用户名: 密码: 验证码:
离子聚合物金属复合材料(IPMC)的制备及力—电耦合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子聚合物金属复合材料(Ionic Polymer Metal Composite,IPMC)是一种新型电致活性聚合物智能材料。IPMC具有变形大、密度小、应变能力强等特点,能够模拟生物的肌肉组织、与肌肉组织有着相近的破坏极限和最大应变等,这些特性使得它被称为“人工肌肉”,在仿生、医疗、航空和航天等领域具有广泛的应用前景。本文针对IPMC制备工艺、力-电耦合机理等问题,开展了IPMC制备工艺优化、基本性能测试以及力-电耦合建模等研究。
     主要研究工作和结果如下:
     (1)在IPMC制备工艺研究方面:采用溶液-浇铸法制备了无掺杂、碳纳米管改性、钛酸钡改性等多种离子交换膜;采用温度控制法制备了Pt型IPMC;采用速率控制法制备了Ag型IPMC。对制备试样进行了表征,获得了IPMC的微观形貌特征、电极构型特点,以及电极构型与制备工艺之间的关系。
     (2)在IPMC基本性能研究方面:研究了不同电极材料(Pt和Ag)、电极厚度以及改性填料对IPMC含水特性的影响;静态拉伸实验结果表明:在IPMC中添加改性填料可提高IPMC的弹性模量2倍以上。
     (3)在IPMC电学、传感性能研究方面:测量了IPMC的阻抗特性并分析了IPMC电阻分布特点,研究了激励场在IPMC内部的分布规律;研究了Ag型IPMC的传感能力,得到了Ag型IPMC传感信号与频率和变形曲率之间的对应关系。
     (4)在IPMC致动性能研究方面:研究了不同试样在直流和交变电场下的变形特性,结果表明:IPMC的变形形式依据表面电阻分布特点,可以分为变弯矩变形和等弯矩变形两种形式;研究了不同试样在直流电场激励下的力输出特性,结果表明:添加改性材料的IPMC输出力有明显提高,最高可达8倍以上。
     (5)在IPMC力-电耦合模型研究方面:根据IPMC变形为非理想均匀弯曲现象,提出了致动电场梯度的概念,在不可逆热力学的基础上将场强梯度引入IPMC的力-电转换过程,建立IPMC场强梯度力-电耦合模型。建立的力-电耦合模型能较好预测IPMC的弯曲响应,模型预测与实验结果之间的误差在20%以内。
     本文在IPMC制备工艺改进,性能提升方面的探索,为IPMC成型技术的研究提供了有益的研究经验。以IPMC电学和力-电耦合建模为基础研究,为深化IPMC力-电耦合机理研究,推动其工程应用提供了重要的参考依据和研究基础。
Ionic Polymer Metal Composite(IPMC) is a new kind of electric active smart material whichhas large deformation, low density and strong strain capacity. It has the similar damage limitation andmaximum strain with muscle tissues of organisms so that it can be used for simulation. It was calledas the artificial muscle due to this feature, and can be widely applied in simulation, medical treatment,aeronautics and astronautics.
     The main works and results are as follows:
     The preparation technology of IPMC: Solution casting method was used to prepare several kindsof ion exchange membranes such as membrane with no impurity, carbon nanotube reinforcedmembrane and barium titanate reinforced membrane. Temperature control method was used toprepare Pt-IPMC, and speed control method was used to prepare Ag-IPMC. The samples werecharacteried to obtain the microscopic morphology, electrode configuration and the relation betweencorresponding pattern and the preparation technology.
     The basic features of IMPC: The influences of different electrode materials, thickness andreinforced fillers on the aquifer characteristics were studied. The results of the static tensile tests onthe membranes and IPMC showed that the reinforced fillers could greatly improve the elasticitymodulus of IPMC about two times.
     The sensing and electric properties: The sensing capacity of Ag-IPMC was studied to get thecorresponding impedance characteristics between the frequency and deformation curvature. Theresistance distribution as well as the exciting field distribution inside IPMC were also studied bymeasuring the impedance of IPMC.
