用户名: 密码: 验证码:
维生素A缺乏对神经精神系统影响的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
维生素A是一种多效的微量营养元素,维生素A对于早期神经系统发育和成年神经再生有重要的调节作用。成年维生素A缺乏的啮齿类动物表现出运动能力和学习记忆功能的异常。一些研究表明维生素A通路与精神分裂症有潜在的联系:维生素A通路调控许多精神分裂症候选基因的表达;精神分裂症病人血浆和脑脊液中维生素A转运蛋白TTR和APOE含量异常;精神分裂症脑组织中维生素A转运与合成相关分子表达异常。此外维生素A通路还与阿尔茨海默症(AD)有关。维生素A可以调控淀粉样前体蛋白(APP)基因,以及APP水解酶的表达;维生素A缺乏动物表现出一些AD相关的分子变化:淀粉样蛋白聚集,胆碱乙酰转移酶和视黄酸受体RARα的下调。
     在本研究的第一部分工作中,我们检测了早期维生素A缺乏(VAD)小鼠的运动能力、长期记忆能力和热痛刺激的敏感性,并检测了早期VAD和谷氨酸受体拮抗剂MK-801(5-甲基二氢丙环庚烯亚胺马来酸)的双重作用对小鼠行为的影响。我们发现早期VAD小鼠展现出更高的旷场移动和旷场直立能力,以及热痛敏感性的增加;早期VAD小鼠对MK-801的注射更敏感:增加了MK-801诱导的刻板行为和共济失调行为,增加了MK-801对旷场直立的抑制作用,MK-801和维生素A缺乏的交互作用导致热痛不敏感。这些行为学的异常反映了某些类似精神分裂症的行为,如旷场行为增加和MK-801诱导的刻板行为增加。然而我们并没有发现早期VAD对长期恐惧记忆(步下法实验)的影响。
     此后我们利用蛋白质组学技术研究了早期VAD雄性小鼠海马、皮层和肝脏组织的蛋白质水平差异。我们还研究了神经胶质瘤细胞U251中维生素A活性形式视黄酸的合成抑制对蛋白质组的影响。我们鉴定了海马中23个VAD相关蛋白点,皮层中46个差异蛋白点,肝脏中38个差异蛋白点和U251细胞39个差异蛋白点。通过生物信息学分析(Ingenuity pathway analysis),我们发现VAD皮层和神经胶质细胞中的差异蛋白汇聚在氧化压力反应,神经递质代谢(丝氨酸和谷氨酸),线粒体功能和能量代谢异常(ATP合成); VAD在皮层中可能通过影响谷氨酸NMDA受体2B、细胞骨架和调控转录因子,来改变神经细胞的迁移、生长、发育和神经突触的可塑性。其中3磷酸甘油酸脱氢酶(PHGDH)在视黄酸合成抑制的U251细胞中显著上调得到了Western blot的验证,而PHGDH同样在VAD皮层中显著上调。在VAD雄性小鼠海马中差异蛋白汇聚在脂代谢、神经轴突生长和突触塑形性等功能。VAD可能通过调节细胞骨架和细胞膜相关蛋白来影响神经递质的释放,多巴胺信号通路,谷氨酸NMDA受体2B介导的通路,以及神经细胞的再生和迁移。在肝脏组织中,维生素A缺乏可以造成糖代谢和脂代谢的异常,这同我们在皮层中的发现是一致的。因此我们认为早期VAD可能影响皮层和海马能量代谢和细胞骨架,影响谷氨酸通路和多巴胺通路,从而造成小鼠的类精神分裂症行为(旷场行为增加,MK-801诱导的刻板行为增加)。这些结果进一步支持维生素A缺乏与神经精神疾病有关的假说。
     SynapsinⅡ是一种神经元磷酸化蛋白,位于神经突触囊泡,与细胞骨架相连,参与调节神经递质的释放。有一些报道提示SynapsinⅡ与精神分裂症有关:精神分裂症病人海马与皮层中Synapsin II mRNA与蛋白含量降低;关联分析表明Synapsin II与精神分裂症显著相关(汉族人群,韩国人群,北欧人);此外Synapsin II基因敲除小鼠表现出类精神分裂症的行为异常:感觉门控,社交退缩。SynapsinⅡ由2种剪切异形体:SynapsinⅡa和SynapsinⅡb。以往的研究表明在双向凝胶上每种SynapsinⅡ剪切异形体均表现出多个翻译后修饰亚型。然而目前对于SynapsinⅡ翻译后修饰的信息了解甚少。
     在本研究的第二部分工作中,我们利用多种蛋白酶水解和串联质谱技术(LC-ESI-QTOF, LC-ESI-TRAP),研究了大鼠和小鼠海马组织中SynapsinIIa和SynapsinIIb的蛋白序列以及翻译后修饰信息。我们总共鉴定了12个小鼠海马SynapsinII蛋白点(6个IIa蛋白点,6个IIb蛋白点)和13个大鼠海马SynapsinII蛋白点(6个IIa蛋白点,7个IIb蛋白点),其中18个蛋白点得到90%以上的串联质谱序列覆盖率。我们提供了每个SynapsinII剪切体翻译后修饰蛋白点的全面翻译后修饰信息(包括磷酸化,甲基化,乙酰化,脱氨基化等)。我们还发现了7个新的磷酸化位点,其中3个经过磷酸酶处理得到验证(大鼠SynapsinIIa的T422,SynapsinIIb的S426和T338),其他4个为大鼠SynapsinIIa的S546、SynapsinIIb的T422和S446,以及小鼠SynapsinIIa的S446。我们在SynapsinIIb中发现了N339的糖基化修饰。这些翻译后修饰信息对于今后系统研究SynapsinII在调节神经递质释放中的机制有重要意义。
Vitamin A is a micronutrient having multiple functions, including regulating early nervous system development and adult neurogenesis. Vitamin A deficiency (VAD) in adult rodents led to impairments of motor function and learning and memory abilities. And many clues suggest that Vitamin A cascade is associated with schizophrenia: Vitamin A pathway regulates the expression of some schizophrenia risk genes; the protein levels of Vitamin A transporters (TTR and APOE) are dysregulated in schizophrenia patients; the expression of Vitamin A transport and synthesis related molecules were found dysregulated. Furthermore, Vitamin A cascade is linked to Alzheimer disease. Vitamin A could regulate the gene expression of amyloid precursor protein (APP) and APP hydrolases. VAD animals displayed AD like molecular changes: APP accumulation, down-regulation of choline acetyltransferase and RARα.
     In the first part, we studied the motor ability, long term memory and thermal nociception in early VAD mouse, and detected the effect of combination of VAD and MK-801 (a NMDA receptor antagonist) on those behaviors. We found that early VAD mouse displayed higher locomotion and rearing abilities, and VAD induced pain sensitivity. Moreover, early VAD mouse showed hypersensitivity to MK-801 injection: VAD increased MK-801 induced stereotypy and ataxia, and amplified the suppression effect of MK-801 on rearing; the combination of VAD and MK-801 also lead to pain insensitivity. These abnormal behaviors reflect some faces of schizophrenia like symptoms: such as hyperactivity of locomotion and increased MK-801 induced stereotypy. However we didn’t find the influence of VAD on long term horrible memory (step down test).
