用户名: 密码: 验证码:
水平管束降膜动力学与界面吸收性能实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高一次能源利用率PER,溴化锂吸收式制冷系统中的热力部件广泛采用真空条件下以水平管束作为承载结构的降膜式热力装置。长期以来,由于水平管束外表面降膜流动与传热传质基础理论体系的缺失,吸收式制冷机的传热计算与结构设计还处于非常粗放的模式之中,提高热力部件性能的研究无从下手。本文在综合分析现有理论研究进展的基础上,搭建了“水平管束降膜流动模态转变实验装置”、“水平管束液滴形成数字图像高速采集实验装置”以及“水平管束界面传递性能实验装置”,开展了对水平管束降膜流动与传热传质过程微观发展机理的初步研究。
     首次提出了“水平管束降膜动力学”的概念,引入了“界面传递过程”的概念。从吸收式制冷中降膜吸收、降膜蒸发、降膜冷凝、降膜发生四大热力过程共有的动力学特征出发,研究绝热条件下流体在水平管束外表面的降膜流动模态辨识以及模态转变的微观发展机理;引入“界面现象”的概念,把四大热力学过程中共有的“自由界面传热传质过程”统一在“界面传递过程”的概念之中,通过界面现象与水平管束降膜动力学之间的有机结合,形成了“水平管束降膜式热力装置基础理论体系”的基本架构。
     首次提出单元流体(UF)的概念,实现了从研究宏观统计现象到微观发展机理的转变;首次给出了水平管束单元流体模态转变(UF-MTM:Unit Fluid-Mode Transition Mechinism)图谱,解释了水平管束降膜流动模态从滴状向帘状转变过程中的驱动力及微观发展机理:认为连续液颈促使了滴状向滴柱状的转变、表面波谷到表面波峰的形成促使了顺排柱状流向叉排柱状流的转变、管底悬垂液的存在是相邻单元液柱吸合的前提与源动力、液牙生成和流形分叉现象是单元液柱相互吸合中的必然现象、融合形变促使了柱状向帘状的转变。
     借助高速摄像机研究了水平管束滴状模态的微观发展机理,发现了液滴生成、长大、拉伸、液颈底部与主液滴破裂、马鞍形表面铺展、液颈自相似收缩、尖锐液颈顶部破裂、卫星液滴生成等一系列极为复杂的拓扑结构;首次提出了RSB (Ratio of tube Spacing to total Breaking length)的重要概念,用于描述管间距与总的破裂长度的比值对液滴形成拓扑结构的影响;首次提出了水平管束液滴形成过程的九个拓扑转变关键相,分析了不同RSB之间液滴形成拓扑转变的差异。
     基于图像信息处理技术,通过像素坐标系到笛卡尔坐标系的转换、Canny边缘检测、三次样条光滑曲线拟合和自适应Simpson积分,对水平管束滴状和柱状模态的微观机理进行数字化描述,分析了单元液滴表面积与体积随时间的变化规律。通过宏观尺度到微观尺度液滴形成过程的拓扑相似,把水平管束滴状模态纳入到了液滴形成非线性动力学领域,通过量纲理论与相似分析,得到了复杂流体近破裂点处最小液颈的拓扑相似表达式。
     基于混合水平多因子实验设计和多元因子响应面RSM方法,得到了界面传热系数与界面传质系数的回归方程,搭建了基于Matlab的水平管束降膜式热力装置可视化研究平台。
     通过本课题的研究,对水平管束降膜动力学特征进行了初步的探讨,为进一步研究降膜式热力装置的界面传递性能奠定了基础。
To increase the primary energy ratio(PER), vertical array of horizontal tube bundles under vacuum condition, as one kind of falling film thermal-dynamic device, is used widely in the absorption refrigeration system. For a long time, the heat transfer calculation and structure design of absorption chiller is in rough status at the absence of the study of falling film flow over the horizontal tube bundles and the fundamental theory of heat and mass transfer. For the same reason, research about the enhancement of thermal component performance is hardly to carry out. At the basis of the past research, three experiments were set up to study the falling film flow microcosmic mechanism of different fluids on horizontal tube bundles and the process of the heat and mass transfer. The first experiment is primarily on the falling film flow mode transition on horizontal tube bundles; the second is on the digital graph high speed collection of the droplet deformation on horizontal tube bundles and and the third is on the interface absorption performance on horizontal tube bundles.
     The concept of horizontal tube bundles falling film dynamics and interface transfer process is proposed for the first time. Based on the common dynamic characteristic of four main thermal processes such as falling film absorption, falling film evaporation, falling film condensation and falling film generation in the absorption chiller, the falling film flow mode transition on the horizontal tube bundles and the microcosmic mechanism of flow mode transition is investigated. By introducing the concept of interface phenomenon, the common characteristic in the four thermal processes of heat and mass transfer over free surface can be concluded to the interface transfer process. By the integration of falling film dynamics and interface phenomenon, the fundamental theory frame of horizontal tube bundles falling film thermal device is built up.
     Transition from macroscopical statistics to microcosmic mechanism of horizontal tube bundles is realized by the concept of Unit Fluid. The map of Unit Fluid-Mode Transition Mechanism (UF-MTM) on horizontal tube bundles is given for the first time. The microcosmic mechanism that drives the flow mode from droplet to sheet is interpreted. The main results are that the transition from droplet to columns mode is driven by the continuous liquid neck; the transition from inline columns to stagger column flow is driven by the formation of the surface crest; the pendant liquid under the horizontal tube is the source force of the merging between the adjacent columns; the generation of the liquid tooth and the stagant point is the inevitable phenomenon during the adjacent column merging process; the transition from columns to sheet mode is driven by the merging deformation.
