用户名: 密码: 验证码:
Pt基二元合金催化剂的制备及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接醇类燃料电池(Direct Alcohol Fuel Cell,DAFC)是以甲醇、乙醇、异丙醇、乙二醇等有机小分子作为燃料的新型低温燃料电池,它不仅可代替汽油而成为汽车的新型燃料,还可应用于诸如手机、笔记本电脑等可移动的电源领域。然而阳极催化剂成本高、电化学性能低,一直成为制约DAFC发展的瓶颈。本文采用液相化学法制备了PtPb/C、PtBi/C二元合金催化剂并讨论了其在异丙醇和乙二醇碱性溶液中的电化学性能。
     研究中采用两种液相还原法制备催化剂,并用XRD、XPS对其进行表征,运用循环伏安、交流阻抗、慢速线性扫描法等多种电化学测试技术,在乙二醇和异丙醇碱性体系中,对PtPb/C、PtBi/C催化剂及商用PtRu/C、Pt/C催化剂进行电化学性能测试。
     研究结果表明,PtPb/C、PtBi/C二元合金催化剂不同程度地含有有序金属间化合物的成分,反应温度对PtPb/C催化剂的晶型有一定的影响。对于PtBi/C催化剂,通过正交分析发现,反应时间、温度、原子比对催化剂的晶型都有影响。在乙二醇和异丙醇碱性溶液中,制备的PtPb/C催化剂活性均好于PtRu/C催化剂。在乙二醇碱性介质中,150℃下反应1h所得催化剂的性能较好。而碱性异丙醇溶液中,最佳反应条件为145℃反应3h。对于PtBi/C催化剂,在碱性乙二醇和异丙醇溶液中,催化活性好于Pt/C催化剂。其中在乙二醇碱性溶液中的最佳制备工艺为45min、200℃、原子比Pt:Bi=1:1;而异丙醇碱性溶液为60min、200℃、原子比Pt:Bi=3:1。通过交流阻抗分析,认为乙二醇在碱性介质中的电氧化过程是一个多电子转移的过程。异丙醇在碱性介质中的电氧化过程,首先在低电位脱氢,生成丙酮;在较高电位下,发生C-C键的断裂生成CO2。在较低的电位下,异丙醇体系和乙二醇体系的等效电路是相似的,该过程可能是C-H键的断裂过程。相对与Pt/C催化剂,由于Ru的加入,产生协同效应,使得PtRu/C有更好的电化学性能。异丙醇和乙二醇在PtRu/C催化剂上的电氧化按照双重机理进行。最后在异丙醇和乙二醇的酸性介质中,对商用Pt/C、PtRu/C催化剂的电催化剂性能进行了初步探讨。
Direct alcohol fuel cells, a new type of low-temperature fuel cells, not only replace gasoline as a new type of car fuel, can also be applied to some other fields, such as mobile phones, computers, electric vehicles. Small organic molecules (methanol, ethanol, isopropanol, ethylene glycol et.al) are used as the fuel to fuel cells.However, the high cost and the low electrochemical properties of the anode catalyst, has become a bottleneck restricting the development of DAFC. In this paper, binary alloy PtPb/C, PtBi/C catalysts were prepared by solution chemistry method and used to study the electrooxidation of isopropanol and ethylene glycol in alkaline solution.
     In this paper, the catalysts were synthesized by both solution-reduction methods. The catalysts were studied by XRD, XPS, CV, EIS, LSV. XRD studies confirmed the presence of the ordered intermetallic phase. Temperature had a certain impact on the crystal of PtPb/C catalysts. For PtBi/C catalysts, through the orthogonal analysis, we found that time, temperature, atomic ratio were affected in the formation of the catalysts.
     The results indicated that the as-prepared PtPb/C catalysts exhibited enhanced eletrocatalytic activity when compared to that of PtRu/C catalyst in the oxidation of ethylene glycol and isopropanol in alkaline medium. In ethylene glycol system, PtPb/C, which prepared at 150℃for one hour, has the better performance. And in the isopropanol solution, the best one was 145℃for three hours. PtBi/C catalysts, also displayed better eletrocatalytic activity than that of Pt/C catalyst in both solution. In the oxidation of ethylene glycol, when the temperature was 200℃, the reaction time was 45min, and atomic ratio of Pt: Bi was 1:1, the catalyst PtBi/C has the highest performance. In the electrooxidation of isopropanol, the best preparation condition was 200℃for 60min with atomic ratio of Pt: Bi = 3:1. The AC impedance spectrum analysis showed the electrooxidation process of ethylene glycol in alkaline medium was a multi-electron transfer process, and that of isopropanol in alkaline medium, was dehydrogenation to generate acetone at low potential and the C-C bond breaking to generate CO2 at a high potential. At a relatively low potential, the equivalent circuit was similar in the isopropanol system and the ethylene glycol system, which might be mean the C-H bond cleavage process. Due to the synergistic effect of adding Ru, the PtRu/C catalyst has better electrochemical performance than Pt/C catalyst. The electrooxidation of ethylene glycol and isopropanol on PtRu/C catalyst can be explained by bifunctional mechanism.