     After that, we took the proteomis technology to study the proteome changes in hippocampus, cortex and liver tissues of early VAD male mouse. We also studied the influences of retinoic acid (the active form of Vitamin A) synthesis inhibition upon proteome changes in U251 astrocytoma cells. We identified 23 VAD related protein spots in hippocampus, 46 altered protein spots in cortex, 38 altered protein spots in liver and 39 altered protein spots in U251 cells. Through bioinformatics analysis (Ingenuity pathway analysis, IPA), we found that VAD related proteins in cortex and U251 cells clustered to biological functions: oxidative stress response, neurotransmitters metabolism (serine and glutamate), mitochondrial function and energy metabolism (ATP synthesis); in cortex, VAD could influence NMDA 2B receptor signaling, cytoskeleton and transcript regulation factors, therefore altered the neuronal migration、growth、development and neuroplasticity. With western blot, up-regulation of PHGDH was also confirmed in U251 cells after inhibiting retinoic acid synthesis, and this up-regulation of PHGDH was also observed in cortex of VAD male mouse. The VAD altered proteins in hippocampus clustered to lipid metabolism, axonal guidance signaling and neuroplasticity. VAD could regulate the cytoskeleton and cell membrane related proteins to influence the neurotransmitters releasing, dopamine signaling, NMDA 2B receptor mediated signaling,neurogenesis and neuronal migration. In liver, VAD could induce abnormal carbohydrate metabolism and lipid metabolism, which were corresponding to our findings in cortex. Therefore all results suggest that early VAD could influence energy metabolism and cytoskeleton in cortex and hippocampus, influence the glutamate signaling and dopamine signaling, and finally lead to schizophrenia like behaviors in mouse: increased locomotion and increased MK-801 induced stereotypy. These findings further support the hypothesis that vitamin A pathway is associated with neuropsychiatric diseases.
     SynapsinⅡis a neuronal phosphoprotein, located in nervous synaptic vesicles. SynapinⅡis connected to cytoskeleton and participates in regulating the realease of neurotransmitters. Previous reports suggested that synapinⅡis associated to schizophrenia. The mRNA and protein level of synapinⅡwere found down-regulated in hippocampus of schizophrenia patients. There are significant association between some SNPs of synapinⅡand schizophrenia in Han, Korean and north European population. Furthermore, synapinⅡgene knockout mouse displayed some schizophrenia like behaviors: impairment of sensorimotor gating and social interaction. There are 2 kinds of splicing isoforms of synapinⅡ: synapinⅡa and synapinⅡb. There are several post-translational modification (PTM) variants of synapinⅡsplicing isoforms in 2-dimensonal gels. However, until now the knowledge of PTMs in synapinⅡisoforms is still limited.
     In the second part, we used multiple proteolytic enzymes and tandem mass spectrometric technologies (LC-ESI-QTOF, LC-ESI-TRAP) to study the protein sequence and PTMs of synapsin IIa and synapsin IIb in rat and mouse hippocampus. We identified 12 synapsin II protein spots in mouse hippocampus (6 IIa and 6 IIb) and 13 synapsin II proteins in rat hippocampus (6 IIa and 7 IIb).Among those, we got more than 90% sequence coverage (MS/MS) of 18 spots. We provided multiple PTM information of each PTM variants of synapsinII splicing isoforms, including phosphorylation, methylation, acetylation and deamidation. We found 7 new phosphorylation sites, 3 of them have been confirmed using phosphatase (T422 of rat synapsin IIa,S426 and T338 of rat synapsin IIb). Other 4 new phosphorylation sites were: S546 of rat synapsin IIa, T422 and S446 of rat synapsin IIb, S446 of mouse synapsin IIa. Furthermore, we found a new glycosylation site: N339 of rat synapsin IIb by MS/MS. These findings of PTMs provide important basis for annotating the molecular mechanisms of synapsin II in regulating neurotransmitters releasing in near future.
引文
1. Lane MA, Bailey SJ: Role of retinoid signalling in the adult brain. Prog.Neurobiol. 2005; 75:275-293
    2. Delva L, Bastie JN, Rochette-Egly C, Kraiba R, Balitrand N, Despouy G, Chambon P, Chomienne C: Physical and functional interactions between cellular retinoic acid binding protein II and the retinoic acid-dependent nuclear complex. Mol.Cell Biol. 1999; 19:7158-7167
    3. Mic FA, Molotkov A, Benbrook DM, Duester G: Retinoid activation of retinoic acid receptor but not retinoid X receptor is sufficient to rescue lethal defect in retinoic acid synthesis. Proc.Natl.Acad.Sci.U.S.A 2003; 100:7135-7140
    4. Minucci S, Leid M, Toyama R, Saint-Jeannet JP, Peterson VJ, Horn V, Ishmael JE, Bhattacharyya N, Dey A, Dawid IB, Ozato K: Retinoid X receptor (RXR) within the RXR-retinoic acid receptor heterodimer binds its ligand and enhances retinoid-dependent gene expression. Mol.Cell Biol. 1997; 17:644-655
    5. Bugge TH, Pohl J, Lonnoy O, Stunnenberg HG: RXR alpha, a promiscuous partner of retinoic acid and thyroid hormone receptors. EMBO J. 1992; 11:1409-1418
    6. Perlmann T, Jansson L: A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1. Genes Dev. 1995; 9:769-782
    7. Mangelsdorf DJ, Evans RM: The RXR heterodimers and orphan receptors. Cell 1995; 83:841-850
    8. Glozman S, Green P, Yavin E: Intraamniotic ethyl docosahexaenoate administration protects fetal rat brain from ischemic stress. J.Neurochem. 1998; 70:2484-2491
    9. Wallen-Mackenzie A, Mata dU, Petersson S, Rodriguez FJ, Friling S, Wagner J, Ordentlich P, Lengqvist J, Heyman RA, Arenas E, Perlmann T: Nurr1-RXR heterodimers mediate RXR ligand-induced signaling in neuronal cells. Genes Dev. 2003; 17:3036-3047
    10. Castillo SO, Baffi JS, Palkovits M, Goldstein DS, Kopin IJ, Witta J, Magnuson MA, Nikodem VM: Dopamine biosynthesis is selectively abolished in substantia nigra/ventral tegmental area but not in hypothalamic neurons in mice with targeted disruption of the Nurr1 gene. Mol.Cell Neurosci. 1998; 11:36-46
    11. Liu JP, Laufer E, Jessell TM: Assigning the positional identity of spinal motor neurons: rostrocaudal patterning of Hox-c expression by FGFs, Gdf11, and retinoids. Neuron 2001; 32:997-1012