     The microcosmic development mechanism of droplet formation process on horizontal tube bundles is investigated using high speed video. A series of complex topology structures such as the droplet generation ,growing up, elongation, breakup of the main droplet at the bottom of the liquid neck, the saddle extension on the tube surface, the self-similar shrink of liquid neck, the breakup at the top of the aculeate liquid neck, the generation of the satellite droplets etc. are observed. The innovative significant concept of RSB is proposed to describe the effect of the Ratio of tube Spacing to total Breaking length on the topology structure during droplet formation. The nine important topology transition phases of droplet formation on horizontal tube bundles are proposed for the first time and the topology transition difference of droplet formation under various RSB is analyzed.
     Based on the graphic information treatment technology, the digital description of microcosmic mechanism of the droplet and columns mode on horizontal tube bundles is presented and the variation of surface area and the volume of unit droplet from its existence duration is analyzed by using the methods of conversion of the pixel coordinate system to the Cartesian coordinate system, the edge detection, the cubic spline smooth curve fitting and self-adaptive Simpson integral, Through the topology similarity analysis of droplet formation process from the macroscopic dimension to microcosmic dimension, the droplet mode on the horizontal tube bundles is involved in the multifarious droplet formation nonlinear dynamics scopes. The topology similar expression near the breakup point of the minium liquid neck of complex fluid is introduced using dimension theory and similar analysis.
     Based on the mixing level multi-factorial experiment and the multi-factorial Response Surface Methodology, the regression equation of interface heat transfer and mass transfer coefficients is educed. The visualization study platform based on Matlab of horizontal tube bundles falling film thermal-dynamic device has been set up.
     Throgh above study, the primary discuss on falling film dynamic characteristic of horizontal tube bundles is carried out, the basis of next study about the interface transfer performance of falling film thermal-dynamic device is thereforce established.
引文
[1]孙贺江,新型循环直燃机性能研究:[博士学位论文],天津;天津大学,2004.
    [2]戴永庆,溴化锂吸收式制冷技术及应用,北京:机械工业出版社,1996.
    [3] Grigori M. Sisoev, Omar K. Matar and Christopher J. Lawrence, Absorption of gas into a wavy falling film, Chemical Engineering Science, 2005;60(3): 827-838.
    [4] Henning Raachand, Jovan Mitrovic, Seawater falling film evaporation on vertical plates with turbulence wires, Desalination, 2005; 183(1-3): 307-316.
    [5] K. Bourouni, R. Martin and L. Tadrist, Analysis of heat transfer and evaporation in geothermal desalination units, Desalination, 1999; 122(2-3):301-313.
    [6]王占军,钟运猷,唐金鑫等,卧式喷淋薄膜蒸发装置浓缩草浆黑液的试验研究,南京林业大学学报(自然科学版),29(3):65~68.
    [7]邓爱根,浅析降膜式蒸发技术,制冷与空调,2005,5(3):29~30.
    [8]陈子乾,郑宏飞,何开岩,杨英俊,激淋降膜蒸发多效紧凑式海水淡化装置的研究,工程热物理学报,2006,27(z1):69~72.
    [9]冯文杰,午新威等,式降膜蒸发器系统节能效果分析,有色冶金节能,2001,21(5):31~33.
    [10]付振岭,刘振义,宋继田等,异形竖板降膜蒸发器浓缩菠萝汁的实验研究,化工装备技术,2006,27(1):34~37.
    [11]腊栋,李茂德,秦伟等,降膜蒸发过程的传热性能研究,应用能源技术,2006(5): 6~10.
    [12]崔晓钰,李美玲,膜反转板式降膜吸收过程的理论研究,化工学报,2006,57(5):1089~1094.
    [13] Reay D A.Compact heat exchangers, enhancement and heat pumps. Int. J. Refrigera -tion, 2002, 25:460-470.
    [14] Shitara A, Nishiyama N.Study on transfer of plate-fin type generator for absorption machines//Proceedings of 19th International Congress of Refrigeration. Hague, Netherlands, 1995:184-191.
    [15] Flamensbeck M,Summerer F,Riesch P,Ziegler G.A cost effective absorption chiller with plate heat exchangers using water and hydroxides.Applied Thermal Engineering, 1998,18:413-425.
    [16] Bassols J,Langreck R,Schneider R,Kuckelkorn B,Veelken H.Absorption cooling machine based on compact plate-fin heat exchangers//19th International Congress of Refrigeration.Hague,Netherlands,1995:240-245.
    [17] Chen Yaping(陈亚平),Li Yingbin(李映斌).Experimental study of double imensional cross wave surface plate lithium bromide aqueous falling film absorber//proceedings of the Annual Conference on Heat and Mass Transfer.Shanghai:the Chinese Engineering Thermophysics Committee,2002:921-924.
    [18] Islam Md R,Wijeysundera N E,Ho J C.Performance study of a falling film absorber with a film-inverting configuration.Int.J.Refrigeration,2003,26:909-917.
    [19]胡慧莉,竖管内二元溶液降膜蒸发传热传质数值研究:[硕士学位论文],重庆;重庆大学,2006.
    [20]李正东,管式降膜蒸发技术在氧化铝生产中的应用:[硕士学位论文],长沙;中南大学,2005.
