用户名: 密码: 验证码:
LCoS相位空间光调制器的特性及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间光调制器是近代光信息处理系统中关键的器件,它可以用作物函数的输入,也可以作为空间滤波器件而存在。特别是相位型的空间光调制器件由于它的高的光能利用率和高的衍射效率而广泛的用在光电混合信息处理系统中.随着液晶技术的发展,液晶器件被广泛的用作电寻址的空间光调制器件,普通的TFT器件具有开口率小(光能利用低),分辨率低等缺点,LCoS器件则是一种新型的液晶器件,它克服了一般TFT器件的缺点,因而具有更为广泛的应用前景。
     本文首先从液晶的基础物理知识出发,根据液晶到连续体弹性形变理论得到了在外加电场作用下液晶的指向矢的分布,利用不同的理论阐述了光波在液晶中的传输特性,简单介绍了液晶相位调制的原理。
     首先建立了LCoS器件的理论模型,并采用参数空间的方法通过改变液晶的扭曲角度和偏振片的起偏角度选择和优化了LCoS器件用作相位调制的合适的工作模式,找到了两种比较合适的作为相位调制的工作模式----(0°,0°)和(0°,52°)配置。同时利用扩展琼斯矩阵,详细地研究了这两种工作模式的相位调制特性。理论研究表明在这两种工作模式下,工作在(0°,52°)模式下的LCoS器件是可以作为纯相位的调制器件来使用的,同时采用合适的偏振配置(0°,52°)的器件还具备强度调制特性。因此(0°,52°)模式具有复合调制的特性。实验室基于工作在(0°,52°)配置下的LCoS器件制做了实体的相位调制器件,我们还设计了基于干涉的相位测量系统,实际测量了LCoS器件的相位调制特性和伴随着相位调制的反射率变化的情况。实验表明工作在(0°,52°)模式下的LCoS器件可以用作纯相位的空间光调制器,入射光的波长为532nm时,它的动态相位变化范围可以达到1.9π,伴随着不超过5%的反射率变化。
     同时为了验证(0°,0°)模式的特性,实验室中还制作了6个像素的平行排列(0°,0°)模式液晶器件(被动寻址),通过调节补偿器的方法测量了它的相位特性,由于采用了高折射率的被动寻址液晶材料,同样对于532nm的入射光它的相位调节范围可以达到甚至超过4π,而反射率的变化则不超过10%。实验也表明如果在(0°,52°)模式的器件中采用高双折射率的助动寻址液晶材料或者采用更短波长的入射光必然能够达到2π以上的相位调制量。
     然后利用已经制作的LCoS相位空间光调制器,实现了可编程的变焦菲涅尔
    透镜,通过实验研究了变焦菲涅尔透镜的聚焦特性,发现LCoS器件的表面弯曲会导致聚焦焦点的弥散并设计了校正的方案。
     分形波带片是最近才提出的一种新型的光学器件,有关分形波带片的研究才刚刚开始,使用已有的LCoS相位空间光调制器,实现了可变缺项的分行波带片的制作,并详细地研究了n=4情况下的可变分形波带片的聚焦特性。理论上推导n=4情况下的分形波带片的轴上光强分布公式,实验结果和理论的预测很好的吻合。实验还发现,聚焦的焦斑半径会随着焦距的长度而增大,而聚焦深度则随着分形波带片的阶次的升高而减小,同时还对比了分形波带片和常规波带片的焦距调节方式和精度,理论研究表明分形波带片的调节焦距的方式具有更高的调节精度。
As a kind of key elements in the advanced optical information processing systems, spatial light modulator (SLM) can be used as a objective function for input, or it can be also used as a spatial filter on the frequency plane. Especially, phase-only SLM devices were applied to eletro-optical information systems extensively because of the merits of high light efficiency and high diffractive efficiency. With the development of liquid crystals displays technology, LC devices were used as EA-SLM comprehensively. Thin-film-transistor (TFT) liquid crystal devices were studied in many literature, because of design feature of TFT, there are some defects to apply TFT to optical information processing, such as its low aperture opening ratio (low light efficiency), low resolution etc. Recently, one novel LC device LCoS interested people's attention because it high aperture ratio and high resolution. LCoS device should be applied to optical information processing field more comprehensively.