    12. Novitch BG, Wichterle H, Jessell TM, Sockanathan S: A requirement for retinoic acid-mediated transcriptional activation in ventral neural patterning and motor neuron specification. Neuron 2003; 40:81-95
    13. Wilson L, Maden M: The mechanisms of dorsoventral patterning in the vertebrate neural tube. Dev.Biol. 2005; 282:1-13
    14. Sidell N, Altman A, Haussler MR, Seeger RC: Effects of retinoic acid (RA) on the growth and phenotypic expression of several human neuroblastoma cell lines. Exp.Cell Res. 1983; 148:21-30
    15. Thompson S, Stern PL, Webb M, Walsh FS, Engstrom W, Evans EP, Shi WK, Hopkins B, Graham CF: Cloned human teratoma cells differentiate into neuron-like cells and other cell types in retinoic acid. J.Cell Sci. 1984; 72:37-64
    16. Jones-Villeneuve EM, McBurney MW, Rogers KA, Kalnins VI: Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J.Cell Biol. 1982; 94:253-262
    17. Edwards MK, McBurney MW: The concentration of retinoic acid determines the differentiated cell types formed by a teratocarcinoma cell line. Dev.Biol. 1983; 98:187-191
    18. Andrews PW: Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev.Biol. 1984; 103:285-293
    19. Vila-Coro AJ, Rodriguez-Frade JM, Martin DA, Moreno-Ortiz MC, Martinez A, Mellado M: The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J. 1999; 13:1699-1710
    20. Verani R, Cappuccio I, Spinsanti P, Gradini R, Caruso A, Magnotti MC, Motolese M, Nicoletti F, Melchiorri D: Expression of the Wnt inhibitor Dickkopf-1 is required for the induction of neural markers in mouse embryonic stem cells differentiating in response to retinoic acid. J.Neurochem. 2007; 100:242-250
    21. Dziewczapolski G, Lie DC, Ray J, Gage FH, Shults CW: Survival and differentiation of adult rat-derived neural progenitor cells transplanted to the striatum of hemiparkinsonian rats. Exp.Neurol. 2003; 183:653-664
    22. Bosch M, Pineda JR, Sunol C, Petriz J, Cattaneo E, Alberch J, Canals JM: Induction of GABAergic phenotype in a neural stem cell line for transplantation in an excitotoxic model of Huntington's disease. Exp.Neurol. 2004; 190:42-58
    23. Wolbach SB, Howe PR: Nutrition Classics. The Journal of Experimental Medicine 42: 753-77, 1925. Tissue changes following deprivation of fat-soluble A vitamin. S. Burt Wolbach and Percy R. Howe. Nutr.Rev. 1978; 36:16-19
    24. Chiang MY, Misner D, Kempermann G, Schikorski T, Giguere V, Sucov HM, Gage FH, Stevens CF, Evans RM: An essential role for retinoid receptors RARbeta and RXRgamma in long-term potentiation and depression. Neuron 1998; 21:1353-1361
    25. Etchamendy N, Enderlin V, Marighetto A, Pallet V, Higueret P, Jaffard R: Vitamin A deficiency and relational memory deficit in adult mice: relationships with changes in brain retinoid signalling. Behav.Brain Res. 2003; 145:37-49
    26. Cocco S, Diaz G, Stancampiano R, Diana A, Carta M, Curreli R, Sarais L, Fadda F: Vitamin A deficiency produces spatial learning and memory impairment in rats. Neuroscience 2002; 115:475-482
    27. Samad TA, Krezel W, Chambon P, Borrelli E: Regulation of dopaminergic pathways by retinoids: activation of the D2 receptor promoter by members of the retinoic acid receptor-retinoid X receptor family. Proc.Natl.Acad.Sci.U.S.A 1997; 94:14349-14354
    28. Jacobs S, Lie DC, DeCicco KL, Shi Y, DeLuca LM, Gage FH, Evans RM: Retinoic acid is required early during adult neurogenesis in the dentate gyrus. Proc.Natl.Acad.Sci.U.S.A 2006; 103:3902-3907
    29. Zetterstrom RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T: Dopamine neuron agenesis in Nurr1-deficient mice. Science 1997; 276:248-250
    30. Gerendasy DD, Sutcliffe JG: RC3/neurogranin, a postsynaptic calpacitin for setting the response threshold to calcium influxes. Mol.Neurobiol. 1997; 15:131-163
    31. Iniguez MA, Morte B, Rodriguez-Pena A, Munoz A, Gerendasy D, Sutcliffe JG, Bernal J: Characterization of the promoter region and flanking sequences of the neuron-specific gene RC3 (neurogranin). Brain Res.Mol.Brain Res. 1994; 27:205-214
    32. Husson M, Enderlin V, Alfos S, Boucheron C, Pallet V, Higueret P: Expression of neurogranin and neuromodulin is affected in the striatum of vitamin A-deprived rats. Brain Res.Mol.Brain Res. 2004; 123:7-17
    33. Bain G, Ray WJ, Yao M, Gottlieb DI: Retinoic acid promotes neural and represses mesodermal gene expression in mouse embryonic stem cells in culture. Biochem.Biophys.Res.Commun. 1996; 223:691-694
    34. Krezel W, Ghyselinck N, Samad TA, Dupe V, Kastner P, Borrelli E, Chambon P: Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science 1998; 279:863-867
    35. Valdenaire O, Vernier P, Maus M, Dumas Milne Edwards JB, Mallet J: Transcription of the rat dopamine-D2-receptor gene from two promoters. Eur.J.Biochem. 1994; 220:577-584
    36. Wan C, Yang Y, Li H, La Y, Zhu H, Jiang L, Chen Y, Feng G, He L: Dysregulation of retinoid transporters expression in body fluids of schizophrenia patients. J.Proteome.Res. 2006; 5:3213-3216
    37. Yang Y, Wan C, Li H, Zhu H, La Y, Xi Z, Chen Y, Jiang L, Feng G, He L: Altered levels of acute phase proteins in the plasma of patients with schizophrenia. Anal.Chem. 2006; 78:3571-3576
    38. Goodman AB: Microarray results suggest altered transport and lowered synthesis of retinoic acid in schizophrenia. Mol.Psychiatry 2005; 10:620-621
    39. Waddington JL: Schizophrenia: developmental neuroscience and pathobiology. Lancet 1993; 341:531-536
    40. Goodman AB: Three independent lines of evidence suggest retinoids as causal to schizophrenia. Proc.Natl.Acad.Sci.U.S.A 1998; 95:7240-7244
    41. Heckmatt J: Schizophrenia. Lancet 2004; 364:1313
    42. Crow TJ: The two-syndrome concept: origins and current status. Schizophr.Bull. 1985; 11:471-486
    43. Cloninger CR: The discovery of susceptibility genes for mental disorders. Proc.Natl.Acad.Sci.U.S.A 2002; 99:13365-13367
    44. Gottesman, I. Schizophrenia Genesis: The Origins of Madness. 1991. Ref Type: Generic
    45. Crow TJ: How and why genetic linkage has not solved the problem of psychosis: review and hypothesis. Am.J.Psychiatry 2007; 164:13-21