    [21]任志远,申江,孙欢,溴冷机吸收器型式研究进展,制冷空调与电力机械,2006,27(1):13~16.
    [22] D. Yung, J.J. Lorenz, E.N. Ganic′, Vapor/liquid interaction and entrainment in falling film evaporators, J Heat Transfer, 1980; 102:20-25.
    [23] Gherhardt Ribatski and Anthony M. Jacobi, Falling-film evaporation on horizontal tubes-a critical review, International Journal of Refrigeration, 2005; 28(5): 635-653.
    [24] E.N. Ganic′, M.N. Roppo, An experimental study of falling liquid film breakdown on a horizontal cylinder during heat transfer, J Heat Transfer, 1980;102:342-346.
    [25] S.S. Kutateladze, I.I. Gogonin, V.I. Sosunov, The influence of condensate flow rate on heat transfer in film condensation of stationary vapour on horizontal tube tube banks, Int J Heat Mass Transfer, 1985;28:1011-1018.
    [26] J. Mitrovic, Influence of tube spacing and flow rate on heat transfer from a horizontal tube to a falling liquid film, Proceedings of the eighth international heat transfer conference, San Francisco, 1996(4):1949-1956.
    [27] V. Dhir, K. Taghavi-Tafreshi, Hydrodynamic transition during dripping of a liquid from underside of a horizontal tube, ASME Paper 1981; No 81-WA/HT-12.
    [28] Y. Wei, A.M. Jacobi, Vapor-shear, geometric, and bundledepth effects on the intertube falling-film modes, Proceedings of the first international conference on heat transfer, fluid mechanics, and thermodynamics, vol. 1(1), Kruger National Park, South Africa, 2002, p. 40-46.
    [29] Taghavi, K., and Dhir, V. K., Taylor Instability in Boiling, Melting, Condensation or Evaporation, Int. J. Heat Mass Transf., 1980;23:1433-1445.
    [30] Tang, Z., and Lu, B. Y. C., Droplet Spacing of Falling Film Flow on Horizontal Tube Bundles, Proc. 18th International Congress of Refrigeration, Montreal, 1991;2: 474-478.
    [31] Mitrovic, J., and Ricoeur, A., Fluid Dynamics and Condensation Heatingof Capillary Liquid Jets, Int. J. Heat Mass Transf., 1995; 38:1483-1494.
    [32] Hu, X., and Jacobi, A. M., Departure-Site Spacing for Liquid Droplets and Jets Falling Between Horizontal Circular Tubes, Exp. Therm. Fluid Sci., 1998;16: 322-331.
    [33] R. Armbruster, J. Mitrovic, Patterns of falling film flow over horizontal smooth tubes, Proceedings of the 10th international heat transfer conference, Brighton, 1994;3: 275- 280.
    [34] X. Hu, A.M. Jacobi, The intertube falling film. Part 1. Flow characteristics, mode transitions, and hysteresis, J Heat Transfer, 1996; 118:616-625.
    [35] J.F. Roques, V. Dupont, J.R. Thome, Falling film transitions on plain and enhanced tubes, J Heat Transfer, 2002;124:491-499.
    [36] Patnaik V, Perez_blanco H.Roll waves in falling films: an approximate treatment of the velocity field, International Journal of Heat and Fluid Flow 1996;17(1):63-70.
    [37] Ruheman,M.(1947). The transfer of heat and mass in an ammonia absorber. Transcation of the Institute of Chemical Engineerings, 1947:17-20.
    [38] J.R. Thome, Falling film evaporation: state-of-the-art review of recent work, J. Enhanced Heat Transfer, 1999:6:263-277.
    [39] Ribatski and Jacobi, G. Ribatski and A.M. Jacobi, Falling-film evaporation on horizontal tubes-a critical review, Int. J. Refrig. 2005; 28:635-653.
    [40] W.H. Parken, Heat transfer to thin films on horizontal tubes. PhD Thesis, Rutgers University; 1975.
    [41] R.J. Conti, Experimental investigation of horizontal tube ammonia film evaporators with small temperature differentials, Proceedings of the fifth ocean thermal energy conversion (OTEC), Miami Beach, 1978;3:VI-161-180.
    [42] W.H. Parken, L.S. Fletcher, V. Sernas and J.C. Han, Heat transfer through falling film evaporation and boiling on horizontal tubes, J Heat Transfer, 1990; 112:744-750.
    [43] Y. Fujita and M. Tsutsui, Evaporation heat transfer of falling films on horizontal tube. Part 2. Experimental study, Heat Transfer-Jpn Res, 1995; 24:17-31.
    [44] X. Hu and A.M. Jacobi, The intertube falling film. Part 2. Mode effects on sensible heat transfer to a falling liquid film, J Heat Transfer 1996; 118: 626-633.
    [45] M.-C. Chyu and A.E. Bergles, An analytical and experimental study of falling-film evaporation on a horizontal tube, J Heat Transfer, 1987; 109:983-990.
    [46] Y. Fujita and M. Tsutsui, Experimental investigation of falling film evaporation on horizontal tubes, Heat Transfer-Jpn Res, 1998; 27:609-618.
    [47] L.S. Fletcher, V. Sernas and L. Galowin, Evaporation from thin water films on horizontal tubes, Ind Eng Chem, Process Des Develop, 1974;13:265-269.
    [48] L.S. Fletcher, V. Sernas and W.H. Parken, Evaporation heat transfer coefficients for thin seawater films on horizontal tubes, Ind Eng Chem, Process Des Develop, 1975;14: 411-416.
