.
    [45] S. K. Lipka, IEEE AES Systems Magazine, 1997, 7: 27.
    [46] 戴贵平,刘敏,王茂章,成会明,新型炭材料,2002,17:71.
    [47] 曹林,兰州大学博士论文,2003。
    [48] A. Rudge, I. Raistrick, S. Gottesfeid, J. Electrochimi Acta, 1994,39: 273.
    [49] E. Buiel, A. E. George, J. R. Dahn, J. Electrochem. Soc, 1998, 145: 2250.
    [50] F. Cao, J. Prakash, J. Power Sources, 2001,92: 40.
    [51] Y. U. Jeong, A. Manthiram, J. Electrochem. Soc, 2001,148: A189.
    [52] Y. U. Jeong, A. Manthiram, Electrochemical and Solid-State Letters, 2000, 3: 205.
    [53] K. C. Liu, M. A. Anderson, J. Electrochem Soc, 1996,143: 124.
    [54] C. Lin, J. A. Ritter, B. N. Popov, Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors, J. Electrochem. Soc, 1998,145: 4097.
    [55] H. Y. Lee, J. B. Goodenough, J. Solid State Chemistry, 1999,148:81.
    [56] S. C. Pang, M. A. Anderson, T. W. Chapman, J. Electrochem. Soc, 2000, 147:444.
    [57] Z. Charles, A. Rory, J, Pynenberg, J. Electrochem. Soc, 1998,145: L61.
    [58] Reddy, R. N.; Reddy, R.G J. Power Sources 2004,315.
    [59] M.W. Xu; D.D. Zhao, S.J. Bao,H.L. Li, J Solid State Electrochem, 2007,11,1101.
    [60] W. Xing; F. Li, Z. Yan,G. Q. Lu, J. Power Sources 2004,134,324.
    [61] D. Wang, C. Song, Z. Hu, X. J. Fu hys. Chem. B 2005,109,1125.
    [62] L. Ye, C. Wu, W. Guo, Y. Xie, Chem. Commun. 2006,4738.
    [63] Y Wang, F. Su, J. Y. Lee, X. S. Zhao,Chem. Mater. 2006,18,1347.
    [64] G .uan, W. Cai, Y Luo; F. Sun,Adv. Funct. Mater. 2007,17,644.
    [65] L. Wang, Ebina, Y; Takada, K.; Sasaki, T. Chem. Commun. 2004,1074.
    [66] Z. Li, Y Ding, Y Xiong, Q. Xie, Y Chem. Commun. 2005, 918.
    [67] B. Li, G.Rong, Y Xie, L. Huang, C. Feng, Inorg. Chem. 2006, 45, 6404.
    [68] 李英品,周晓荃,周慧静,沈铸睿,陈铁红高等学校化学学报2007,07,1223
    [69] 夏熙电池2005,35,27
    [70] B. Liu, H. Zeng. J. Am. Chem. Soc. [ J ], 2004,126: 16744
    [71] Ostwald, W. Z. Phys. Chem. 1900, 34,495.
    [72] S. J. Bao, Q. L.Bao, C. M. Li, T. P. Chen, C. Q. Sun, Z. L. Dong, Y Gan,; J. Zhang,Small 2007, 3,1174.
    [73] H. G. Yang, H. C. Zeng,; J. Phys. Chem. B 2004,108, 3492.
    [74] Y. Wang, Q. Zhu, H. Zhang, Chem. Commun. 2005, 5231.
    [75] Y. Tao, kanoh, H.; Abrams, L.; Kaneko, K. Chem. Rev. 2006,106, 896.
    [76] Y. Meng, D. Chen, X. J. Jiao, Phys. Chem. B 2006,110,15212.
    [77] S. S. Zhang, K. Xu,; Jow, T.R. Electrochim. Acta 2004,49,1057.
    [78] C. Lin, Ritter, J. A.; Popov, B. N. J. Electrochem. Soc. 1998,145,4097.
    [79] J. Jang,H.; kato, A.; Machida, K.; Naoi, K. J. Electrochem. Soc. 2006,153, A321.
    [80] S. J. Bao, C. M. Li, H. L. Li, Luong, J. H. T. J. Power Sources 2007,164, 885.
    [1] V. Srinivasan, J.W. Weinder, J. Electrochem. Soc. 147 (2000) 880.
    
    [2] C. Lin, J.A. Ritter, B.N. Popov, J. Electrochem. Soc. 145 (1998) 4097.
    
    [3] C.C. Hu, T.W. Tsou, J. Power Sources 115 (2003) 179.
    