    46. Psychiatric GWAS Consortium Steering Committee.: A framework for interpreting genome-wide association studies of psychiatric disorders. Mol.Psychiatry 2009; 14:10-17
    47. Kirov G, Grozeva D, Norton N, Ivanov D, Mantripragada KK, Holmans P, Craddock N, Owen MJ, O'Donovan MC: Support for the involvement of large cnvs in the pathogenesis of schizophrenia. Hum.Mol.Genet. 2009;
    48. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, Nord AS, Kusenda M, Malhotra D, Bhandari A, Stray SM, Rippey CF, Roccanova P, Makarov V, Lakshmi B, Findling RL, Sikich L, Stromberg T, Merriman B, Gogtay N, Butler P, Eckstrand K, Noory L, Gochman P, Long R, Chen Z, Davis S, Baker C, Eichler EE, Meltzer PS, Nelson SF, Singleton AB, Lee MK, Rapoport JL, King MC, Sebat J: Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320:539-543
    49. Watson CG, Kucala T, Tilleskjor C, Jacobs L: Schizophrenic birth seasonality in relation to the incidence of infectious diseases and temperature extremes. Arch.Gen.Psychiatry 1984; 41:85-90
    50. Susser ES, Lin SP: Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944-1945. Arch.Gen.Psychiatry 1992; 49:983-988
    51. St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F, Zheng X, Gu N, Feng G, Sham P, He L: Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959-1961. JAMA 2005; 294:557-562
    52. Torrey EF, Miller J, Rawlings R, Yolken RH: Seasonality of births in schizophrenia and bipolar disorder: a review of the literature. Schizophr.Res. 1997; 28:1-38
    53. Torrey EF, Yolken RH: At issue: is household crowding a risk factor for schizophrenia and bipolar disorder? Schizophr.Bull. 1998; 24:321-324
    54. van Os J, Krabbendam L, Myin-Germeys I, Delespaul P: The schizophrenia envirome. Curr.Opin.Psychiatry 2005; 18:141-145
    55. Selten JP, Cantor-Graae E, Kahn RS: Migration and schizophrenia. Curr.Opin.Psychiatry 2007; 20:111-115
    56. Schenkel LS, Spaulding WD, DiLillo D, Silverstein SM: Histories of childhood maltreatment in schizophrenia: relationships with premorbid functioning, symptomatology, and cognitive deficits. Schizophr.Res. 2005; 76:273-286
    57. Moore TH, Zammit S, Lingford-Hughes A, Barnes TR, Jones PB, Burke M, Lewis G: Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review. Lancet 2007; 370:319-328
    58. Freedman R: Schizophrenia. N.Engl.J.Med. 2003; 349:1738-1749
    59. Johnstone EC, Crow TJ, Frith CD, Husband J, Kreel L: Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet 1976; 2:924-926
    60. Weinberger DR, Torrey EF, Neophytides AN, Wyatt RJ: Lateral cerebral ventricular enlargement in chronic schizophrenia. Arch.Gen.Psychiatry 1979; 36:735-739
    61. Harrison PJ: The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 1999; 122 ( Pt 4):593-624
    62. Rajkowska G, Selemon LD, Goldman-Rakic PS: Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch.Gen.Psychiatry 1998; 55:215-224
    63. Arnold SE, Franz BR, Gur RC, Gur RE, Shapiro RM, Moberg PJ, Trojanowski JQ: Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical-hippocampal interactions. Am.J.Psychiatry 1995; 152:738-748
    64. Owen MJ, Lewis SW: Risk factors in schizophrenia. Br.J.Psychiatry 1988; 153:407
    65. Frangou S, Murray RM: Imaging as a tool in exploring the neurodevelopment and genetics of schizophrenia. Br.Med.Bull. 1996; 52:587-596
    66. Powell CM, Miyakawa T: Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol.Psychiatry 2006; 59:1198-1207
    67. Lipska BK, Weinberger DR: To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 2000; 23:223-239
    68. Tamminga CA, Lahti AC, Medoff DR, Gao XM, Holcomb HH: Evaluating glutamatergic transmission in schizophrenia. Ann.N.Y.Acad.Sci. 2003; 1003:113-118
    69. Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA: Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 2001; 25:455-467
    70. Elvevag B, Goldberg TE: Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev.Neurobiol. 2000; 14:1-21
    71. Olton DS, Papas BC: Spatial memory and hippocampal function. Neuropsychologia 1979; 17:669-682
    72. Moghaddam B, Adams BW: Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 1998; 281:1349-1352
    73. Heinrichs RW, Zakzanis KK: Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology. 1998; 12:426-445
    74. Morris R: Developments of a water-maze procedure for studying spatial learning in the rat. J.Neurosci.Methods 1984; 11:47-60
    75. Barnes CA: Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J.Comp Physiol Psychol. 1979; 93:74-104
    76. Braff DL, Geyer MA: Sensorimotor gating and schizophrenia. Human and animal model studies. Arch.Gen.Psychiatry 1990; 47:181-188
    77. Lubow RE: Construct validity of the animal latent inhibition model of selective attention deficits in schizophrenia. Schizophr.Bull. 2005; 31:139-153
    78. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG: Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 1996; 379:606-612
    79. Mohn AR, Gainetdinov RR, Caron MG, Koller BH: Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999; 98:427-436
    80. Tomasiewicz H, Ono K, Yee D, Thompson C, Goridis C, Rutishauser U, Magnuson T: Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system. Neuron 1993; 11:1163-1174
    81. Koenig JI, Kirkpatrick B, Lee P: Glucocorticoid hormones and early brain development in schizophrenia. Neuropsychopharmacology 2002; 27:309-318
    82. Diaz R, Fuxe K, Ogren SO: Prenatal corticosterone treatment induces long-term changes in spontaneous and apomorphine-mediated motor activity in male and female rats. Neuroscience 1997; 81:129-140
    83. Daenen EW, Wolterink G, Van Der Heyden JA, Kruse CG, Van Ree JM: Neonatal lesions in the amygdala or ventral hippocampus disrupt prepulse inhibition of the acoustic startle response; implications for an animal model of neurodevelopmental disorders like schizophrenia. Eur.Neuropsychopharmacol. 2003; 13:187-197
    84. Kesby JP, Burne TH, McGrath JJ, Eyles DW: Developmental vitamin D deficiency alters MK
    801-induced hyperlocomotion in the adult rat: An animal model of schizophrenia. Biol.Psychiatry 2006; 60:591-596
    85. Ellenbroek BA: Animal models in the genomic era: possibilities and limitations with special emphasis on schizophrenia. Behav.Pharmacol. 2003; 14:409-417