    [49] S.A. Moeykens and M.B. Pate, Spray evaporation heat transfer of R-134a on plain tubes, ASHRAE Trans, 1994; 100(2):173-184.
    [50] X. Zeng, M.-C. Chyu and Z.H. Ayub, Evaporation heat transfer performance of nozzle-sprayed ammonia on a horizontal tube, ASHRAE Trans, 1995;101(1): 136-149.
    [51] Liu PJP. The evaporating falling film on horizontal tubes. PhD Thesis, University of Wisconsin-Madison; 1975.
    [52] W.H. Parken and L.S. Fletcher, Heat transfer in thin liquid films flowing over horizontal tubes, Proceedings of the seventh international heat transfer conference, Munich, 1982; 4:415-20.
    [53] R. Armbruster and J. Mitrovic, Heat transfer in falling film on a horizontal tube, Proceedings of the national heat transfer conference, Portland, 1995;12 [ASME HTD-vol. 314]:13-21.
    [54] W. Nakayama, T. Daikoku, H. Kuwahara and T. Nakajima, Dynamic model of enhanced boiling heat transfer on porous surfaces. Part II. Analytical modeling, J Heat Transfer, 1980; 102:451-456.
    [55] X. Zeng, M.-C. Chyu and Z.H. Ayub, Characteristic study of sprayed fluid flow in a tube bundle, ASHRAE Trans, 1994; 100(1):63-72.
    [56] S.A. Moeykens, B.J. Newton and M.B. Pate, Effects of surface enhancement film-feed supply rate, and bundle geometry on spray evaporation heat transfer performance, ASHRAE Trans, 1995;101(2):408-419.
    [57] S.A. Moeykens, J.E. Kelly and M.B. Pate, Spray evaporation heat transfer performance of R-123 in tube bundles, ASHRAE Trans, 1996; 102(2):259-272.
    [58] Z.H. Liu and J. Yi, Enhanced evaporation heat transfer of water and R-11 falling film with the roll-worked enhanced tube bundle, Exp Thermal Fluid Science, 2001; 25 447-455.
    [59] G.N. Danilova, V.G. Burkin and V.A. Dyundin, Heat transfer in spray-type refrigerator evaporators, Heat Transfer—Soviet Res, 1976; 8:105-113.
    [60] V.G. Bukin, G.N. Danilova and V.A. Dyundin, Heat transfer from freons flowing over bundles of horizontal tubes that carry a porous coating, Heat Transfer-Soviet Res, 1982; 14:98-103.
    [61] Z.H. Liu, Q.Z. Zhu and Y.M. Chen, Evaporation heat transfer of falling film on a horizontal tube bundle, Heat Transfer-Asian Res, 2002;3:42-55.
    [62] S.A. Moeykens, Heat transfer and fluid flow in spray evaporators with application to reducing refrigerant inventory. PhD Thesis, Iowa State University; 1994.
    [63] J.J. Lorenz and D. Yung, Film breakdown and bundle-depth effects in horizontal-tube, falling-film evaporators, J Heat Transfer, 1982; 104:569-571.
    [64] S.A. Moeykens and M.B. Pate, Effect of lubricant on spray evaporation heat transfer performance of R-134a and R-22 in tube bundles, ASHRAE Trans 1996; 102(1): 410-426.
    [65] W. Nusselt. Die Oberfl¨achenkondensation des Wasserdampfes. Zeitschrift des Vereins deutscher Ingenieure, 60(27 and 28):541–546 and 569–575, 1916.
    [66] P.J Marto. An evaluation of film condensation on horizontal integral-fin tubes. Journal of Heat Transfer, 110:1287–1305, 1988.R.L.
    [67] Webb. Vapor space condensation. Principles of Enhanced Heat Transfer, Chapter 12, John Wiley & Sons, Inc., New York: 373–431, 1994.
    [68] J.R. Thome. Condensation of fluorocarbon and other refrigerants: A state-of-the-art review. Technical report, Prepared for Air-Condition and Refrigeration Institute (ARI), Arlington, Virginia, 1998.
    [69] R.K. Shah, S.Q. Zhou, and K.A. Tagavi. The role of surface tension in film condensation in extented surface passages. Enhanced Heat Transfer, 1999; 6:179-216.
    [70] K.O. Beatty and D.L. Katz. Condensation off vapors on outside of finned tubes. Chemical Engineering Progress, 1948; 44(1):55-70.
    [71] R. Gregorig. Film condensation on finely rippled surface with consideration of surface tension. Zeitschrift f¨ur angewandte Mathematik und Physik, 1954; 5:36-49.
    [72] V.A. Karkhu and V.P. Borovkov. Film condensation of vapor at finelyfinned horizontal tubes. Heat Transfer-Soviet Research, 1971; 3(2):183-191.
    [73] Kutateladze, S. S.; Gogonin, I. I.; Sosunov, V. I., Influence of condensate flow rate on heat transfer in film condensation of stationary vapour on horizontal tube banks., International Journal of Heat and Mass Transfer, 1985; 28(5):1011-1018
    [74] Jakob, M., Mech. Eng. (Am. Soc. Mech. Eng.), 1936; 58:163.
    [75] D.Q. Kern. Mathematical development of tube loading in horizontal condensers. AIChE Journal, 1958; 4(2):157-160.
    [76] Honda, H., Nozu, S., and Takeda, Y., Flow Characteristics of Condensation on a Vertical Column of Horizontal Tubes, Proc. ASME-JSME Thermal Engineering Joint Conference, Honolulu, 1987; 1:517-524.