     Finally, we had a preliminary discussion about the electro-catalytic activity of commercial Pt/C, PtRu/C catalysts for the electro-oxidation of isopropanol and ethylene glycol in acid medium.
引文
[1] Carrette L, Friedrich K A k, Stimming U, Fuel cell:Principles,types,fuels,and applications, Chemphyschem,2000,l (4) : 162-193
    [2]衣宝廉,燃料电池——原理·技术·应用,北京:化学工业出版社,2003
    [3] Paola C, Supramaniam S, Quantum jumps in PEMFC science and technology from the 1960s to the year 2000 part I . Fundamental scientific aspects, J.Power Sources, 2001, 102 : 242-252
    [4]中国电工技术学会“电工新技术丛书第一分册”[M].北京:机械工业出版社,2000
    [5] Matsuoka k, Iriyama y, Abea T, et al, Alkaline direct alcohol fuel cells using an anion exchange membrane, J. Power Sources, 2005,150 : 27—31
    [6] Peled E, Livshits V, Duvdevani T, High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane (NP-PCM), J. Power Sources, 2002,106 : 245-248
    [7] Qi Z G, Kaufman A,Performance of 2-propanol in direct-oxidation fuel cells, Journal of Power Sources, 2002, 112: 121-129
    [8] Lamy C,Lima A,LeRhun V, et al, Recent advances in the development of direct alcohol fuel cells (DAFC), J. Power Sources, 2002,105 (2): 283-296
    [9] Wang Y, Li L, Hu L, et al, A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages, Electrochem Commun, 2003 (5) : 662-665
    [10] Gupta S S, Datta J, Electrode kinetics of ethanol oxidation on novel CuNi alloy supported catalysts synthesized from PTFE suspension, J. Power Sources, 2005,145 (2): 124-132
    [11] HauDe W, Heitbaum J, The electrooxidation of ethylene glycol at platinum in potassium hydroxide, Electrochim. Acta, 1978,23 (4): 299-304
    [12] Rousseau S, Coutanceau C, Lamy C,et al, Direct ethanol fuel cell (DEFC) : Electrical performances and reaction products distribution under operating conditions with different platinum-based anodes, J. Power Sources, 2006,158 (1): 18-24
    [13] Antolini E, Salgado J R C, Gonzalez E R, The methanol oxidation reaction on platinum alloys with the first row transition metals: The case of Pt-Co and -Ni alloy electrocatalysts for DMFCs: A short review, Appl. Catal. B, 2006, 63 (1) : 137-149
    [14] Sundmacher K, Schultz T, Zhou S, et al, Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis, Chem. Eng. Sci., 2001,56 (2): 333-341
    [15] Zhou W J, Li W Z, Song S Q, et al, Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells, J. Power Sources, 2004,131 : 217-223
    [16] Song S, Tsiakaras P, Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs), Appl. Catal. B: Environ, 2006,63 (1): 187-193
    [17] Podlovchenko B I, Petrii 0 A, Frumkin A N,et al, The behaviour of a platinized-platinum electrode in solutions of alcohols containing more than one carbon atom, aldehydes and formic acid,J. Electronal.Chem., 1966,11 (1) : 12-14
    [18] Kokkinidis G, Jannakoudakis D, Catalysis of ethylene glycol oxidation on a Pt electrode modified by foreign metal ad-atoms, J. Electroanal. Chem., 1982, 133(2) : 307-315
    [19] Kadirgan F, Beden B, Lamy C, Electrocatalytic oxidation of ethylene-glycol : Part I. Behaviour of platinum ad-atom electrodes in acid medium, J.Chem., 1982,136 (1): 119-138
    [20] Horanyi G, Kazarinov V E, Vassiliev Y B, et al, Electrochemical and adsorption behaviour of ethylene glycol and its oxidative derivatives at platinum electrodes: Part II. Electrocatalytic transformations under steady-state experimental conditions at a platinized platinum electrode in acid medium,J. Electroanal. Chem., 1983,147 (2): 263-278
    [21] Hahn F, Beden B, Kadirgan F, et al, Electrocatalytic oxidation of ethylene glycol : Part III. In-situ infrared reflectance spectroscopic study of the strongly bound species resulting from its chemisorption at a platinum electrode in aqueous medium, J.Electroanal.Chem., 1987,216 (1-2): 169-180
    [22] Leung L W H, Weaver M J, Real-time FTIR spectroscopy as a quantitative kinetic probe of competing electrooxidation pathways of small organic molecules, J. Phys. Chem. B, 1988,92 (14) : 4019-4022
    [23] Christensen P A, Hamnett A, The oxidation of ethylene glycol at a platinum electrode in acid and base : An in situ FTIR study, J. Electroanal. Chem.,1989,260 (2) : 347-359
    [24] Orts J M, Fernandez V A, Feliu J M, et al, Electrochemical oxidation of ethylene glycol on Pt single crystal electrodes with basal orientations in acidic medium, J.Electroanal. Chem., 1990,290(1-2): 119-133
    [25] Leung L W H, Weaver M J, Influence of adsorbed carbon monoxide on electrocatalytic oxidation of simple organic molecules at platinum and palladium electrodes in acidic solution: a survey using real-time FTIR spectroscopy, Langmuir, 1990,6 (2) : 323—333
    [26] Belgsir E M, Bouhier E, Yei H E, et al, Electrosynthesis in aqueous medium : a kinetic study of the electrocatalytic oxidation of oxygenated organic molecules, Electrochim. Acta, 1991,36(7): 1157-1164
    [27] Sun S G, Chen A C, Huang T S,et al, Electrocatalytic properties of Pt(lll), Pt(332), Pt(331) and Pt(110) single crystal electrodes towards ethylene glycol oxidation in sulphuric acid solutions, J.Electroanal. Chem., 1992,340 (1-2) : 213-226
    [28] Wieland B, Lancaster J P, Hoaglund C S,et al, Electrochemical and Infrared Spectroscopic Quantitative Determination of the Platinum-Catalyzed Ethylene Glycol Oxidation Mechanism at CO Adsorption Potentials, Langmuir, 1996,12 (10) :2594~2601.