    86. Wenk GL: Neuropathologic changes in Alzheimer's disease. J.Clin.Psychiatry 2003; 64 Suppl 9:7-10
    87. Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J: The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 2004; 62:1984-1989
    88. Hashimoto M, Rockenstein E, Crews L, Masliah E: Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer's and Parkinson's diseases. Neuromolecular.Med. 2003; 4:21-36
    89. Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA, Herms J: Synapse formation and function is modulated by the amyloid precursor protein. J.Neurosci. 2006; 26:7212-7221
    90. Turner PR, O'Connor K, Tate WP, Abraham WC: Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog.Neurobiol. 2003; 70:1-32
    91. Hooper NM: Roles of proteolysis and lipid rafts in the processing of the amyloid precursor protein and prion protein. Biochem.Soc.Trans. 2005; 33:335-338
    92. Ohnishi S, Takano K: Amyloid fibrils from the viewpoint of protein folding. Cell Mol.Life Sci. 2004; 61:511-524
    93. Hernandez F, Avila J: Tauopathies. Cell Mol.Life Sci. 2007; 64:2219-2233
    94. Yankner BA, Duffy LK, Kirschner DA: Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 1990; 250:279-282
    95. Chen X, Yan SD: Mitochondrial Abeta: a potential cause of metabolic dysfunction in Alzheimer's disease. IUBMB.Life 2006; 58:686-694
    96. Goodman AB: Retinoid receptors, transporters, and metabolizers as therapeutic targets in late onset Alzheimer disease. J.Cell Physiol 2006; 209:598-603
    97. Maury CP, Teppo AM: Immunodetection of protein composition in cerebral amyloid extracts in Alzheimer's disease: enrichment of retinol-binding protein. J.Neurol.Sci. 1987; 80:221-228
    98. Culvenor JG, Evin G, Cooney MA, Wardan H, Sharples RA, Maher F, Reed G, Diehlmann A, Weidemann A, Beyreuther K, Masters CL: Presenilin 2 expression in neuronal cells: induction during differentiation of embryonic carcinoma cells. Exp.Cell Res. 2000; 255:192-206
    99. Lahiri DK, Nall C: Promoter activity of the gene encoding the beta-amyloid precursor protein is up-regulated by growth factors, phorbol ester, retinoic acid and interleukin-1. Brain Res.Mol.Brain Res. 1995; 32:233-240
    100. Yang Y, Quitschke WW, Brewer GJ: Upregulation of amyloid precursor protein gene promoter in rat primary hippocampal neurons by phorbol ester, IL-1 and retinoic acid, but not by reactive oxygen species. Brain Res.Mol.Brain Res. 1998; 60:40-49
    101. Fahrenholz F, Postina R: Alpha-secretase activation--an approach to Alzheimer's disease therapy. Neurodegener.Dis. 2006; 3:255-261
    102. Satoh J, Kuroda Y: Amyloid precursor protein beta-secretase (BACE) mRNA expression in human neural cell lines following induction of neuronal differentiation and exposure to cytokines and growth factors. Neuropathology. 2000; 20:289-296
    103. Yoshikawa K, Aizawa T, Hayashi Y: Degeneration in vitro of post-mitotic neurons overexpressing the Alzheimer amyloid protein precursor. Nature 1992; 359:64-67
    104. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR: Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 1982; 215:1237-1239
    105. Pedersen WA, Kloczewiak MA, Blusztajn JK: Amyloid beta-protein reduces acetylcholine synthesis in a cell line derived from cholinergic neurons of the basal forebrain. Proc.Natl.Acad.Sci.U.S.A 1996; 93:8068-8071
    106. Coleman BA, Taylor P: Regulation of acetylcholinesterase expression during neuronal differentiation. J.Biol.Chem. 1996; 271:4410-4416
    107. Hill DP, Robertson KA: Differentiation of LA-N-5 neuroblastoma cells into cholinergic neurons: methods for differentiation, immunohistochemistry and reporter gene introduction. Brain Res.Brain Res.Protoc. 1998; 2:183-190
    108. Parnas D, Linial M: Cholinergic properties of neurons differentiated from an embryonal carcinoma cell-line (P19). Int.J.Dev.Neurosci. 1995; 13:767-781
    109. Sahin M, Karauzum SB, Perry G, Smith MA, Aliciguzel Y: Retinoic acid isomers protect hippocampal neurons from amyloid-beta induced neurodegeneration. Neurotox.Res. 2005; 7:243-250
    110. Corcoran JP, So PL, Maden M: Disruption of the retinoid signalling pathway causes a deposition of amyloid beta in the adult rat brain. Eur.J.Neurosci. 2004; 20:896-902
    111. Saga Y, Kobayashi M, Ohta H, Murai N, Nakai N, Oshima M, Taketo MM: Impaired extrapyramidal function caused by the targeted disruption of retinoid X receptor RXRgamma1 isoform. Genes Cells 1999; 4:219-228
    112. Husson M, Enderlin V, Delacourte A, Ghenimi N, Alfos S, Pallet V, Higueret P: Retinoic acid normalizes nuclear receptor mediated hypo-expression of proteins involved in beta-amyloid deposits in the cerebral cortex of vitamin A deprived rats. Neurobiol.Dis. 2006; 23:1-10
    113. Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I: Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 1995; 16:1090-1094
    114. Klose J: Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik. 1975; 26:231-243
    115. O'Farrell PH: High resolution two-dimensional electrophoresis of proteins. J.Biol.Chem. 1975; 250:4007-4021
    116. Paulson L, Martin P, Nilsson CL, Ljung E, Westman-Brinkmalm A, Blennow K, Davidsson P: Comparative proteome analysis of thalamus in MK-801-treated rats. Proteomics. 2004; 4:819-825
    117. Paulson L, Martin P, Persson A, Nilsson CL, Ljung E, Westman-Brinkmalm A, Eriksson PS, Blennow K, Davidsson P: Comparative genome- and proteome analysis of cerebral cortex from MK-801-treated rats. J.Neurosci.Res. 2003; 71:526-533
    118. Almeras L, Eyles D, Benech P, Laffite D, Villard C, Patatian A, Boucraut J, Mackay-Sim A, McGrath J, Feron F: Developmental vitamin D deficiency alters brain protein expression in the adult rat: implications for neuropsychiatric disorders. Proteomics. 2007; 7:769-780
    119. McGrath J, Iwazaki T, Eyles D, Burne T, Cui X, Ko P, Matsumoto I: Protein expression in the nucleus accumbens of rats exposed to developmental vitamin D deficiency. PLoS.ONE. 2008; 3:e2383
    120. Shin SJ, Lee SE, Boo JH, Kim M, Yoon YD, Kim SI, Mook-Jung I: Profiling proteins related to amyloid deposited brain of Tg2576 mice. Proteomics. 2004; 4:3359-3368