     The actuation performance of IPMC: The deformation features of different samples under directcurrent and alternating current were investigated. The results indicated that there were two kinds ofdeformation types based on the resistance distribution on the surface, one was the variable momentdeformation, and the other was the constant moment deformation. The output features of differentsamples under direct current were also studied. The results confirmed that the reinforced filler couldeffectively enlarge the output force of IPMC by more than eight times.
     The electromechanical coupling mode of IPMC: The concept of actuating electrical fieldgradient based on the nonuniform bending phenomenon was supposed according to the Irreversiblethermodynamics. The electromechanical coupling mode of IPMC was simplified as the linearequation of gradient electric field and gradient pressure. The pure bending theory was used to depictthe mechanical behaviors of IPMC under electromechanical coupling. The results showed that, this electromechanical coupling mode could predict the bending response of IPMC with the error within±20%.
引文
[1] K Sadeghipour,R Salomon,S Neogi.Development of a novel electrochemically active membraneand'smart'material based vibration sensor/damper.Smart Materials and Structures,1992,1(2):172-179.
    [2] Mohsen Shahinpoor,Y Bar-Cohen,Jo Simpson,et al.Ionic polymer-metal composites (IPMCs) asbiomimetic sensors, actuators and artificial muscles-a review. Smart Materials and Structures1998,7(6):15-30.
    [3] Mohsen Shahinpoor,Kwang J Kim.Ionic polymer-metal composites:I. Fundamentals. SmartMaterials and Structures,2001,10(4):819-833.
    [4] Mohsen Shahinpoor,Kwang J Kim,Don J Leo. Ionic polymer-metal composites as multifunctionalmaterials. Polymer Composites,2003,24(1):24-33.
    [5] Mohsen Shahinpoor,Kwang J Kim. Novel ionic polymer-metal composites equipped with physicallyloaded particulate electrodes as biomimetic sensors, actuators and artificial muscles. Sensors andActuators A: Physical,2002,96(2):125-132.
    [6] Mohsen Shahinpoor. Ionic polymer-conductor composites as biomimetic sensors, robotic actuatorsand artificial muscles-a review. Electrochimica Acta,2003,48(14):2343-2353.
    [7] Masaki Yamakita,Norihiro Kamamichi,Yasuaki Kaneda,et al. Development of an artificial musclelinear actuator using ionic polymer-metal composites. Advanced Robotics,2004,18(4):383-399.
    [8] Lisa Ferrara,Mohsen Shahinpoor,Kwang J Kim,et al. Use of ionic polymer-metal composites(IPMCs) as a pressure transducer in the human spine. Smart Structures and Materials,1999,3669:394-401.
    [9] Sang Jun Lee,Man Jae Han,Seong Jun Kim,et al.A new fabrication method for IPMC actuators andapplication to artificial fingers.Smart Materials and Structures,2006,15(5):12-17.
    [10]陶宝祺,熊克.智能材料结构.国防工业出版社,1997.
    [11] Yoseph Bar-Cohen. Electroactive polymers: current capabilities and challenges//SPIE's9thAnnual International Symposium on Smart Structures and Materials, International Society for Opticsand Photonics,2002:1-7.
    [12] M Shahinpoor.Conceptual design,kinematics and dynamics of swimming robotic structures usingionic polymeric gel muscles.Smart Materials and Structures,1992,1(1):91-94.
    [13] Yoseph Bar-Cohen. Electroactive polymers as artificial muscles: A review. Journal of Spacecraftand Rockets,2002,39(6):822-827.
    [14] Mohsen Shahinpoor,Kwang J Kim. Ionic polymer–metal composites: IV. Industrial and medicalapplications. Smart Materials and Structures,2005,14(1):197-214.
    [15] Kh Meyer,W Strauss. Permeability of membranes:VI.Passage of current through selectivemembranes. Helv. Chim. Acta,1940,23:795-800.
    [16] Walter Juda,Wayne A Mcrae. Coherent ion-exchange gels and membranes. Journal of theAmerican Chemical Society,1950,72(2):1044-1044.