    [29] Gootzen J F E, Visscher W, Van Veen JAR, Characterization of Ethanol and 1,2-Ethanediol Adsorbates on Platinized Platinum with Fourier Transform Infrared Spectroscopy and Differential Electrochemical Mass Spectrometry, Langmuir, 1996,12 (21):5076—5082.
    [30] Beltowska B M, Luczak T, Holze R, Electrocatalytic oxidation of mono- and polyhydric alcohols on gold and platinum, J. Appl. Electrochem., 1997,27 (9) :999~1011.
    [31] Dailey A, Shin J, Korzeniewski C, Ethylene glycol electrochemical oxidation at platinum probed by ion chromatography and infrared spectroscopy, Electrochim. Acta, 1998,44 (6-7) : 1147-1152.
    [32] Kelaidopoulou A, Abelidou E, Papoutsis A,et a/. Electrooxidation of ethylene glycol on Pt-based catalysts dispersed in polyaniline, J. Appl. Electrochem., 1998,28 (10): 1101-1106.
    [33] De Lima R B, Paganin V, Iwasita T, et al, On the electrocatalysis of ethylene glycol oxidation, Electrochim. Acta, 2003,49 (1) : 85-91.
    [34] Neto A O, Vasconcelos T R R, Da Silva R W R V, et al, Electro-oxidation of ethylene glycol on PtRu/C and PtSn/C electrocatalysts prepared by alcohol-reduction process, J. Appl. Electrochem., 2005,35 (2) : 193-198.
    [35] HauDe W, Heitbaum J, The electrooxidation of ethylene glycol at platinum in potassium hydroxide,Electrochim. Acta, 1978,23 (4) :299~304.
    [36] Beden B, Kadirgan F, Kahyaoglu A, et al, Electrocatalytic reduction of some halogenated derivatives of methane and acetic acid at a platinized platinum electrode in acid medium, J.Electroanal.Chem., 1982,135 (2) : 329-346.
    [37] Kadirgan F, Beden B, Lamy C, Electrocatalytic oxidation of ethylene-glycol: Part II. Behaviour of platinum-ad-atom electrodes in alkaline medium, J. Electroanal. Chem., 1983,143 (1-2): 135-152.
    [38] Kadirgan F, Bouhier C E, Lamy C,et al, Mechanistic study of the electrooxidation of ethylene glycol on gold and adatom-modified gold electrodes in alkaline medium,J. Electroanal. Chem., 1990,286 (1-2): 41-61.
    [39] Chang S C, Ho Y, Weave M J, Applications of real-time FTIR spectroscopy to the elucidation of complex electroorganic pathways: electrooxidation of ethylene glycol on gold, platinum, and nickel in alkaline solution ,J. Am. Chem. Soc, 1991,113 (25) : 9506-9513.
    [40] Markovic N M, Avramov I M L, Marinkovic N S, et al, Structural effects in electrocatalysis : Ethylene glycol oxidation on platinum single-crystal surfaces, J.Electroanal. Chem., 1991,312(1-2): 115-130.