    121. Osorio C, Sullivan PM, He DN, Mace BE, Ervin JF, Strittmatter WJ, Alzate O: Mortalin is regulated by APOE in hippocampus of AD patients and by human APOE in TR mice. Neurobiol.Aging 2007; 28:1853-1862
    122. Boyd-Kimball D, Sultana R, Poon HF, Lynn BC, Casamenti F, Pepeu G, Klein JB, Butterfield DA: Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid beta-peptide (1-42) into rat brain: implications for Alzheimer's disease. Neuroscience 2005; 132:313-324
    123. Hilfiker S, Pieribone VA, Czernik AJ, Kao HT, Augustine GJ, Greengard P: Synapsins as regulators of neurotransmitter release. Philos.Trans.R.Soc.Lond B Biol.Sci. 1999; 354:269-279
    124. De Camilli P, Benfenati F, Valtorta F, Greengard P: The synapsins. Annu.Rev.Cell Biol. 1990; 6:433-460
    125. Ueda T, Greengard P: Adenosine 3':5'-monophosphate-regulated phosphoprotein system of neuronal membranes. I. Solubilization, purification, and some properties of an endogenous phosphoprotein. J.Biol.Chem. 1977; 252:5155-5163
    126. Jovanovic JN, Benfenati F, Siow YL, Sihra TS, Sanghera JS, Pelech SL, Greengard P, Czernik AJ: Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc.Natl.Acad.Sci.U.S.A 1996; 93:3679-3683
    127. Sudhof TC, Czernik AJ, Kao HT, Takei K, Johnston PA, Horiuchi A, Kanazir SD, Wagner MA, Perin MS, De Camilli P, .: Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science 1989; 245:1474-1480
    128. John JP, Chen WQ, Pollak A, Lubec G: Mass spectrometric studies on mouse hippocampal synapsins Ia, IIa, and IIb and identification of a novel phosphorylation site at serine-546. J.Proteome.Res. 2007; 6:2695-2710
    129. Pieribone VA, Shupliakov O, Brodin L, Hilfiker-Rothenfluh S, Czernik AJ, Greengard P: Distinct pools of synaptic vesicles in neurotransmitter release. Nature 1995; 375:493-497
    130. Rosahl TW, Spillane D, Missler M, Herz J, Selig DK, Wolff JR, Hammer RE, Malenka RC, Sudhof TC: Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 1995; 375:488-493
    131. Chin LS, Li L, Ferreira A, Kosik KS, Greengard P: Impairment of axonal development and of synaptogenesis in hippocampal neurons of synapsin I-deficient mice. Proc.Natl.Acad.Sci.U.S.A 1995; 92:9230-9234
    132. Bonanomi D, Menegon A, Miccio A, Ferrari G, Corradi A, Kao HT, Benfenati F, Valtorta F: Phosphorylation of synapsin I by cAMP-dependent protein kinase controls synaptic vesicle dynamics in developing neurons. J.Neurosci. 2005; 25:7299-7308
    133. Hosaka M, Hammer RE, Sudhof TC: A phospho-switch controls the dynamic association of synapsins with synaptic vesicles. Neuron 1999; 24:377-387
    134. Kao HT, Song HJ, Porton B, Ming GL, Hoh J, Abraham M, Czernik AJ, Pieribone VA, Poo MM, Greengard P: A protein kinase A-dependent molecular switch in synapsins regulates neurite outgrowth. Nat.Neurosci. 2002; 5:431-437
    135. Hilfiker S, Benfenati F, Doussau F, Nairn AC, Czernik AJ, Augustine GJ, Greengard P: Structural domains involved in the regulation of transmitter release by synapsins. J.Neurosci. 2005; 25:2658-2669
    136. Hosaka M, Sudhof TC: Synapsins I and II are ATP-binding proteins with differential Ca2+ regulation. J.Biol.Chem. 1998; 273:1425-1429
    137. Gitler D, Cheng Q, Greengard P, Augustine GJ: Synapsin IIa controls the reserve pool of glutamatergic synaptic vesicles. J.Neurosci. 2008; 28:10835-10843
    138. Cole RN, Hart GW: Glycosylation sites flank phosphorylation sites on synapsin I: O-linked N-acetylglucosamine residues are localized within domains mediating synapsin I interactions. J.Neurochem. 1999; 73:418-428
    139. Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW: Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol.Cell Proteomics. 2002; 1:791-804
    140. John JP, Sunyer B, Hoger H, Pollak A, Lubec G: Hippocampal synapsin isoform levels are linked to spatial memory enhancement by SGS742. Hippocampus 2009;
    141. Fiumara F, Milanese C, Corradi A, Giovedi S, Leitinger G, Menegon A, Montarolo PG, Benfenati F, Ghirardi M: Phosphorylation of synapsin domain A is required for post-tetanic potentiation. J.Cell Sci. 2007; 120:3228-3237
    142. Corradi A, Zanardi A, Giacomini C, Onofri F, Valtorta F, Zoli M, Benfenati F: Synapsin-I- and synapsin-II-null mice display an increased age-dependent cognitive impairment. J.Cell Sci. 2008; 121:3042-3051
    143. Chen Q, He G, Wang XY, Chen QY, Liu XM, Gu ZZ, Liu J, Li KQ, Wang SJ, Zhu SM, Feng GY, He L: Positive association between synapsin II and schizophrenia. Biol.Psychiatry 2004; 56:177-181
    144. Chen Q, He G, Qin W, Chen QY, Zhao XZ, Duan SW, Liu XM, Feng GY, Xu YF, St Clair D, Li M, Wang JH, Xing YL, Shi JG, He L: Family-based association study of synapsin II and schizophrenia. Am.J.Hum.Genet. 2004; 75:873-877
    145. Lee HJ, Song JY, Kim JW, Jin SY, Hong MS, Park JK, Chung JH, Shibata H, Fukumaki Y: Association study of polymorphisms in synaptic vesicle-associated genes, SYN2 and CPLX2, with schizophrenia. Behav.Brain Funct. 2005; 1:15
    146. Saviouk V, Moreau MP, Tereshchenko IV, Brzustowicz LM: Association of synapsin 2 with schizophrenia in families of Northern European ancestry. Schizophr.Res. 2007; 96:100-111
    147. Vawter MP, Thatcher L, Usen N, Hyde TM, Kleinman JE, Freed WJ: Reduction of synapsin in the hippocampus of patients with bipolar disorder and schizophrenia. Mol.Psychiatry 2002; 7:571-578
    148. Porton B, Wetsel WC: Reduction of synapsin III in the prefrontal cortex of individuals with schizophrenia. Schizophr.Res. 2007; 94:366-370
    149. Dyck BA, Skoblenick KJ, Castellano JM, Ki K, Thomas N, Mishra RK: Synapsin II knockout mice show sensorimotor gating and behavioural abnormalities similar to those in the phencyclidine-induced preclinical animal model of schizophrenia. Schizophr.Res. 2007; 97:292-293
    150. Carta M, Stancampiano R, Tronci E, Collu M, Usiello A, Morelli M, Fadda F: Vitamin A deficiency induces motor impairments and striatal cholinergic dysfunction in rats. Neuroscience 2006; 139:1163-1172
    151. Wu J, Zou H, Strong JA, Yu J, Zhou X, Xie Q, Zhao G, Jin M, Yu L: Bimodal effects of MK-801 on locomotion and stereotypy in C57BL/6 mice. Psychopharmacology (Berl) 2005; 177:256-263
    152. Maragakis NJ, Rothstein JD: Mechanisms of Disease: astrocytes in neurodegenerative disease. Nat.Clin.Pract.Neurol. 2006; 2:679-689