    [17] Walter Juda,Nw Rosenberg,Ja Marinsky,et al. Electrochemical Properties of Ion ExchangeResins. I. Donnan Equilibria, Membrane Potentials and Conductivities. Journal of the AmericanChemical Society,1952,74(15):3736-3738.
    [18]王振堃.离子交换膜:制备,性能及应用.化学工业出版社,1986.
    [19]方度,杨维驿.全氟离子交换膜:制法,性能和应用.化学工业出版社,1993.
    [20] Y Kawami,K. Oguro,H. Takenaka. Bending of an Ion-Conducting Polymer Film-ElectrodeComposite by an Electric Stimulus at Low Voltage. Journal of Micromachine Society,1992,5:27-30.
    [21] Kwang J Kim, Mohsen Shahinpoor. Ionic polymer–metal composites: II. Manufacturingtechniques. Smart Materials and Structures,2003,12(1):65-79.
    [22] H Tamagawa, F Nogata, T Watanabe, et al. Influence of metal plating treatment on the electricresponse of Nafion. Journal of materials science,2003,38(5):1039-1044.
    [23] Seok Heo, Kwang J Kim, Deuk Yong Lee, et al. Multiwalled carbon nanotube/IPMCnanocomposite//Smart Structures and Materials, International Society for Optics and Photonics,2005:194-202.
    [24] Seon Jeong Kim, Min Sup Kim, Su Ryon Shin, et al. Enhancement of the electromechanicalbehavior of IPMCs based on chitosan/polyaniline ion exchange membranes fabricated byfreeze-drying. Smart materials and structures,2005,14(5):889-894.
    [25] Chen-Kuei Chung, Pk Fung, Yz Hong, et al. A novel fabrication of ionic polymer-metalcomposites (IPMC) actuator with silver nano-powders. Sensors and Actuators B: Chemical,2006,117(2):367-375.
    [26] Bo-Kai Fang, Ming-Shaung Ju, Chou-Ching K Lin. A new approach to develop ionicpolymer–metal composites (IPMC) actuator: Fabrication and control for active cathetersystems. Sensors and Actuators A: Physical,2007,137(2):321-329.
    [27] Deuk Yong Lee,Il-Seok Park,Myung-Hyun Lee,et al. Ionic polymer–metal composite bendingactuator loaded with multi-walled carbon nanotubes. Sensors and Actuators A: Physical,2007,133(1):117-127.
    [28] Il-Seok Park,Sang-Mun Kim,Kwang J Kim. Mechanical and thermal behavior of ionicpolymer–metal composites: effects of electroded metals. Smart materials and structures,2007,16(4):1090-1097.
    [29] Mohsen Shahinpoor,Kwang J Kim. The effect of surface-electrode resistance on the performance ofionic polymer-metal composite (IPMC) artificial muscles. Smart Materials and Structures,2000,9(4):543-551.
    [30] Man Jae Han,Jong Hyuk Park,Jang Yeol Lee,et al. Ionic Polymer-Metal Composite ActuatorsEmploying Radiation-Grafted Fluoropolymers as Ion-Exchange Membranes. Macromolecular RapidCommunications,2006,3(27):219-222.
    [31] Lee S J,Han M J,Kim S J,et al. A new fabrication method for IPMC actuators and application toartificial fingers. Smart Materials and Structures,2006,15(5):1217.
    [32] Siripong M,Fredholm S,Nguyen Q A,et al. A cost-effective fabrication method for ionicpolymer-metal composites//Materials Research Society Symposium Proceedings. MaterialsResearch Society,2006,889:139.
    [33] Lee S,Park H,Pandita S D,et al. Performance improvement of IPMC (ionic polymer metalcomposites) for a flapping actuator. International Journal of Control Automation and Systems,2006,4(6):748.
    [34] Pierre Gilles De Gennes. Scaling concepts in polymer physics. Cornell university press,1979.