    [41] Kazarinov V E, Vassiliev Yu B, Andreev V N, et al, Electrochemical and adsorption behaviour of ethylene glycol and its oxidative derivatives at platinum electrodes : Part I. Adsorption and chemisorption processes ,J.Electroanal. Chem., 1983,147 (1-2): 247-261
    [42]Smirnova N W, Petrii O A, GrzejdziakAbstract, Effect of ad-atoms on the electro-oxidation of ethylene glycol and oxalic acid on platinized platinum,J.Electroanal.Chem., 1988,251(1) :73-87
    [43] Nobanathi W M, Christopher J A, Kenneth I O, Insights into the electro-oxidation of ethylene glycol at Pt/Ru nanocatalysts supported on MWCNTs: Adsorption-controlled electrode kinetics ,Electrochemistry Communications, 2009:11 (3): 534-537
    [44] Yang C C, Preparation and characterization of electrochemical properties of air cathode electrode ,Int. J. Hydrogen Energy, 2004,29 (2) : 135-143
    [45] Ewe H, Justi E, Pesditschek M, Ethylene glycol as fuel for alkaline fuel cells,Energy Conversion, 1975,15(1-2) :9~14
    [46]陈爱成,孙世刚,乙二醇在铂电极上吸附和氧化过程的现场FTIR反射光谱研究(Ⅱ)一碱性介质,高等学校化学学报,1994,15(4):548~551
    [47]徐常威,沈培康,碱性醇类燃料电池新型催化剂的研究,电源技术,2005,29(9):563565
    [48] Matsuoka K, Iriyama Y, Abea T,et al, Electro-oxidation of methanol and ethylene glycol on platinum in alkaline solution: Poisoning effects and product analysis, Electrochimica Acta, 2005, 51(6):1085~1090
    [49] Vielstich W, Fuel Cells, Wiley, New York, 1970, 100-101
    [50]陈爱成,孙世刚,乙二醇在铂电极上吸附和氧化过程的现场FTIR反射光谱研究(I)-酸性介质,高等学校化学学报,1994,15(13):401~405
    [51] Demarconnay L, Coutanceau C, Lamy C, et al, Development of electrocatalysts for solid alkaline fuel cell (SAFC) ,J. Power Sources, 2006,156 (1): 14-19.
    [52] Livshits V, Peled E, Progress in the development of a high-power, direct ethylene glycol fuel cell (DEGFC) ,J. Power Sources, 2006,161 (2): 1187-1191
    [53] Livshits V, Philosoph A, Peled E, Direct ethylene glycol fuel-cell stack—Study of oxidation intermediate products ,J. Power Sources, 2008,178 (2) :687~691
    [54] Gao P, Chang S C, Zhou Z H, et al, Electrooxidation pathways of simple alcohols at platinum in pure nonaqueous and concentrated aqueous environments as studied by real-time ftir spectroscopy, J. Electroanal. Chem., 1989,272 (1-2): 161-178.
    [55] Pastor E, Gonzalez S, Arvia A J, Electroreactivity of isopropanol on platinum in acids studied by DEMS and FTIRS, J. Electroanal. Chem., 1995,395 (1-2) :233~242.
    [56] Wang J T, Wasmus S, Savinell R F, Evaluation of Ethanol, 1-Propanol, and 2-Propanol in a Direct Oxidation Polymer-Electrolyte Fuel Cell, J.Electrochem. Soc, 1995,142 (12) :4218~4224
    [57] Sun S G, Lin Y, Kinetic aspects of oxidation of isopropanol on Pt electrodes investigated by in situ time-resolved FTIR spectroscopy ,J. Electroanal. Chem., 1994,375 (1-2) :401~404
    [58] Rodrigues ,Nart F C,2-Propanol oxidation on platinum and platinum-rhodium electrodeposits, J. Electroanal. Chem. 2006,590 (2) :145~151.
    [59] Umeda, Sugii H, Mohamedi M, et al, Direct 2-Propanol Fuel Cell-Current-Voltage Characteristics and Reaction Product at Room Temperature Operation (E), Electrochemistry 2002,70 (12) :961~963.
    [60]Qi Z, Hollett M, Attia A, et al, Low Temperature Direct 2-Propanol Fuel Cells ,Electrochem. Solid-State Lett. 2002,5 :129-130.
    [61] Rodrigues I A, Pastor E, Nart F C, Cleavage of the C-C Bond during the Electrooxidation of 1-Propanol and 2-Propanol: Effect of the Pt Morphology and of Codeposited Ru, Langmuir 1997,13 (25):6829~6835.
    [62] Sun S G, Lin Y, In situ FTIR spectroscopic investigations of reaction mechanism of isopropanol oxidation on platinum single crystal electrodes, Electrochim Acta.,1996,41(5) : 693- 700.
    [63] Otomo J, Li X E, Kobayashi T, et al, AC-impedance spectroscopy of anodic reactions with adsorbed intermediates: electro-oxidations of 2-propanol and methanol on carbon-supported Pt catalyst ,J. Electroanal. Chem., 2004,573 (1) :99~109.
    [64] Sen G S, Datta J, An investigation into the electro-oxidation of ethanol and 2-propanol for application in direct alcohol fuel cells (DAFCs), J.Chemical Sciences, 2005,117(4) : 337-344
    [65] Sun S G, Yan L, Kinetics of isopropanol oxidation on Pt(lll), Pt(llO), Pt(lOO), Pt(610) and Pt(211) single crystal electrodes -: Studies of in situ time-resolved FTIR spectroscopy, ElectrochimicaActa, 1998,44 (6-7) :1153~1162
    [66]宋永红,尤金跨,林祖赛,异丙醇在Pt微盘电极上的电化学氧化,电源技术,1998,3(22):93~95
    [67] Lin, Chen H, Zheng G L, et al, The Adsorption and Oxidation of Isopropanol at Platinum Electrode in Alkaline Media, Acta Phys.-Chim.Sin.,2005,21(ll):1280~1284
    [68] Kobayashi T, Otomo J, Wen S G,et al, Direct alcohol fuel cell—relation between the cell performance and the adsorption of intermediate originating in the catalyst-fuel combinations, J. Power Sources 2003,124 (1): 34-39.