    [77] Miller, W.A.,Keyhani, M., The correlation of simultaneous heat and mass transfer experimental data for aqueous lithium bromide vertical falling film absorption: Journal of Solar Energy Engineering, Transactions of the ASME, 2001; 123(1):30-42.
    [78] Jani, S., Saidi, M.H.; Mozaffari, A.A. Tube bundle heat and mass transfer characteristics in falling film absorption generators, International Communications in Heat and Mass Transfer, 2003; 30(4):565-576.
    [79] Fujita, I. , Heat and mass transfer coefficients of falling-film absorption process Hihara, E. Source: International Journal of Heat and Mass Transfer, 2005; 48(13), June, p 2779-86.
    [80] Hongtao Gao, Matsuzaki, T., Jianfeng Wang, Hihara, E. Effect of surfactant supplying with refrigerant vapor on absorption enhancement, Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, 2005;22(1):83-93.
    [81] Cheng, Wen-Long, Houda, Kouichi, Chen, Ze-Shao, Akisawa, Atsushi, Hu, Peng, Kashiwagi, Takao, Heat transfer enhancement by additive in vertical falling film absorption of H2O/LiBr, Applied Thermal Engineering, 2004; 24(2-3):281-298.
    [82] Nosoko, T., Miyara, A., Nagata, T., Characteristics of falling film flow on completely wetted horizontal tubes and the associated gas absorption, International Journal of Heat and Mass Transfer, 2002; 45(13):2729-2738.
    [83] Kashiwagi, T., Dong-Ho Rie, Kurosawa, S., Nomura, T.; Omata, K. , Marangoni effect on the process of steam absorption into a falling film of an aqueous solution of LiBr, Heat Transfer-Japanese Research, 1993; 22(4):355-371.
    [84] Zuiderweg F J,Harmens A.The influence of surface phenomena on the performance of distillation columns, Chemical Engineering Science, 1958;9(2-3):89-103.
    [85]张锋,赵贤广,耿皎等,Marangoni效应与降膜传递过程,南京工业大学学报(自然科学版),2006,28(1):93~99.
    [86]沙勇,成弘,余国琮,质量、热量传递过程中的Marangoni效应,化学进展,2003,15(1):9~17.
    [87] Kiyota, Masanori, Morioka, Itsuki, Ousaka, Akiharu, Steam absorption into falling films over horizontal pipes with different surface conditions, Proceedings of the ASME-JSME Thermal Engineering Joint Conference, 1995; 4:513-518.
    [88] Fujita, Isamu,Hihara, Eiji, Stability analysis of the surfactant dissolved falling film in absorption process, Proceedings of the Conference on Cryogenics and Refrigeration, 1998:186-189.
    [89] Lee, Chan Ho, Ha, Jong Joo, Chun, Byung-Hee, Yoon, Hyung Kee; Kim, Sung Hyun, Mathematical modeling and simulation for Marangoni convection by surfactants in liquid falling film, Source: Journal of Chemical Engineering of Japan, 2003; 36(3):259-264.
    [90] Frances, V.M.S. , Ojer, J.M.P., Multi-factorial study of the absorption process of H2O by a LiBr in a horizontal tube bundle using 2-ethyl-1-hexanol as surfactant, International Journal of Heat and Mass Transfer, 2004; 47(14-16):3355-3373.
    [91] Jesse D. Killion, Srinivas Garimella, Gravity-driven flow of liquid films and droplets in horizontal tube banks, International Journal of Refrigeration, 2003; 26:516-526.
    [92]谷芳,刘春江,余黎明等,气-液两相降膜流动及传质过程的CFD研究,高校化学工程学报,2005,19(4):438~444.
    [93] M. Cerza and V. Sernas, Boiling nucleation criteria for a falling water film, Proceedings of the 23rd national heat transfer conference, multiphase flow and heat transfer, Denver, 1985; 47(ASME HTD):111-116.
    [94] Y. Fujita and M. Tsutsui, Experimental and analytical study of evaporation heat transfer in falling films on horizontal tubes, Proceedings of the 10th international heat transfer conference, Brighton 1994; 6:175-80.
    [95] M.-C. Chyu and A.E. Bergles, An analytical and experimental study of falling-film evaporation on a horizontal tube, J Heat Transfer, 1987; 109:983-990.
    [96] J.M. Gonzalez Garcia, J.M. Saiz Jabardo, W.F. Stoecker, Falling film ammonia evaporators. ACRC Technical Report, TR-33, University of Illinois, Urbana; 1992.
    [97]马沛生主编,有机化合物实验物性数据手册含碳、氢、氧、卤部分,北京:化学工业出版社,2006.
    [98] Nikos G. Tsierkezos and Ioanna E. Molinou, Thermodynamic Properties of Water + Ethylene Glycol at 283.15, 293.15, 303.15, and 313.15 K, J. Chem. Eng. Data, 1998;43 (6), 989-993.
    [99] Jovan Mitrovic, Flow Structures of a Liquid Film Falling on Horizontal Tubes, Chem. Eng. Technol. 2005; 28(6).
    [100] Schmidt, VDI-Forschungsh. 1934, No. 365.
    [101] F. Kaissling, Forsch. Ingenieurwes. 1943, 14, 30.
    [102] S.S. Grimley, Trans. Inst. Chem. Eng., London 1945, 23, 228.
    [103] J. Mitrovic, Fortschr.-Ber., VDI Z. 1987, Ser. 19, No. 22.