    [35] Mohsen Shahinpoor. Micro-electro-mechanics of ionic polymeric gels as electrically controllableartificial muscles. Journal of Intelligent Material Systems and Structures,1995,6(3):307-314.
    [36] Jiang Yu Li, Sia Nemat-Nasser. Micromechanical analysis of ionic clustering in Nafionperfluorinated membrane. Mechanics of materials,2000,32(5):303-314.
    [37] Sia Nemat-Nasser, Jiang Yu Li. Electromechanical response of ionic polymer-metalcomposites. Journal of Applied Physics,2000,87(7):3321-3331.
    [38] Xiaoqi Bao,Yoseph Bar-Cohen,Shyh-Shiuh Lih. Measurements and macro models of ionomericpolymer-metal composites (IPMC)//SPIE's9th Annual International Symposium on Smart Structuresand Materials, International Society for Optics and Photonics,2002:220-227.
    [39] Yoshinobu Tanaka. Ion exchange membranes:fundamentals and applications. Elsevier Science,2007.
    [40]金宁.IPMC柔性仿生驱动器的制备及性能测试.[硕士学位论文].南京:南京航空航天大学,2008.
    [41]陈骐.Ag基IPMC柔性驱动器的制备及控制特性研究.[硕士学位论文].南京:南京航空航天大学,2008.
    [42]安逸,熊克,顾娜.一种离子聚合物金属复合材料拉伸试验研究.航空学报,2009,30(5):966-971.
    [43]安逸,熊克,顾娜.一种离子聚合物金属复合材料的动态力学性能.材料研究学报,2010,24(2):196-200.
    [44] Taro Nakamura, Tadashi Ihara, Takashi Horiuchi, et al.Measurement and Modeling ofElectro-Chemical Properties of Ion Polymer Metal Composite by Complex Impedance Analysis.SICEJournal of Control, Measurement, and System Integration,,2009,2(6):373-378.
    [45] David J. Griffiths. Development of Ionic Polymer Metallic Composites as Sensors.[MasterThesis].USA:Virginia Polytechnic Institute and State University,2008.
    [46] Jin-Han Jeon, Il-Kwon Oh. Selective growth of platinum electrodes for MDOF IPMCactuators. Thin Solid Films,2009,517(17):5288-5292.
    [47] Viljar Palmre,Daniel Brandell,Uno M eorg,et al. Nanoporous carbon-based electrodes for highstrain ionomeric bending actuators. Smart Materials and Structures,2009,18(9):095028.
    [48] Kyoung Kwan Ahn,Dinh Quang Truong,Doan Ngoc Chi Nam,et al. Position control of ionicpolymer metal composite actuator using quantitative feedback theory. Sensors and Actuators A:Physical,2010,159(2):204-212.
    [49] Bo-Kai Fang,Chou-Ching K.Lin,Ming-Shaung Ju. Development of sensing/actuating ionicpolymer–metal composite (IPMC) for active guide-wire system. Sensors and Actuators A:Physical,2010,158(1):1-9.
    [50] Endel Soolo,Daniel Brandell,Anti Liivat,et al. Force field generation and molecular dynamicssimulations of Li+–Nafion. Electrochimica Acta,2010,55(8):2587-2591.
    [51] Doyeon Kim,Kwang J. Kim,Jae-Do Nam,et al. Electro-chemical operation of ionicpolymer–metal composites. Sensors and Actuators B: Chemical,2011,155(1):106-113.
    [52] D. Liu,A. J. Mcdaid,K. C. Aw,et al. Position control of an Ionic Polymer Metal Compositeactuated rotary joint using Iterative Feedback Tuning. Mechatronics,2011,21(1):315-328.
    [53] Mohammad Luqman,Jang-Woo Lee,Kwang-Kil Moon,et al. Sulfonated polystyrene-based ionicpolymer–metal composite (IPMC) actuator. Journal of Industrial and Engineering Chemistry,2011,17(1):49-55.
    [54] Meisam Vahabi,Emad Mehdizadeh,Mansour Kabganian,et al.Experimental identification of IPMCactuator parameters through incorporation of linear and nonlinear least squares methods.Sensors andActuators A: Physical,2011,168(1):140-148.