    [69] Matthew E P, Markiewicz, Dominique M H, et al, Electro-oxidation of 2-propanol on platinum in alkaline electrolytes, Journal of Power Sources 2006,161 (2): 761-767
    [70] Cao D, Bergens S H, A direct 2-propanol polymer electrolyte fuel cell, J. Power Sources 2003,124 (1): 12-17
    [71]查全性,电极过程动力学导论,北京:科学出版社,2002:129~140
    [72]林维明,燃料电池系统,北京:化学工业出版社,1996,165~171
    [73] Parmigiani F, Kay E, Bagus P S, Anomalous oxidation of platinum clusters studied by X-ray photoelectron spectroscopy , J.Electron Spectrose.Relat.Phenom, 1990,50 (1) : 39-46
    [74] Takasu Y, Fujii Y, Yasuda K, et al, Electrocatalytic properties of ultrafine platinum particles for hydrogen electrode reaction in an aqueous solution of sulfuric acid, Electrochim.Acta, 1989,34(3~4):453~458
    [75] Cha S Y, Lee W M, Performance of Proton Exchange Membrane Fuel Cell Electrodes Prepared by Direct Deposition of Ultrathin Platinum on the Membrane Surface, J.Electrochim. Soc, 1999,146(11) :4055~4060
    [76] Sun S G, Clavilier J, Electrochemical study on the poisoning intermediate formed from methanol dissociation at low index and stepped platinum surfaces, J.Electroanal. Chem. 1987, 236(1-2):95~112
    [77] Morimoto Y, Yeager E, CO oxidation on smooth and high area Pt, Pt-Ru and Pt-Sn electrodes, J.Electroanal. Chem., 1998,441(1-2):77~81
    [78] Bing W, Ying G, Guichun L, et al, Effect of Surface Activation Treatment on Pt/C Catalyst for Electrooxidation of Ethylene Glycol and Adsorbed CO, Catalysis Letters,2006, 106(3-4): 167-170
    [79] Zhao G Y, Xu C L, Guo D i,et al, Template preparation of Pt nanowire array electrode on Ti/Si substrate for methanol electro-oxidation, Appl. Surf. Sci., 2007,253 (5): 3242-3246.
    [80] Sun C L, Chen L C, Su M C,et al, Ultrafine Platinum Nanoparticles Uniformly Dispersed on Arrayed CNx Nanotubes with High Electrochemical Activity Chem.Mater. 2005,17 (14): 3749-3753
    [81] Selvaraj V, Vinoba M, Alagar M, Electrocatalytic oxidation of ethylene glycol on Pt and Pt-Ru nanoparticles modified multi-walled carbon nanotubes, Journal of Colloid and Interface Science, 2008,322 (2) :537~544
    [82] Cheng F L, Wang H, Sun Z H,et al, Electrodeposited fabrication of highly ordered Pd nanowire arrays for alcohol electrooxidation, Electrochemistry Communications, 2008,10(5): 798-801
    [83] Yu J S, Kang S, Yoon S B,et al, Fabrication of Ordered Uniform Porous Carbon Networks and Their Application to a Catalyst Supporter, J. Am. Chem. Soc, 2002,124(32) : 9382-9383
    [84] Ficicioglu F, Kadirgan F, Electrooxidation of ethylene glycol on a platinum doped polyaniline electrode, Journal of Electroanalytical Chemistry, 1998,451(1-2): 95-99
    [85] Selvaraj V, Alagar M, Ethylene glycol oxidation on Pt and Pt-Ru nanoparticle decorated polythiophene/multiwalled carbon nanotube composites for fuel cell applications, Nanotechnology, 2008,19(4),Article Number: 045504
    [86] Sun S G, Chen A C, Effects of ethylene glycol (EG) concentration and pH of solutions on electrocatalytic properties of Pt(lll) electrode in EG oxidation—A comparison study with adjacent planes of platinum single crystal situated in [110] and [011] crystallographic zones, Electrochimica Acta, 1994,39(7):969~973
    [87] Fan Y J, Zhou Z Y, Zhen C H, Kinetics of dissociative adsorption of ethylene glycol on Pt(l 0 0) electrode surface in sulfuric acid solutions, Electrochimica Acta,2004,49(26):4659~4666
    [88] Fan Y J, Zhou Z Y, Fan C J, In situ time-resolved FTIRS study of adsorption and oxidation of ethylene glycol on Pt(lOO) electrode, Chinese Science Bulletin, 2005,50(18): 1995-1998
    [89] Ureta-Zanartu M S, Alarcon A, Muiioz G,et al, Electrooxidation of methanol and ethylene glycol on gold and on gold modified with an electrodeposited polyNiTSPc film, Electrochimica Acta, 2007,52(28):7857~7864