    153. Kornyei Z, Gocza E, Ruhl R, Orsolits B, Voros E, Szabo B, Vagovits B, Madarasz E: Astroglia-derived retinoic acid is a key factor in glia-induced neurogenesis. FASEB J. 2007; 21:2496-2509
    154. Hayden LJ, Hawk SN, Sih TR, Satre MA: Metabolic conversion of retinol to retinoic acid mediates the biological responsiveness of human mammary epithelial cells to retinol. J.Cell Physiol 2001; 186:437-447
    155. Mey J, Hammelmann S: OLN-93 oligodendrocytes synthesize all-trans-retinoic acid in vitro. Cell Tissue Res. 2000; 302:49-58
    156. Qian A, Cai Y, Magee TR, Wan YJ: Identification of retinoic acid-responsive elements on the HNF1alpha and HNF4alpha genes. Biochem.Biophys.Res.Commun. 2000; 276:837-842
    157. Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL, Volkert TL, Schreiber J, Rolfe PA, Gifford DK, Fraenkel E, Bell GI, Young RA: Control of pancreas and liver gene expression by HNF transcription factors. Science 2004; 303:1378-1381
    158. Tanaka H, Matsumura I, Ezoe S, Satoh Y, Sakamaki T, Albanese C, Machii T, Pestell RG, Kanakura Y: E2F1 and c-Myc potentiate apoptosis through inhibition of NF-kappaB activity that facilitates MnSOD-mediated ROS elimination. Mol.Cell 2002; 9:1017-1029
    159. Guo QM, Malek RL, Kim S, Chiao C, He M, Ruffy M, Sanka K, Lee NH, Dang CV, Liu ET: Identification of c-myc responsive genes using rat cDNA microarray. Cancer Res. 2000; 60:5922-5928
    160. Shiio Y, Donohoe S, Yi EC, Goodlett DR, Aebersold R, Eisenman RN: Quantitative proteomic analysis of Myc oncoprotein function. EMBO J. 2002; 21:5088-5096
    161. Wonsey DR, Zeller KI, Dang CV: The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation. Proc.Natl.Acad.Sci.U.S.A 2002; 99:6649-6654
    162. Mayanil CS, George D, Freilich L, Miljan EJ, Mania-Farnell B, McLone DG, Bremer EG: Microarray analysis detects novel Pax3 downstream target genes. J.Biol.Chem. 2001; 276:49299-49309
    163. Bang AG, Papalopulu N, Kintner C, Goulding MD: Expression of Pax-3 is initiated in the early neural plate by posteriorizing signals produced by the organizer and by posterior non-axial mesoderm. Development 1997; 124:2075-2085
    164. Garner JP, Meehan CL, Mench JA: Stereotypies in caged parrots, schizophrenia and autism: evidence for a common mechanism. Behav.Brain Res. 2003; 145:125-134
    165. Wu J, Zou H, Strong JA, Yu J, Zhou X, Xie Q, Zhao G, Jin M, Yu L: Bimodal effects of MK-801 on locomotion and stereotypy in C57BL/6 mice. Psychopharmacology (Berl) 2005; 177:256-263
    166. Bubenikova-Valesova V, Horacek J, Vrajova M, Hoschl C: Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci.Biobehav.Rev. 2008; 32:1014-1023
    167. Powell CM, Miyakawa T: Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol.Psychiatry 2006; 59:1198-1207
    168. Al Amin HA, Weinberger DR, Lipska BK: Exaggerated MK-801-induced motor hyperactivity in rats with the neonatal lesion of the ventral hippocampus. Behav.Pharmacol. 2000; 11:269-278
    169. Kesby JP, Burne TH, McGrath JJ, Eyles DW: Developmental vitamin D deficiency alters MK 801-induced hyperlocomotion in the adult rat: An animal model of schizophrenia. Biol.Psychiatry 2006; 60:591-596
    170. Daenen EW, Wolterink G, Van Ree JM: Hyperresponsiveness to phencyclidine in animals lesioned in the amygdala on day 7 of life. Implications for an animal model of schizophrenia. Eur.Neuropsychopharmacol. 2003; 13:273-279
    171. Al Amin HA, Atweh SF, Jabbur SJ, Saade NE: Effects of ventral hippocampal lesion on thermal and mechanical nociception in neonates and adult rats. Eur.J.Neurosci. 2004; 20:3027-3034
    172. Du J, Zhou S, Coggeshall RE, Carlton SM: N-methyl-D-aspartate-induced excitation and sensitization of normal and inflamed nociceptors. Neuroscience 2003; 118:547-562
    173. Jang JH, Kim DW, Sang NT, Se PK, Leem JW: Peripheral glutamate receptors contribute to mechanical hyperalgesia in a neuropathic pain model of the rat. Neuroscience 2004; 128:169-176
    174. Dworkin RH: Pain insensitivity in schizophrenia: a neglected phenomenon and some implications. Schizophr.Bull. 1994; 20:235-248
    175. Singh MK, Giles LL, Nasrallah HA: Pain insensitivity in schizophrenia: trait or state marker? J.Psychiatr.Pract. 2006; 12:90-102
    176. Manahan-Vaughan D, von Haebler D, Winter C, Juckel G, Heinemann U: A single application of MK801 causes symptoms of acute psychosis, deficits in spatial memory, and impairment of synaptic plasticity in rats. Hippocampus 2008; 18:125-134
    177. Lever C, Burton S, O'Keefe J: Rearing on hind legs, environmental novelty, and the hippocampal formation. Rev.Neurosci. 2006; 17:111-133
    178. Rojas P, Joodmardi E, Hong Y, Perlmann T, Ogren SO: Adult mice with reduced Nurr1 expression: an animal model for schizophrenia. Mol.Psychiatry 2007; 12:756-766
    179. O'Tuathaigh CM, O'Sullivan GJ, Kinsella A, Harvey RP, Tighe O, Croke DT, Waddington JL: Sexually dimorphic changes in the exploratory and habituation profiles of heterozygous neuregulin-1 knockout mice. Neuroreport 2006; 17:79-83
    180. Arruda SF, Siqueira EM, de Valencia FF: Vitamin A deficiency increases hepcidin expression and oxidative stress in rat. Nutrition 2009; 25:472-478
    181. Aguilar RP, Genta S, Oliveros L, Anzulovich A, Gimenez MS, Sanchez S: Vitamin A deficiency injures liver parenchyma and alters the expression of hepatic extracellular matrix. J.Appl.Toxicol. 2008;
    182. Rasmussen BB, Wolfe RR: Regulation of fatty acid oxidation in skeletal muscle. Annu.Rev.Nutr. 1999; 19:463-484
    183. Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ: Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 2001; 291:2613-2616
    184. Choi CS, Savage DB, Abu-Elheiga L, Liu ZX, Kim S, Kulkarni A, Distefano A, Hwang YJ, Reznick RM, Codella R, Zhang D, Cline GW, Wakil SJ, Shulman GI, Kurosaki T: Continuous fat oxidation in acetyl-CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity Genetic analysis of B cell antigen receptor signaling. Proc.Natl.Acad.Sci.U.S.A 2007; 104:16480-16485
    185. Datta SR, Brunet A, Greenberg ME: Cellular survival: a play in three Akts. Genes Dev. 1999; 13:2905-2927