    [104] P.L. Kapitza, J. Exp. Theor. Phys. 1948, 3, 3; Also in Collected Papers of P.L. Kapitza (Ed: D. terHaar) Vol.1, pp.662-679, Pergamon Press, 1967.
    [105] X.Hu, A.M.Jacobi, Departure-site spacing for liquid droplets and jets falling between horizontal circular tubes, Experimental Thermal and Fluid Science, 1998; 16:322-331.
    [106] R. Bellman, R.H. Pennington, E.ects of surface tension and viscosity on Taylor instability, Quart. Appl. Math, 1954; 12:151-162.
    [107] N. Zuber, On the stability of boiling heat transfer, J. Heat Transfer, 1958; 80:711-720.
    [108] J.H. Lienhard, P.T.Y. Wong, The dominant unstable wavelength and minimum heat flux during film boiling on a horizontal cylinder, J. Heat Transfer, 1964;86: 220-226.
    [109] D. Maron-Moalem, S. Sideman, A.E. Dukler, Dripping characteristics in a horizontal tube film evaporator, Desalination, 1978; 27:117-127.
    [110] E.N. Ganic, M.N. Roppo, An experimental study of falling liquid fillm breakdown on a horizontal cylinder during heat transfer, J.Heat Transfer, 1980;102: 342-346.
    [111] D. Yung, J.J. Lorentz, E.N. Ganic, Vapor/liquid interaction and entrainment in falling fillm evaporators, J. Heat Transfer, 1980;102:20-25.
    [112] R.Q. Li, R. Harris, On the dominant unstable wavelength during film boiling on a horizontal cylinder of small diameter, J. Heat Transfer, 1993; 115:498-501.
    [113] Bejan, Buckling flows: A new frontier in fluid mechanics, in: C.L. Tien (Ed.), Ann. Rev. Heat Transfer Fluid Mechs., 1989:262-300.
    [114] Bejan, Entropy generation through heat and fluid flow, Wiley,New York, 1982.
    [115] E.A. Boucher, Capillary phenomena: Properties of systems with fluid interfaces, Rep. Progr. Phys., 1980; 43:497-546.
    [116] Mohamed S. El-Genk and Hamed H. Saber, Minimum thickness of a flowing down liquid film on a vertical surface, International Journal of Heat and Mass Transfer, 2001; 44(15):2809-2825.
    [117] M.J. Kirby, H. Perez-Blanco, A design model for horizontal tube water/lithium bromide absorbers, in: Heat Pump and Refrigeration Systems Design, Analysis and Applications, vol. 32, AES, American Society of Mechanical Engineers, New York, 1994.
    [118] JaniS, Saidi M H, MozafariA A.Tube bundle heat and mass transfer characteristics in faling film absorption generations, International Communications in Heat and Mass Transfer, 2003, 30(4):565-576.
    [119]姜传胜,王照亮,李华玉等,吸收器降膜和滴状吸收过程数值模拟分析,石油大学学报(自然科学版),2005,29(5):99~103.
    [120]王照亮,唐大伟,考虑管间液滴形成和下落过程的吸收器模拟及分析,中国科学院研究生院学报,2006,23(4):457~464.
    [121] Icksoo Kyung, Keith E. Herold and Yong Tae Kang, Model for absorption of water vapor into aqueous LiBr flowing over a horizontal smooth tube, International Journal of Refrigeration, 2007; 30(4):591-600.
    [122]王书中,直燃机吸收器部件仿真与可视化计算:[硕士学位论文],天津;天津大学,2004.
    [123] E. Mariotte, Traite’Du Mouvement Des Eaux Et DesAutres Corps Fluids, E. Michallet, Paris, 1686.
    [124] F. Savart, Memoire sure le choc d'une veine liquid lancee contre un plan circulair, Ann. Chim. Phys. 1833; 54:55.
    [125] G. Hagen, Verhandlungen Preuss. Akad. Wissenschaften, (Berlin), p.281, 1849.
    [126] J. Plateau, Acad. Sci. Bruxelles M′em. XVI, 3 (1843).
    [127] Lord Rayleigh, Proc. London Math. Soc. 10, 4 (1879). (Appeared in thevolume of 1878).
    [128] Lord Rayleigh, Nature 44, 249 (1891).
    [129] J.S. Rowlinson, Cohesion, Cambridge (2002).
    [130] P. Lenard, Ann. Phys. 30, 209 (1887).
    [131] W.D. Harkins and F. E. Brown, J. Am. Chem. Soc. 41, 499 (1919).
    [132] H.E. Edgerton, E. A. Hauser, and W. B. Tucker, J. Phys. Chem. 41, 1029 (1937).
    [133] D.H. Peregrine, G. Shoker, and A. Symon, J. Fluid Mech. 212, 25 (1990).
    [134] J. Eggers, Phys. Rev. Lett. 71, 3458 (1993).
    [135] J. Eggers, Phys. Rev. Lett. 71, 3458 (1993).
    [136] X. D. Shi, M. P. Brenner, and S. R. Nagel, A cascade of structure in a drop falling from a faucet,. Science 265 (1994), 219–222.
    [137] Patrick K. Notz, Alvin U. Chen, and Osman A. Basaran, Satellite drops: Unexpected dynamics and change of scaling during pinch-off, Phys. Fluids, 2001; 13, (3):549-552.
    [138] Oaman A. Basaran, Small-cale Free Surface Flows with Breakup: Drop Formation and Emerging Applications, AICHE, 2002; 48(9):1842-1848.