    [90]樊友军,范纯洁,甄春花等,Pt(111)单晶电极上乙二醇解离吸附反应动力学,物理化学学报,2004(4):382~385
    [91]陈声培,孙世刚,卢国强等,碳载铂电极对乙二醇氧化的电催化性能研究,电化学,1997,3(2):179~185
    [92] Xu C W,Liu Y L,Yuan D S, Pt and Pd Supported on Carbon Microspheres for Alcohol Electrooxidation in Alkaline Media, International Journal of Electrochemical Science, 2007,2(9): 674-680
    [93] Sun Z P, Zhang X G, Liang Y Y,et al, A facile approach towards sulfonate functionalization of multi-walled carbon nanotubes as Pd catalyst support for ethylene glycol electro-oxidation, Journal of Power Sources, (2008),doi:10.1016/j.jpowsour.2009.01.093
    [94] Liu J P, Ye J Q, Xu C W, et al, Electro-oxidation of methanol, 1-propanol and 2-propanol on Pt and Pd in alkaline medium, Journal of Power Sources 2008,177 (1) :67~70
    [95] Xu C W, Tian Z Q, Chen Z C, et al, Pd/C promoted by Au for 2-propanol electrooxidation in alkaline media, Electrochemistry Communications, 2008,10 (2): 246—249
    [96] Ye J Q, Liu J P, Xu C W, et al, Electrooxidation of 2-propanol on Pt, Pd and Au in alkaline medium, Electrochemistry Communications, 2007,9 (12) :2760~2763
    [97] Estevam V. Spinace, LucianaA. Farias, Marcelo Linardi, Almir OliveiraNeto, Preparation of PtSn/C and PtSnNi/C electrocatalysts using the alcohol-reduction process, Materials Letters, 2008,62 (14) :2099~2102
    [98] Gojkovic SLJ, Tripkovic AV, Stevanovic RM, Mixtures of methanol and 2-propanol as a potential fuel for direct alcohol fuel cells, Journal of the Serbian Chemical Society, 2007, 72(12): 1419-1425
    [99] De Lima R B, Paganin V, Iwasita T, Vielstich W, On the electrocatalysis of ethylene glycol oxidation, Electrochim Acta, 2003,49(l):85~91
    [100] Matsuoka K, Iriyama Y, Abe T, et al, Electrocatalytic Oxidation of Ethylene Glycol in Alkaline Solution, J.Electrochem.Soc, 2005,152(4):729~731
    [101] Wang H, Zhao Y, Jusys Z, et al. Ethylene glycol electrooxidation on carbon supported Pt, PtRu and Pt3Sn catalysts-A comparative DEMS study, Journal of Power Sources, 2006,155 (1) :33~46
    [102] Neto A O, Vasconcelos T R R, Da Silva RWRV, et al.,Electro-oxidation of ethylene glycol on PtRu/C and PtSn/C electrocatalysts prepared by alcohol-reduction process, Journal of Applied Electrochemistry ,2005, 35(2): 193-198
    [103] Neto A O, Linardi M, Spinace EV,Electro-oxidation of ethylene glycol on PtSn/C and PtSnNi/C electrocatalysts, Ionics, 2006,12(4-5) :309~313
    [104] Necla Dalbay, Figen Kadirgan, Electrolytically co-deposited platinum-palladium electrodes and their electrocatalytic activity for ethylene glycol oxidation: a synergistic effect, Electrochimica Acta, 1991, 36 (2):353~356
    [105] Chen Y G, Zhuang L, Lu J T, Non-Pt Anode Catalysts for Alkaline Direct Alcohol Fuel Cells, Chinese Journal of Catalysis, 2007,28 (10):870~874
    [106] MSoledad Ureta-Zanartu, Claudia Yaiiez, Maritza Paez, Gloria Reyes, Electrocatalytic oxidation of ethylene glycol in 0.5 M H_2SO_4 and 0.5 M NaOH solutions at a bimetallic deposited electrode, Journal of Electroanalytical Chemistry, 1996,405(1-2): 159-167
    [107]杨苏东,张校刚,黄建书等,多壁碳纳米管负载Pd-Ni电催化剂对乙二醇的电催化氧化,物理化学学报,2007,23(8):1224-1228
    [108] El-Shafei A A, Abd El-Maksoud S A, Fouda A S, Noble-metal-modified glassy carbon electrodes for ethylene glycol oxidation in alkaline medium, Journal of Electroanalytical Chemistry ,1995,395 (1-2) :181~187
    [109] El-Shafei A A, Shabanah H M, Moussa M N H, Catalytic influence of underpotentially deposited submonolayers of different metals in ethylene glycol oxidation on various noble metal electrodes in alkaline medium, Journal of Power Sources, 1993,46 (1): 17-27
    [110] Yang S D, Zhang X G, Huang J S, Pd-Ni/MWCNT Electrocatalysts for Ethylene Glycol Electro-oxidation in Alkaline Medium, Acta Physico-Chimica Sinica, 2007,23(8) : 1224—1228