    [4] M.Q. Wu, GA. Snook, GZ. Chen, D.J. Fray, Electrochem. Commun. 6 (2004) 499.
    
    [5] R.N. Reddy, R.G Reddy, J. Power Sources 124 (2003) 330.
    
    [6] J.W. Long, A.L. Young, D.R. Rolison, J. Electrochem. Soc. 150 (2003) A1161.
    
    [7] T.E. Moore, M. Ellis, P.W. Selwood, J. Am. Chem. Soc. 72 (1950) 856.
    
    [8] S.C. Pang, M.A. Anderson, T.W. Chapman, J. Electrochem. Soc. 147 (2000) 444.
    
    [9]Y.Q. Wang, L.X. Yin, O. Palchik, Y.R. Hacohen, Y. Koitypin, A. Gedanken,Langmuir, 17(2001)4131.
    [10] B. Lee, D. Lu, J.N. Kondo, K. Domen, JACS, 124 (2002) 11256.
    
    [11] M. W Xu, D. D. Zhao, S. J. Bao, H. L. Li, J. Solid State Electrochem, 11 (2007)1101.
    
    [12] M. W. Xu, S. J. Bao, H. L. Li, J. Solid State Electrochem, 11 (2007) 302.
    
    [13] IUPAC Manual of Symbols and Terminology, Pure Appl. Chem. 1972, 31, 578.
    
    [14] R. Ryoo, S. H. Joo, S. Jun, J. Phys. Chem. B, 103(1999), 7743.
    
    [15] M. Kang, S. H. Yi, J. E. Yie, J. M. Kim, J.M.Chem-Commun. 2002,1944.
    
    [16] R.N. Reddy, R.G. Reddy, J. Power Sources 132 (2004) 315.
    
    [17] J.H. Jiang, A. Kucernak, Electrochim. Acta 47 (2002) 2381.
    
    [18] T. Takahashi, Electrochim. Acta 26 (1981) 1467
    
    [19] H. Kim, B.N. Popov, J. Electrochem. Soc. 150 (2003) D56.
    
    [20] B. Messaoudi, S. Joiret, M. Keddam, H. Takenouti, Electrochim. Acta 46 (2001)2487.
    