    [55] Yaqi Gong, Jianping Fan, Chak-Yin Tang, et al. Numerical Simulation of DynamicElectro-Mechanical Response of Ionic Polymer-Metal Composites. Journal of Bionic Engineering,2011,8(3):263-272.
    [56] Yaqi Gong,Chak-Yin Tang,Chi-Pong Tsui,et al. Modelling of ionic polymer–metal compositesby a multi-field finite element method. International Journal of Mechanical Sciences,2009,51(11-12):741-751.
    [57] Jason W. Paquette,Kwang J. Kim,Doyeon Kim. Low temperature characteristics of ionicpolymer–metal composite actuators.Sensors and Actuators A: Physical,2005,118(1):135-143.
    [58] Doan Ngoc Chi Nam,Kyoung Kwan Ahn. Design of an IPMC diaphragm for micropumpapplication. Sensors and Actuators A: Physical,2012,187:174-182.
    [59] J. Santos,B. Lopes,P. J. Costa Branco. Ionic polymer–metal composite material as adiaphragm for micropump devices. Sensors and Actuators A: Physical,2010,161(1-2):225-233.
    [60] B. Andò,C. Bonomo,L. Fortuna,et al. A bio-inspired device to detect equilibrium variationsusing IPMCs and ferrofluids. Sensors and Actuators A: Physical,2008,144(2):242-250.
    [61] Varij Panwar,Kyoungrae Cha,Jong-Oh Park, et al. High actuation response of PVDF/PVP/PSSAbased ionic polymer metal composites actuator.Sensors and Actuators B:Chemical,2012,161(1):460-470.
    [62] Yoseph Bar-Cohen,Stewart Sherrit,Shyh-Shiuh Lih. Characterization of the electromechanicalproperties of EAP materials//SPIE's8th Annual International Symposium on Smart Structures andMaterials, San Diego,USA: International Society for Optics and Photonics,2001:319-327.
    [63] Satoshi Tadokoro,T Takamori,Keisuke Oguro. Modeling IPMC for design of actuationmechanisms. Electroactive Polymer (EAP) Actuators as Artificial Muscles, Reality, Potential,and Challenges,2001,331-366.
    [64] Sia Nemat-Nasser. Micromechanics of actuation of ionic polymer-metal composites. Journal ofApplied Physics,2002,92(5):2899-2915.
    [65] Xiaoqi Bao,Yoseph Bar-Cohen,Zensheu Chang,et al. Characterization of bending EAP beamactuators//Smart Structures and Materials, International Society for Optics and Photonics,2004:388-394.
    [66] Kazuyuki Yagasaki,Hirohisa Tamagawa. Experimental estimate of viscoelastic properties for ionicpolymer-metal composites. Physical Review E,2004,70(5):052801-052801-4.
    [60] Jun Ho Lee,Jong Hoon Lee,Jae-Do Nam,et al.Water uptake and migration effects of electroactiveion-exchange polymer metal composite (IPMC) actuator.Sensors and Actuators A:Physical,2005,118(1):98-106.
    [67] Claudia Bonomo,Luigi Fortuna,Pietro Giannone,et al. A method to estimate the deformation andthe absorbed current of an IPMC actuator//Smart Structures and Materials,International Society forOptics and Photonics,2006:61681W-61681W-12.
    [68] Jun Chen, Guowei Ma. Modelling deformation behaviour of polyelectrolyte gels underchemo-electro-mechanical coupling effects. International journal for numerical methods inengineering,2006,68(10):1052-1071.
    [69] Zheng Chen,Xiaobo Tan,Alexander Will,et al. A dynamic model for ionic polymer-metalcomposite sensors. Smart Materials and structures,2007,16(4):1477-1488.
    [70] Vinh Khanh Nguyen,Jang Woo Lee,Youngtai Yoo. Characteristics and performance of ionicpolymer–metal composite actuators based on Nafion/layered silicate and Nafion/silicananocomposites. Sensors and Actuators B: Chemical,2007,120(2):529-537.