    [111] Qu W L; Wu, B; Sun, B, Electrocatalytic Oxidation of Ethylene Glycol at Pt-WO3/C Electrode, Acta Physico-Chimica Sinica, 2005,21(7) : 804-807
    [112]曲微丽,邬冰,孙芳等,Pt-WO_3/C电极表面活化对乙二醇和CO氧化的作用,化学学报,2005,63(17)-1565-1569
    [113] Xu C W, Zeng R, Shen P K, et al, Synergistic effect of CeO2 modified Pt/C catalysts on the alcohols oxidation, Electrochimica Acta, 2005,51 (6): 1031-1035
    [114] Xu C W, Tian Z Q, Shen P K, et al, Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media, Electrochimica Acta, 2008,53 (5) : 2610-2618
    [115] Casado R E,Volpe D J,Alden L,et al,Electrocatalytic Activity of Ordered Intermetallic Phases for Fuel Cell Applications,J.Am.Chem.Soc, 2004,126 : 4043-4049
    [116] Leonard B M, Bhuvanesh N S P, Schaak R E, Low-Temperature Polyol Synthesis of AuCuSn2 and AuNiSn2 : Using Solution Chemistry to Access Ternary Intermetallic Compounds as Nanocrystals, J.Am.Chem.Soc, 2005,127 : 7326~7327
    [117] Wiley B, Sun Y, Mayers B, et al, Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver,J.Chem.Eur.,2005,ll : 454—463
    [118] Sra A K,Schaak R, Synthesis of Atomically Ordered AuCu and AuCu3 Nanocrystals from Bimetallic Nanoparticle Precursors,J. Am.Chem.Soc, 2004,126 : 6667—6672
    [119] Xie J, Zhao X B, Cao G S,et al,Electrochemical Li-uptake properties of nanosized NiSb2 prepared by solvothermal route,J.AlloysCompd,2005,393 : 283-286
    [120] Howard M L,Nguyen H,Giblin S R,et al,A Synthetic Route to Size-Controlled fee and fct FePtNanoparticles,J.Am.Chem.Soc.,2005,127 :1 0140-10141
    [121] Xia D G,Chen QWang Z Y,et al,Synthesis of Ordered Intermetallic PtBi2 Nanoparticles for Methanol-Tolerant Catalyst in Oxygen Electroreduction,Chem.Mater.,2006,18 : 5746-5749
    [122] Cable R E,Schaak R E,et al,Low-Temperature Solution Synthesis of Nanocrystalline Binary Intermetallic Compounds Using the Polyol Process,Chem.Mater.,2005,17 : 6835-6841
    [123] Chou N H, Schaak R E, A library of single-crystal metal-tin nanorods: Using diffusion as a tool for controlling the morphology of intermetallic nanocrystals, Chemistry Of Materials,2008, 20,2081-2085
    [124] Chandrani R, Futoshi M, Synthesis, Characterization, and Electrocatalytic Activity of PtBi Nanoparticles Prepared by the Polyol Process,Chem. Mater, 2005, 17 : 5871-5876
    [125] Roychowdhury C, Matsumoto F,Zeldovich V B, et al, Synthesis, Characterization, and Electrocatalytic Activity of PtBi and PtPb Nanoparticles Prepared by Borohydride Reduction in Methanol,Chem.Mater, 2006,18 : 3365-3372
    [126] Matsumoto F, Roychowdhury C, Electrocatalytic activity of ordered intermetallic PtPb nanoparticles prepared by borohydride reduction toward formic acid oxidation,Disalvo Fj,Journal of The Electrochemical Society, 2008,155(2) : 148-154
    [127] Alden L R, Han D K, Matsumoto F, Intermetallic PtPb nanoparticles prepared by sodium naphthalide reduction of metal-organic precursors: Electrocatalytic oxidation of formic acid,Chemistry of Materials, 2006,18(23) : 5591-5596
    [128] Alden L R, Roychowdhury C,Matsumoto F, et al, Synthesis, Characterization, and Electrocatalytic Activity of PtPb Nanoparticles Prepared by Two Synthetic Approaches, Langmuir, 2006,22 : 10465-10471
    [129] Li H G, Sun G Q, Li N, et al, Design and Preparation of Highly Active Pt-Pd/C Catalyst for the Oxygen Reduction Reaction, J.Phys.Chem.C.,2007,111 : 5605-5617
    [130] Xinzhong X, Junjie G, Tian T, et al, Enhancement of the electrooxidation of ethanol on PtSnP/C catalysts prepared by chemical deposition process, Journal of Power Sources, 2007,172 : 560—569
    [131] Casado R E Gal Z, Angelo A C D, Electrocatalytic oxidation of formic acid at an ordered intermetallic PtBi surface, Chemphyschem,2003,4(2) : 193-199
    [132] Bauer J C, Chen X, Liu Q S, Converting nanocrystalline metals into alloys and intermetallic compounds for applications in catalysis, Journal of Materials Chemistry, 2008,18(3) :275-282