    [139] Zhang, X., and O. A. Basaran,“Dynamics of Drop Formation from a Capillary in the Presence of an Electric Field,”J. Fluid Mech., 1996; 326:239.
    [140] Moseler M, Landman U, Formation, stability, and breakup of nanojets. Science 2000; 289(5482):1165-1169.
    [141]孙即祥,图像处理,北京:科学出版社,2004.
    [142]王晓丹,吴崇明,基于MATLAB的系统分析与设计—图像处理,西安:西安电子科技大学出版社,2000.
    [143]高成,Matlab图像处理与应用,北京:国防工业出版社,2007.
    [144]李涛、贺勇军、刘志俭等,Matlab工具箱应用指南—应用数学篇,北京:电子工业出版社,2000.
    [145]朱长青,数值计算方法及其应用,北京:科学出版社,2006.
    [146]关治,陆金甫,数值方法,北京:清华大学出版社,2006.
    [147]景思睿,张鸣远,流体力学,西安:西安交通大学出版社,2001.
    [148] Bridgman, P.W., Dimensional Analysis, Yale Paperbound, New Haven, 1963.
    [149] McKinley, G. H. Dimensionless groups for understanding free surface flows of complex fluids. Soc. Rheol. Bull. 2005,6-9.
    [150] Ohnesorge, W.v., Die Bildung von Tropfen an Düsen und die Aufl?sung flüssiger Strahlen, Z.A.M.M., 1936; 16(6):355-358.
    [151] Eggers, J., Nonlinear Dynamics and Breakup of Free-Surface Flows, Rev. Mod. Phys., 1997; 69(3):865-929.
    [152] Becher, P., The so-called Ohnesorge Equation, J. Coll. Int. Sci., 1990;140(1): 300-301.
    [153] Spiegelberg, S.H. and McKinley, G.H., Stress Relaxation and Elastic Decohesion of Viscoelastic Polymer Solutions in Extensional Flow, J. Non-Newtonian Fluid Mech., 1996;67:49-76.
    [154] Rasmussen, H.K. and Hassager, O., The Role of Surface Tension on the Elastic Decohesion of Polymeric Filaments, J. Rheol., 2001;45(2):527-537.
    [155] Rayleigh, L., On the Instability of Jets, Proc. Lond. Math. Soc., 1879; 10:4-13.
    [156] R. Scardovelli and S. Zaleski, Annu. Rev. Fluid Mech, 1999; 31:567-603.
    [157] Haenlein, Forsch. auf dem Gebiete des Ingenieurwesens/Reihe A 2, 139–149 (1931).
    [158] J. Eggers,Nonlinear dynamics and breakup of free-surface flows, Rev. Mod. Phys., 1997; 69:865-929.
    [159] W. Ohnesorge, Formation of Drops by Nozzles and the Breakup of Liquid. Jets, Z. Angew. Math. Mech., 1936; 16:355-358.
    [160] YJ Chen and PH Steen. Dynamics of inviscid capillary breakup: collapse and pinchoff of a film bridge. J. Fluid Mech., 1997; 341:245-267.
    [161] RF Day, EJ Hinch, and JR Lister, "Self-similar Capillary Pincho of an Inviscid fluid", Phys. Rev. Lett. 80, 704 (1998).
    [162] G. I. Barenblatt, Scaling, Self-Similarity, and Intermedeate Asymptotics (Cambridge University Press, Cambridge, 1996).
    [163] DT Papageorgiou, "On the breakup of viscous liquid threads", Phys. Fluids 1995; 7:1529.
    [164] C.M. Bender and S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, NewYork, 1978).
    [165] U. Chen, P. K. Notz, and O.A. Basaran, Phys. Rev. Lett. 88, 174501,1–4 (2002).
    [166] Rothert, R. Richter, and I. Rehberg, New J. Phys. 5, Art. No. 59 (2003).
    [167] Keller, J. B., and M. J. Miksis,“Surface Tension Driven Flows,”SIAM J. Appl. Math., 1983;43:268.
    [168] Day, R. F., E. J. Hinch, and J. R. Lister,“Self-Similar Capillary Pinchoff of an Inviscid Fluid,”Phys. Rev. Lett., 1998; 80:704.
    [169] Lister, J. R., and H. A. Stone,“Capillary Breakup of a Viscous Thread Surrounded by another Viscous Fluid,”Phys. Fluids, 1998; 10:2758.
    [170] Zhang, X.,“Dynamics of Growth and Breakup of Viscous Pendant Drops into Air,”J. Colloid Interface Sci., 1999; 212:107.
    [171] H. Lars, F. Ziegler, Heat and mass transfer enhacement by additives in NH3–H2O, in: ISHP_99 Proceedings of the International Sorption Heat Pump Conference, Munich.
    [172] H. Lars, Bestimmung von W?rmeübergangskoeffizienten w?ssriger LiBr-L?sung mit und ohne Zusatz oberfl?chenaktiver Substanzen auf einem Absorberw?rmetaucher, Diplomarbeit Institut E19 Physik-Department der Technischen Universit?t Muchen, 1994.
    [173] W.A. Miller, The synergism between heat and mass transfer additive and advanced surfaces in aqueous LiBr horizontal tube absorbers, in: ISHPC_99, pp. 307-321.
    [174] Raymond H Myers. Response Surface Methodology Current Status and Future Direction. Journal of Quality Technology, 1993; 31(1).