    [71] Paola Brunetto,Luigi Fortuna,Salvatore Graziani,et al.A model of ionic polymer-metal compositeactuators in underwater operations.Smart Materials and Structures,2008,17(2):025029-025029-12.
    [72] Hirohisa Tamagawa, Seizi Goto, Takayasu Sugiyama. Bending direction of Ag-plated IPMCcontaining immobile anions and/or cations. Composites Science and Technology,2008,68(15):3412-3417.
    [73] Gursel Alici. An effective modelling approach to estimate nonlinear bending behaviour of cantilevertype conducting polymer actuators. Sensors and Actuators B: Chemical,2009,141(1):284-292.
    [74] Dibakar Bandopadhya, James Njuguna. Estimation of bending resistance of Ionic Polymer MetalComposite (IPMC) actuator following variable parameters pseudo-rigid body model. MaterialsLetters,2009,63(9):745-747.
    [75] Aj Mcdaid,Kc Aw,E Haemmerle,et al. A conclusive scalable model for the complete actuationresponse for IPMC transducers. Smart Materials and Structures,2010,19(7):075011-075011-15.
    [76] Pg De Gennes,Ko Okumura,M Shahinpoor,et al. Mechanoelectric effects in ionic gels. EPL(Europhysics Letters),2000,50(4):513-518.
    [77] Siavouche Nemat-Nasser,Shahram Zamani. Experimental study of Nafion-and Flemion-based ionicpolymer metal composites (IPMCs) with ethylene glycol as solvent//Smart Structures and Materials,International Society for Optics and Photonics,2003:233-244.
    [78] Eniko T Enikov,Geon S Seo. Analysis of water and proton fluxes in ion-exchange polymer-metalcomposite (IPMC) actuators subjected to large external potentials. Sensors and Actuators A:Physical,2005,122(2):264-272.
    [79] Sia Nemat-Nasser,Shahram Zamani. Modeling of electrochemomechanical response of ionicpolymer-metal composites with various solvents. Journal of Applied Physics,2006,100(6):064310-064310-18.
    [80] Nan-Chyuan Tsai,Chung-Yang Sue. Fabrication and analysis of ionic conductive polymer films formicro drug delivery systems. Sensors and Actuators A: Physical,2008,141(2):670-676.
    [81] Brijesh C Lavu,Marco P Schoen,Ajay Mahajan.Adaptive intelligent control of ionic polymer-metalcomposites. Smart materials and structures,2005,14(4):466-474.
    [82] Zheng Chen,Xiaobo Tan. A Control-Oriented and Physics-Based Model for Ionic Polymer-MetalComposite Actuators. Mechatronics,2008,13(5):519-529.
    [83] Pj Costa Branco,Ja Dente. Derivation of a continuum model and its electric equivalent-circuitrepresentation for ionic polymer–metal composite (IPMC) electromechanics. Smart materials andstructures,2006,15(2):378-392.
    [84] Andres Punning,Maarja Kruusmaa,Alvo Aabloo. Surface resistance experiments with IPMCsensors and actuators. Sensors and Actuators A: Physical,2007,133(1):200-209.
    [85] Claudia Bonomo,Luigi Fortuna,Pietro Giannone,et al. A method to characterize the deformationof an IPMC sensing membrane. Sensors and Actuators A: Physical,2005,123:146-154.
    [86] C Bonomo,L Fortuna,P Giannone,et al. A model for ionic polymer metal composites assensors. Smart materials and structures,2006,15(3):749-758.
    [87] Andres Punning,Maarja Kruusmaa,Alvo Aabloo. A self-sensing ion conducting polymer metalcomposite (IPMC) actuator. Sensors and Actuators A: Physical,2007,136(2):656-664.
    [88] Kinji Asaka,Naoya Mori,Kohtaku Hayashi,et al. Modeling of the electromechanical response ofionic polymer metal composites (IPMC)//Smart Structures and Materials,International Society forOptics and Photonics,2004:172-181.