    [21] C. Niu, E. K. Sichel, Appl. Phys. Lett., 1997, 70: 1480.
    [22] S.S. Zhang, K. Xu, T.R. Jow, Electrochim. Acta 49 (2004) 1057.
    [23] S.J. Bao, Y.Y. Liang, W.J. Zhou, B.L. He, H.L. Li. J. Power Sources, 154 (2006)239.
    [1] N. Cvjeticanin, I. Stojkovic, M. Mitric, S. Mentus, J. Power Sources, 2007, 174,1117.
    [2] W. Pei, Y. Hui, Y. Huaquan, J. Power Sources 63 (1996) 275.
    [3] W. Li, J.R. Dahn, J. Electrochem. Soc. 142 (6) (1995) 1742.
    [4] Y. Wang, Y. Xia, Electrochem.Commun. 7 (2005) 1138.
    [5] Y. Wang, Y. Xia, J. Electrochem. Soc. 2006,153, A450.
    [6] Y. Wang, J. Luo, C. Wang, Y. Xia, J. Electrochem. Soc. 2006,153, A1425.
    [7] J. Lee, S. Pyun, Electrochem. Acta 2004,49,753.
    [8] V. Manev, B. Banov, A. Omchilov, J. Power Sources, 1995,57,9.
    [9] 冯力,常玉勤,伍丽娥,电化学,1997,3(1),76.
    [10] 吴晓梅,杨清河,金忠鹄,.电化学,1998,4(4),365.
    [11] X.H. Hu, X.P. Ai, H.X. Yang, J. Power Sources, 1998,74,240.
    [12] L. Taniguchi, Mater. Chem. Phy., 2005,92,172.
    [13] S. Bach, Electrochim. Acta, 1992,37,1303.
    [14] 郑子山,唐子龙,张中太,无机材料学报,2001,16,1181.
    [15] Y.M. Hon, K.Z. Fung, M.H. Hon, J. Eur. Ceram. Soc. 2001,21(4),515.
    [16] Y.M. Hon, S.P. Lin, K.Z. Fung, M.H. Hon, J. Eur. Ceram. Soc. 2002,22(5),653.
    [17] P. Barboux, F.K. Shokoohi, J. M. Tarascon, US patent 5135732.
    [18] X.P. Qiu, X.G. Sun, W.C. Shen, Solid State Ionics, 1997,93,335.
    [19] 杨文胜,刘庆国,北京化工大学学报,2000,27,66.
    [20] Tabib, Azar, J. Mater. Eval. 2001,59(l),70.
    [21] Kubra, Kovaiv, J. Anal. Chem. 2000,55(12),1113.
    [22] 金钦汉,微波化学,北京科学出版社,1999年,98.
    [23] P.M. Michael, R.B. David, J. Chem. Soc. Rev. 1991, 20,1.
    [24] Y.C. Su, Q.F. Zou, YW. Wang, P. Yu, J.Y. Liu, Mater. Chem. Phy. 2004,84,302
    [25] R. Thirunakaran, B.R. Babu, N. Kalaiselvi, P. Periasamy, etc., Bull. Mater. Sci.,2001,24,55.
    [26] Y.P. Fu, Y.H. Su, C.H. Lin, Solid State Ionics, 2004,166,137.
    [27] C.H. Lu, Y. Lin, H.C. Wang, J. Mater. Sci. Lett. 2003,22,615.
    [28] 李树棠,晶体X射线衍射学基础,冶金工业出版社,北京,1990年5月.
    [29] Y.K. Sun, C.S. Yoon, C.K. Kim, S.G Youn, Y.S. Lee, M. Yoshio, I.H. Oh, J. Mater.Chem. 2001,11,2519.
    [30] S. J. Bao, Y. Y. Liang, W. J. Zhou, B. L. He, H. L. Li, J. Power Sources, 2006, 154,239.
    [31] S.H. Ye, J.Y. Lv, X.P. Gao, F. Wu, D.Y. Song, Electrochim. Acta, 2004,49,1623.
    [32] 高山,吉林大学硕士论文,2003
    [33] 张立德等著,纳米材料和纳米结构,科学出版社
    [34] A. F. Burke, J. Power Sources, 2000,91,17.
    [1] Steele B C H, Heinzel A. Nature, 2001,414: 345.
    [2] Steele B C H. Nature, 1999,400: 619.
    [3] Srinvansan S. J Electrochem Soc, 1989,136: C41.
    [4] Kordesch K V, Simader G R. Chem Rev, 1995, 95:191.
    [5] Martin G S, Thomas D, Guy P B, et al., 2003, 302: 624.
    [6] Whittingham M S, Savinell R F, Zawodzinski T. Chem Rev, 2004,104:4243.
    [7] Martin Winter, Ralph J Brodd. Chem Rev, 2004,104: 4245.
    [8] 徐常威,中山大学博士学位论文
    [9] Carrette L, Friedrich K A, Stimming U. Fuel cells - fundamentals and applications.Fuel cells, 2001,1:5.
    [10] Urban P M, Funke A, Muller J T,et al. Appl Catal A, 2001,221: 459.
    [11] C.S. Song Catal Today, 2002, 77:17.
    [12] 吴承伟,张伟,电源技术,2004,28:109
    [13] 王艳华,王欧,林彬,辽宁化工,1998,27:9.
    [14] Geeter E, Mangan M, Spaepen S, et al. J Power Sourcs, 1999, 80: 207.
    [15] Bosio B, Costamagna P, Parodi F, et al. J Power Sources, 1998, 74: 175.
    [16] 衣保廉,燃料电池——高效、环境友好的发电方式,北京:化学工业出版社,2000.
    [17] Larminie J, Dicks A. Fuel Cell Systems Explained, Wiley, New York, 2000.
    [18] 张凯丰,兰州大学博士学位论文,2006.
    [19] 郭道军,兰州大学博士学位论文,2007.
    [20] M.P. Hogarth, G.A. Hards, Platinum Metal Review, 1996,40(4):150.
    [21] L.J. Hobson, Y. Nakano, H. Ozu, S. Hayase, J.Power Sources, 2002,104:79.
    [22] H.G. Haubold, T. Vad, et al., Electrochim.Acta, 2001,46:1559.
    [23] S. Hikita, K. Yamane, Y. Nakajima, JSAE Rev., 2002,23:133.
    [24] Kalcheva S V, Christov M V, Sokolova E I, et al. J Electroanal Chem, 1974, 55:213.
    [25] Beltowska-Brzezinska M, Luczak T, Holze R. J Appl Electrochem, 1997, 27: 999.
    [26] Borkowska Z, Tymosiak-Zielinska A, Shul G. Electrochim Acta, 2004,49: 1209
    
    [27] Adzic R R, Avramov-Ivic M L, Tripkovic A L. Electrochim Acta, 1984, 29: 1353.
    
    [28] Parsons R, Noot T Van der. J Electroanal Chem, 1988,257: 9.
    