    [133] Sean M, Yang S C, Synthesis and Characterization of Ordered Intermetallic PtPb Nanorods, J. Am. Chem. Soc, 2007, 129 : 8684-8685
    [134] Sra A K, Ewers T D, Schaak,Direct solution synthesis of intermetallic AuCu and AuCu3 nanocrystals and nanowire networks, Chemistry of Materials,2005,17(4): 758—766
    [135] Umeda M, Sugii H, Uchida I, Alcohol electrooxidation at Pt and Pt-Ru sputtered electrodes under elevated temperature and pressurized conditions, Journal of Power Sources.2008,179 (2) : 489-496
    [136] Sequeira C A C, Santos D M F, Brito PSD, Mediated and non-mediated electrochemical oxidation of isopropanol, Applied Surface Science, 2006,252 : 6093-6096
    [137] Lee C G, Umeda M, Uchida I, Cyclic voltammetric analysis of C1-C4 alcohol electrooxidations with Pt/C and Pt-Ru/C microporous electrodes, Journal of Power Sources, 2006, 160 (1) : 78-89
    [138] Matthew E P M, Steven H B, Electro-oxidation of 2-propanol and acetone over platinum, platinum-ruthenium, and ruthenium nanoparticles in alkaline electrolytes, Journal of Power Sources, 2008,185 : 222-225
    [139] Lee C G, Ojima H, Umeda M, Electrooxidation of Cl to C3 alcohols with Pt and Pt-Ru sputter deposited interdigitated array electrodes, Electrochimica Acta., 2008,53(7) : 3029-3035
    [140]Cristina Martin, Ines Martin, Vicente Rives, et al, A FTIR spectroscopy study of isopropanol reactivity on alkali-metal-doped MoO3/TiO2 catalysts, Spectrochimica Acta Part A, 1996,52(7) : 733-740
    [141] Demarconnay L, Brimaud S, Coutanceau C, Ethylene glycol electrooxidation in alkaline medium at multi-metallic Pt based catalysts, Journal of Electroanalytical Chemistry,2007, 601 (1-2) : 169-180
    [142] Rodrigues I A, Nart F C, 2-propanol oxidation on platinum and platinum-rhodium electrodeposits, Journal of Electroanalytical Chemistry, 2006,590 (2) : 145-151
    [143]徐常威,沈培康,乙二醇在碱性溶液中铂电极上的电化学氧化机理,电源技术,2005,29(5):282-285
    [144]Bard A J,Faulkner L R,Electrochemical Methods,John Wiley&Sons,2001:226—243.
    [145]阿伦.J.巴德,拉里.R.福克纳著,邵元华等译,电化学方法原理和应用[M].北京:化工工业出版社,2005
    [146]曹楚南,张鉴清著,电化学交流阻抗导论,科学出版社,北京,2002
    [147] Armstrong R D, Henderson M, Impedance plane display of a reaction with an adsorbed intermediate, J. Electroanal. Chem.,1972,39 (1): 81-85
    [148]钱逸泰,结晶化学导论,中国科学技术大学出版社,合肥,1999
    [149] McGilp J F, Weightman P, McGuire E J, The N6,7O_45O_45 Auger spectra of thallium, lead and bismuth,Journal of Physics C, 1977 ,10 (17): 3445-3460
    [150] Hegde R I, Sainkar S R, Badrinarayanan S, et al, A study of dilute tin alloys by x-ray photoelectron spectroscopy, Journal of Electron Spectroscopy and Related Phenomena,1981,24(l): 19-25
    [151] Blasini D R, Rochefort D, Fachini E, et al, Surface composition of ordered intermetallic compounds PtBi and PtPb, Surface Science,2006,600 (13) : 2670-2680
    [152] Tayler J A, Perry D L, An x-ray photoelectron and electron energy loss study of the oxidation of lead, Journal of Vacuum Science and Technology A, 1984,2 (2) : 771-774.
    [153] Volpe D, Casado R E, Alden L, et al. Surface Treatment Effects on the Electrocatalytic Activity and Characterization of Intermetallic Phases, J. Electrochem.Soc, 2004,151(7):971~976
    [154] Hamm U W, Kramer D, Zhai R S, et al, On the valence state of bismuth adsorbed on a Pt(lll) electrode: an electrochemistry, LEED and XPS study,Electrochimica Acta,1998,43(19-20): 2969-2978
    [155] Schmidt T J, Grgur B N, Behm R J, et a/,Bi adsorption on Pt(lll) in perchloric acid solution: A rotating ring-disk electrode and XPS study, Phys. Chem. Chem. Phys., 2000, 2 : 4379-4386
    [156]Oleg A P, Pt-Ru electrocatalysts for fuel cells: a representative review, J Solid State Electrochem., 2008,12:609-642

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700