    [89] Y Toi,Sung-Soo Kang.Finite element analysis of two-dimensional electrochemical-mechanicalresponse of ionic conducting polymer-metal composite beams. Computers&structures,2005,83(31):2573-2583.
    [90] C Bonomo,L Fortuna,P Giannone,et al. A nonlinear model for ionic polymer metal compositesas actuators. Smart materials and structures,2007,16(1):1-12.
    [91] Riccardo Caponetto,Giovanni Dongola,Luigi Fortuna,et al. A fractional model for IPMC actuators//Instrumentation and Measurement Technology Conference Proceedings,IEEE,2008:2103-2107.
    [92] Maurizio Porfiri. An electromechanical model for sensing and actuation of ionic polymer metalcomposites. Smart Materials and Structures,2009,18(1):15-16.
    [93] Masao Doi,Katsunori Takahashi,Takashi Yonemoto,et al. Electro-mechanical coupling in ionicgels. Reactive and Functional Polymers,2013,3(7):891-893.
    [94] Gou Nishida,Kentaro Takagi,Bernhard Maschke,et al. Multi-scale distributed parameter modelingof ionic polymer-metal composite soft actuator.Control Engineering Practice,2011,19(4):321-334.
    [95] Matthew D. Bennett,Donald J. Leo,Garth L. Wilkes,et al. A model of charge transport andelectromechanical transduction in ionic liquid-swollen Nafion membranes. Polymer,2006,47(19):6782-6796.
    [96]安逸.离子聚合物金属复合材料(IPMC)的力学和力电耦合性能研究.[博士学位论文].南京:南京航空航天大学,2009.
    [97] Jang-Woo Lee,Ji-Hye Kim,Nam Seo Goo,et al. Ion-Conductive Poly(vinyl alcohol)-BasedIPMCs. Journal of Bionic Engineering,2010,7(1):19-28.
    [98]马秀春,张玉军. Nafion_金属的制备及电形变性能研究.宇航材料工艺,2007,4:34-36.
    [99]余海湖,王海霞,李小甫等. Pt-Ni/Nafion膜电致动材料的制备及性能研究.武汉理工大学学报,2004,26(12):5-8.
    [100]张昊,何青松,于敏等.氧化硅掺杂的全氟磺酸聚合物膜在IPMC中的应用.中国科技论文在线,2010,5(4):312-318.
    [101]李丰富.离子聚合物金属复合材料的制备及其电形变性能研究.[硕士学位论文].哈尔滨:哈尔滨理工大学,2007.
    [102]沈辉,于敏,季宏丽等. IPMC的力输出特性.功能材料,2007,9(38):1516-1518.
    [103]叶秀芬,朱玲,王立权,等.离子聚合物金属复合材料传感特性研究.功能材料,2009,6(40):1017-1019.
    [104]罗斌,朱子才,王永泉等. IPMC材料的性能稳定性及封装工艺研究.功能材料,2012,43(8):961-964.
    [105]郝丽娜,高建超,孙智涌. IPMC并联驱动仿真与实验研究.东北大学学报,2012,33(11):1620-1623.
    [106]彭瀚旻. IPMC人工肌肉机电性能建模及其在作动器上的应用.[博士学位论文].南京:南京航空航天大学,2010.
    [107]安逸,熊克,顾娜.采用梯度功能方法的IPMC弹性模量改进模型.复合材料学报,2009,26(6):189-193.
    [108]何青松,丁海涛,于敏等. IPMC微泵驱动膜的设计及结构优化.功能材料与器件学报,2011,17(1):22-28.
    [109]丁海涛,于敏,郭东杰等.离子聚合物金属复合材料电致动模型研究.功能材料,2011,42(8):1436-1440.
    [110]王锦川.C<60>及碳纳米管研究现状及发展前景.[硕士学位论文].吉林:东北师范大学,2009.
    [111] M. Planck. Ueber die Potentialdifferenz zwischen zwei verdünnten L sungen bin rerElectrolyte. Annalen der Physik,1890,276(8):561-576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700