    186. Buckland AG, Wilton DC: Inhibition of secreted phospholipases A2 by annexin V. Competition for anionic phospholipid interfaces allows an assessment of the relative interfacial affinities of secreted phospholipases A2. Biochim.Biophys.Acta 1998; 1391:367-376
    187. Brown LJ, Koza RA, Marshall L, Kozak LP, MacDonald MJ: Lethal hypoglycemic ketosis and glyceroluria in mice lacking both the mitochondrial and the cytosolic glycerol phosphate dehydrogenases. J.Biol.Chem. 2002; 277:32899-32904
    188. Koch HB, Zhang R, Verdoodt B, Bailey A, Zhang CD, Yates JR, III, Menssen A, Hermeking H: Large-scale identification of c-MYC-associated proteins using a combined TAP/MudPIT approach. Cell Cycle 2007; 6:205-217
    189. Grandori C, Cowley SM, James LP, Eisenman RN: The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu.Rev.Cell Dev.Biol. 2000; 16:653-699
    190. O'Connell BC, Cheung AF, Simkevich CP, Tam W, Ren X, Mateyak MK, Sedivy JM: A large scale genetic analysis of c-Myc-regulated gene expression patterns. J.Biol.Chem. 2003; 278:12563-12573
    191. Gray NK, Wickens M: Control of translation initiation in animals. Annu.Rev.Cell Dev.Biol. 1998; 14:399-458
    192. Winder DG, Martin KC, Muzzio IA, Rohrer D, Chruscinski A, Kobilka B, Kandel ER: ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors. Neuron 1999; 24:715-726
    193. Gao Y, Nikulina E, Mellado W, Filbin MT: Neurotrophins elevate cAMP to reach a threshold required to overcome inhibition by MAG through extracellular signal-regulated kinase-dependent inhibition of phosphodiesterase. J.Neurosci. 2003; 23:11770-11777
    194. Weeber EJ, Levy M, Sampson MJ, Anflous K, Armstrong DL, Brown SE, Sweatt JD, Craigen WJ: The role of mitochondrial porins and the permeability transition pore in learning and synaptic plasticity. J.Biol.Chem. 2002; 277:18891-18897
    195. Khalili K, Del Valle L, Muralidharan V, Gault WJ, Darbinian N, Otte J, Meier E, Johnson EM, Daniel DC, Kinoshita Y, Amini S, Gordon J: Puralpha is essential for postnatal brain development and developmentally coupled cellular proliferation as revealed by genetic inactivation in the mouse. Mol.Cell Biol. 2003; 23:6857-6875
    196. Carter CJ: eIF2B and oligodendrocyte survival: where nature and nurture meet in bipolar disorder and schizophrenia? Schizophr.Bull. 2007; 33:1343-1353
    197. Thompson PM, Rosenberger C, Qualls C: CSF SNAP-25 in schizophrenia and bipolar illness. A pilot study. Neuropsychopharmacology 1999; 21:717-722
    198. Carter CJ: eIF2B and oligodendrocyte survival: where nature and nurture meet in bipolar disorder and schizophrenia? Schizophr.Bull. 2007; 33:1343-1353
    199. Sun X, Wang JF, Tseng M, Young LT: Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J.Psychiatry Neurosci. 2006; 31:189-196
    200. Vawter MP, Thatcher L, Usen N, Hyde TM, Kleinman JE, Freed WJ: Reduction of synapsin in the hippocampus of patients with bipolar disorder and schizophrenia. Mol.Psychiatry 2002; 7:571-578
    201. Good PF, Alapat D, Hsu A, Chu C, Perl D, Wen X, Burstein DE, Kohtz DS: A role for semaphorin 3A signaling in the degeneration of hippocampal neurons during Alzheimer's disease. J.Neurochem. 2004; 91:716-736
    202. Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA: Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J.Neurochem. 2002; 80:91-100
    203. Ryan KA, Pimplikar SW: Activation of GSK-3 and phosphorylation of CRMP2 in transgenic mice expressing APP intracellular domain. J.Cell Biol. 2005; 171:327-335
    204. Wei W, Wang X, Kusiak JW: Signaling events in amyloid beta-peptide-induced neuronal death and insulin-like growth factor I protection. J.Biol.Chem. 2002; 277:17649-17656
    205. Luthi-Carter R, Strand A, Peters NL, Solano SM, Hollingsworth ZR, Menon AS, Frey AS, Spektor BS, Penney EB, Schilling G, Ross CA, Borchelt DR, Tapscott SJ, Young AB, Cha JH, Olson JM: Decreased expression of striatal signaling genes in a mouse model of Huntington's disease. Hum.Mol.Genet. 2000; 9:1259-1271
    206. Smith R, Klein P, Koc-Schmitz Y, Waldvogel HJ, Faull RL, Brundin P, Plomann M, Li JY: Loss of SNAP-25 and rabphilin 3a in sensory-motor cortex in Huntington's disease. J.Neurochem. 2007; 103:115-123
    207. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, Wayland M, Freeman T, Dudbridge F, Lilley KS, Karp NA, Hester S, Tkachev D, Mimmack ML, Yolken RH, Webster MJ, Torrey EF, Bahn S: Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol.Psychiatry 2004; 9:684-97, 643
    208. Li KW, Hornshaw MP, Van Der Schors RC, Watson R, Tate S, Casetta B, Jimenez CR, Gouwenberg Y, Gundelfinger ED, Smalla KH, Smit AB: Proteomics analysis of rat brain postsynaptic density. Implications of the diverse protein functional groups for the integration of synaptic physiology. J.Biol.Chem. 2004; 279:987-1002
    209. Munton RP, Tweedie-Cullen R, Livingstone-Zatchej M, Weinandy F, Waidelich M, Longo D, Gehrig P, Potthast F, Rutishauser D, Gerrits B, Panse C, Schlapbach R, Mansuy IM: Qualitative and quantitative analyses of protein phosphorylation in naive and stimulated mouse synaptosomal preparations. Mol.Cell Proteomics. 2007; 6:283-293
    210. Lubec G, Afjehi-Sadat L: Limitations and pitfalls in protein identification by mass spectrometry. Chem.Rev. 2007; 107:3568-3584
    211. Halligan BD, Ruotti V, Jin W, Laffoon S, Twigger SN, Dratz EA: ProMoST (Protein Modification Screening Tool): a web-based tool for mapping protein modifications on two-dimensional gels. Nucleic Acids Res. 2004; 32:W638-W644
    212. Robinson NE, Robinson AB: Deamidation of human proteins. Proc.Natl.Acad.Sci.U.S.A 2001; 98:12409-12413
    213. Schwartz R, Ting CS, King J: Whole proteome pI values correlate with subcellular localizations of proteins for organisms within the three domains of life. Genome Res. 2001; 11:703-709
    214. John JP, Sunyer B, Hoger H, Pollak A, Lubec G: Hippocampal synapsin isoform levels are linked to spatial memory enhancement by SGS742. Hippocampus 2009
    215. Campbell, B., Goodman etc, A General Purpose Hypertext Abstract Machine. Communications of the ACM. 1998,7.
    216. Bruker Daltonik GmbH. HCTultra PTM User Manual, Version 1.2.1.Bremen, Germany. 1996 June.
    217. Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci. 2007; 8:755-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700