    [29] Prabhuram J, Manoharan R. J Power Sources, 1998,74: 54.
    
    [30] Tripkovic A V, Popovic K D, Grgur B N, et al. Electrochim Acta, 2002, 3707.
    
    [31] Yu E H, Scott K, Reeve R W. J Electroanal Chem, 2003, 547:17.
    
    [32] Beden B, Leger J M, Lamy C. in: J O'M Bockris, B E Conway, R E White (Eds),Modern Aspects of Electrochemistry, vol 22 (chapter 2), Plenum Press, New York,1992, 97.
    
    [33] Bagotzky V S, Vassilyev Y B. Electrochim Acta, 967,12:1323.
    [34] Lamy C, Leger J M, Clavilier J. J Electroanal Chem, 1982,135: 321.
    [35] Beden B, Kadirgan F, Lamy C, et al. J Electroanal Chem, 1982,142: 171.
    [36] Morallon E, Vazquez J L, Aldaz A. Electroanal Chem, 1990,288: 217.
    [37] Tripkovic A V, Popovic K Dj, Momcilovic J D, et al. J Electroanal Chem, 1996,418:9.
    [38] Tripkovic A V, Popovic K Dj, Momcilovic J D, et al. J Electroanal Chem, 1998,448:173.
    [39] Tripkovic A V, Popovic K Dj, Momcilovic J D, et al. Electrochim Acta, 1998, 44:1135.
    
    [40] Nishihara C, Okada T. J Electroanal Chem, 2005, 577: 355.
    [41] E H. Yu, Scott K, Reeve R W, et al.. Electrochim Acta, 2004,49: 2443.
    [42] E .H. Yu, Scott K. Electrochem Commun, 2004, 6: 361.
    [43] J. Luo, Maye M M, Kariuki N N, et al. Cataly Today, 2005, 99: 291.
    [44] E .H. Yu; Scott K, Reeve R W. Fuel cells, 2003,3: 169.
    [45] Obradovic M D, Grgur B N, Vracar Lj M. J Electroanal Chem, 2003, 548: 69.
    [46] Fabio H B Lima, Edson A Ticianelli. Electrochim Acta, 2004,49: 4091.
    [47] Tammeveski K, Arulepp M, Tenno T, et al. Electrochim Acta, 1997,42: 2961.
    [48] Schmidt T J, Stamenkovic V, Arenz M, et al. Electrochim Acta, 2002,47: 3765.
    [49] (?)trbac S, Ad(?)ic R R. J Electroanal Chem, 1996: 403: 169.
    [50] Paliteiro C, Martins N. Electrochim Acta, 1998,44: 1359.
    [51] El-Deab M S, Ohsaka T. Electrochem Commun, 2003, 5:214.
    
    [52] El-Deab M S, Sotomura T, Ohsaka T. Electrochem Commun, 2005, 7: 29.
    
    [53] Aoun S B, Dursun Z, Sotomura T, et al. Electrochem Commun, 2004, 6: 747.
    
    [54] Golikand A N, Shahrokhian S, Asgari M. J Power Sources, 2005,144, 21.
    
    [55] Khalil M W, Abdel Rahim M A, Zimmer A, et al. J Power Sources, 2005.144:35
    
    [56] Abdel Rahim M A, Abdel Hameed R M, Khalil M W. J Power Sources, 2004,135:42.
    
    [57] Sistiaga M, Pierna A R. J Non-Cryst Solids, 2003,329: 184.
    [58] Abedel R M A, Abdel H R M, Khalil M W. J Power Sources 2004,134: 160.
    [59] Brunelli K, Dabala M, Magrini M. J Appl Electrochem, 2002, 32: 145.
    [60] H.L.H, Jafarian M, Mahjani M G, et al. Electrochim Acta, 2004,49:4999.
    [61] Damjanovic A, Dey A, Bockris J. Electrochim Acta, 1966,11: 791.
    [62] 庄林,汪洋,陆君涛.电化学,2001,7:18.
    
    [63] Schmidt T J, Stamenkovic V, Ross P N, et al. Phy Chem Chem Phy, 2003, 5: 400.
    [64] Sepa M V, Vojnovic M V, Damjanovic A. Electrochim Acta, 1981,26: 781.
    [65] Sepa D B, Vojnovic M V, Vracar L M. et al. Electrochim Acta, 1987, 32:129.
    [66] Vilambi N R K, Tayler E Y. Electrochim Acta, 1989,34: 1449.
    [67] Tammeveski K, Tenno T, Claret J, et al. Electrochim Acta, 1997,42: 893.
    [68] Genies L, Faure R, Durand R. Electrochim Acta, 1998,44: 1317.
    [69] L. Demarconnay, C. Coutanceau, J.-M. L(?)ger, Electrochim Acta, 2008, 53 (8)3232.
    