    [175] Box G E P, Wilson K B. On the experimental attainment of optimum condition [J].J. of the Royal Stat. Society. Series B, 1951; 13(1):1-34.
    [176]施文,丁雪,响应面法理论及在物流决策中的应用,科教文汇(上旬刊),2007.
    [177]陈桂明,戚红雨,潘伟,Matlab数理统计6.x,北京:科学出版社,2002.
    [178]陈仲生,基于Matlab7.0的统计信息处理,湖南:湖南科学技术出版社,2005.
    [179]王书中,Fortran与Matlab混合编程实现溴化锂水溶液物性计算可视化,流体机械,2004, 32(1):59~61.
    [180] C.A.米勒尔,P.尼奥基(美),界面现象—平衡和动态效应,北京:石油工业出版社,1992.
    [181]刘振学,黄仁和,田爱民,实验设计与数据处理,北京:化学工业出版社,2005.
    [182] J. Canny, A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell. PAMI, 1986; 8(6):679-698.
    [183] Jesse D. Killion, Srinivas Garimella, Simulation of Pendant Droplets and Falling Films in Horizontal Tube Absorbers, Journal of Heat Transfer, 2004; 126:1003-1013.
    [184] Nakoryakov VE, Grigoryeva NI. Combined heat and mass transfer during absorption in drops and films. Journal of Engineerting physics, 1977; 32(3):243-247.
    [185] Grigoryeva NI., Nakoryakov VE, Exact solution of combined heat and mass transfer problems during film absorption, Journal of Engineerting physics, 1977; 32(5):1349-1353.
    [186] Grossman G. Analysis of interdiffusion in film absorption. Inetnational Journal of Heat and Mass Transfer, 1987; 30(1):205-208.
    [187] Grossman G., Simultaneous heat and mass transfer in film absorption under laminar flow. Internatinoal Journal of Heat and Mass Transfer, 1983; 26(3):357-371.
    [188] Andberg JW, Vliet GC. Nonisothermal absorption of gases into falling liquid films. ASME-JSME Thermal Engineering Joint Conference Proceedings, 1983; 2:423- 431.
    [189] Andberg JW, Vliet GC. A simplified model for absorption of vapors into liquid films flowing over cooled horizontal tubes. ASHRAE Transactions, 1987; 93(2): 2454- 2463.
    [190] Kawae N, Shigechi T, Kanemaru K, Yamada T. Water vapor evaporation into laminar film flow of a lithium bromide-water solution (influence of variable properties and inlet film thickness on absorption mass transfer rate). Heat Transfer Japanese Research, 1989, 18(3):58-70.
    [191] Brauner N, Moalem Maron D, Meyerson H. Coupled heat condensation and mass absorption with comparable concentrations of absorbate and absorbent. International Journal of Heat and Mass Transfer, 1989; 32(10):1898-1906.
    [192] Brauner N, Moalem Maron D, Meyerson H., The effect of absorbate concentration level in hygroscopic condensation. International Communications Heat and Mass Transfer, 1988; 15(3):269-279.
    [193] Brauner N, Non-isothermal vapour absorption into falling film. Int J Heat and Mass Transfer, 1991; 34(3):767-784.
    [194] Ramadane A, Aoufoussi Z, Le Goff H. Experimental investigation and modeling of gas-liquid absorption with a high thermal effect. Distillation and Absorption, Institution of Chemical Engineers Symposium Series, 1992; 1:A451-459.
    [195] Conlisk AT. Falling film absorption on a cylindrical tube. AICHE Journal, 1992; 38(11):1716-1728.
    [196] Conlisk AT. The effect of coolant flow parameters on the performance of an absorber. ASHRAE Transactions, 1995; 101(2):73-80.
    [197] Ibrahim GA, VInnicombe GA. A hybrid method to analyse the performance of falling film absorbers. International Journal of Heat and Mass Transfer, 1993; 36(5): 1383-1390.
    [198] Lu Z, Li D, Li S, Yu-chi B. A semi-empirical model of the falling film absorption outside horizontal tubes. Proceedings of the International Ab-Sorption Heat Pump Conference, 1996; 2:473-480.
    [199] Jernqvist A, Kockum H. Simulation of falling film absorbers and generators. Proceedings of the Internation Ab-Sorption Heat Pump Conference Montreal, Canada, 1996; 1(17-20):311-318.
    [200] Conlisk AT, Mao J. Nonisothermal absorption on a horizontal cylindrical tube-1. The Film Flow. Chemical Engineering Science, 1996; 51(8):1275-1285.
    [201] Conlisk AT. Structure of falling film heat and mass transfer on a fluted tube. AICHE Journal, 1994; 40(5):756-766.
    [202] Conlisk AT., Prediction of the performance of a splined-tube absorber-Part 1: Governing equations and dimensional analysis. ASHRAE Transactions, 1996; 102(1): 116-127.
    [203] Conlisk AT.,A model for the prediction of the performance of s spliened-tube absorber-Part 2: model and results. ASHRAE Transactions, 1996; 102(1):128-137.
    [204] Yang R, Jou D. Heat and mass transfer of absorption process for the falling film inside a porous medium. International Journal of Heat and Mass Transfer, 1995; 38(6): 1121-1126.
    [205] Victor Manuel Soto Francés, JoséManuel Pinazo Ojer, Validation of a model for the absorption process of H2O(vap) by a LiBr(aq) in a horizontal tube bundle, using a multi-factorial analysis, International Journal of Heat and Mass Transfer, 2003;46: 3299-3312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700