    [70] Genies L, Bultel Y, Faure R, et al. Electrochim Acta, 2003,48: 3879.
    [71] Y.F. Yang, Y. H. Zhou, C.S. Cha. Electrochim Acta, 1995,40: 2579.
    [72] Pattabiraman R. Appl Catal A, 1997,153: 9.
    [73] Y .F. Yang, Y .H. Zhou .J Electroanal Chem, 1955, 397: 271.
    [74] Lee H K, Shim J P, Shim M J, et al. Mater Chem Phys, 1996,45: 238.
    [75] Kongkanand A, Kuwabata S. Electrochem Commun, 2003, 5: 133.
    [76] Jai P, Humberto J. Electrochim Acta, 2000,45: 2289.
    [77] J .S. Yang, J.J. Xu Electrochem Commun, 2003, 5: 306.
    [78] Mocchi C, Trasatti S. J Molecular Catal A, 2003, 204
    [79] Kim T, Takahashi M, Nagai M,et al J. Electrochimica Acta,2004,50:817.
    [80] 尹诗斌,木士春,潘牧,袁润章,电池工业,2007,12(4),281。
    [81] 齐静,高颖,唐水花,姜鲁华,闫世友,郭军松,辛勤一,孙公权,催化学报,2006,27(8)708。
    [82] Fijim AS. Nature, 1991, 354: 56.
    [83] RuofRS, Lorents D C. Carbon, 1995, 33: 925.
    [84] 许程,唐浩林,木士春,等.电源技术,2004,28(10):652.
    [85] M.H. Wang, K.D. Woo, D.K Kim.. 2006, 47: 3235.
    [86] D.J.Guo, H.L.L. J Power Sources, 2006, 160(1): 44.
    [87] 朱红,孙正贵,申阎春.中国:02155255.X,2002.
    [88] G. Wu, L.Li, J.H.Li, et al. J Power Sources, 2006, 155: 118
    [89] Rodriguez NM. Materials Research society, 1993, 8(12): 3233.
    [90] Joo S H, Choi S J, Oh I, et al. Nature, 2001, 412: 169.
    [91] Baker W S, Long J W, Stroud R M, et al. Journal of NonoCrystalline Solids,2004. 350: 80.
    [92] 张宁,朱红,康晓红,等.化工时刊,2006,4:9.
    [93] Smirnova A, Dong X, Hara H, et al. International Journal of Hydrogen Energy,2005, 30: 149.
    [94] Hutchings G J, Hall M S, Carley A F, etal. Journal of Catalysis, 2006, 242:71.
    [95] A A Nada, M H Barakat, H A Hamed, N.R. Mohamed, T.N. Veziroglu: Int. J.Hydrogen. Energy, 2005, 30: 687.
    [96] ChhinaH, Campbells, Kesler O. J Power Sources, 2006, 161: 893.
    [97] ChhinaH, Campbell S, Kesler O. J Power Sources, 2007, 164: 431.
    [98] K.F.Zhang, D.J.Guo, X.Liu, J.Li, H.L.Li, Z.X.Su, J.PowerSources162 (2006)1077.
    [99] D.S. Zheng, S.X. Sun, W.L. Fan, H.Y. Yu, C.H. Fan, G.X. Cao, Z.L.Yin,X.Y.Song, J.Phys.Chem.B109(2005)16439.
    [100] R. Parsons, T.VanderNoot, J. Electroanal. Chem. 1998, 257: 9.
    [101] S. Hobbs, A.C.C. Tseung, Nature, 1969,222:556.
    [102] K.W. Park, K.S. Ahn, Y.C. Nah, J.H. Choi, and Y.E. Sung, J.Phys.Chem. B, 2003, 107:4352.
    
    [103] J. Prabhuram, R. Manoharan, J.Appl.Electrochem. 1998,28:935.
    
    [104] K. Nishimura, K. Kunimatsu and M. Enyo, J.Electroanal.Chem. 1989,260:167.
    
    [105] C.P. Wilde, M. Zhang, Electrochim.Acta, 1994,39:347.
    
    [106] H. Wang, T. Loffler, H. Baltruschat, J. Appl. Electrochem. 2001,31:759.
    
    [107] J. Kua, W.A. Goddard III, J. Am. Chem. Soc. 1999,121:10928.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700