    This dissertation describes the distribution of director of liquid crystal based on the theory of continuous elastic materials, and then several methods to describe the propagation of light wave in liquid crystals materials were introduced, the principle of phase modulation of light wave by liquid crystals was expounded.
    First we depicted one theoretical model of LCoS device, and then working modes of LCoS used as phase-only SLM were selected and optimized by varied the twist angle of liquid crystals and polarized angle due to parameter space method, two working modes, which are suitable to apply LCoS as phase-only SLM, were found, that is (0°, 0°) and (0°, 52°). Theoretical study also showed that the (0°,52°) could be used as a compound device, it behaved property of intensity modulation if a working point was selected appropriately and it behaved property of phase modulation when another wording point was selected. At the same time, this two working modes were studied detailed by extended Jones matrix method. Theoretical analysis showed that LCoS device which working on this two working modes can be used as phase-only SLM. For verify this result, the LCoS phase-only SLM was assembled working on (0,52°) mode, and also we design one experimental system to measure the phase modulated amount based on the interferometer. The properties of LCoS device were
    measured and the changing of reflectivity accorded with phase modulation of LCoS device was also checking. Experimental results showed that LCoS device can realized a 1.9π dynamic phase modulation with a reflectivity changing less than 5%. These results acknowledge that LCoS device can be used as phase-only SLM.
    One LC cell (Passive Matrix) was fabricated, which had six pixels and worked on (0°,0°) mode. Its phase properties were measured by compensator, because the high An liquid crystal material was used, the phase modulated amount of this LC cell can be larger than 4π while the reflectivity changing was less than 10%. Experiment verified that the phase modulation of LCoS device, which worked on (0°,52°) mode, could exceed 2π if the high birefringence LC material was adopted.
    Two applications of LCoS phase-only SLM were introduced, first programmable zoom Fresnel lens was realized based on LCoS. The focal properties of varifocal Fresnel lens was studied in experimental, experimental results showed that the deformation of surface of LCoS will lead to diffusion of the focal of Fresnel lens, one correction method was mentioned.
    Fractals Fresnel zone plate (FZP) was one novel element to applied to optical focusing. Based on our LCoS phase-only SLM, FZPs with variable lacunarity were fabricated, and the focalized properties of FZPs with variable lacunarity were studied in detail with n=4. The distribution of intensity on axis of FZPs was explored in theory and experiment, one formula was deduced to describe the distribution of intensity on axis of FZPs with n=4. Experimental results and values in theory were accordant well. Experimental results showed that the radius of focal spot would increase with the longer focal length, and focal depth would decrease with higher order of FZPs.
引文
[1] Goodman J. W. Introduction to Fourier optics[M]. Columbus: McGraw-Hill, 1996: 1-5
    [2] Scot. S. O, Michael. W. K, Bauman. B. J, Brase. J. M, Brown. C. O, Cooke. J. B, Pennington. D. M, Silva. D. A. High-resolution wavefront control using liquid crystal spatial light modulators[J]. SPIE, 1999, 3760: 47-51.
    [3] Jeffrey. A. D, Mcnamara. D. E., Cottrell. D. M, T. Sonehara. Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator[J]. Appl. Opt. 2000, 39(20): 1549-1554.
    [4] Michinori. H, Toshiaki. N, Susumu. S. Optical properties of liquid crystal polarization converting devices and their application to optical wavelet transforms[J]. SPIE, 1999, 3800: 182-189.
    [5] Y. Ichioka, T. Iwaki and K. Matsuoks. Optical Information Processing and Beyond [J]. IEEE. J. Quantum Electrom. 1996, 84(3): 694-719.
    [6] M. Young. Low-cost LCD video display for optical processing[J]. Appl. Opt. 1986, 25(5): 1024-1026
    [7] J. A. Davis, R. A. Lilley, K. D. Krenz and H. K. Liu. Applicability of the LCTV for optical data processing[J]. Proc. Soc. Photo-Opt Instrum. Eng. 1986, 613: 245-254.
    [8] F. T. S. Yu and S. Jutamulia. Optical Signal Processing [M]. New York: John Wiley&Sons, 1992:
    [9] 李育林,傅晓理.空间光调制器及其应用[M],北京:国防工业出版社,1996:310-373.
    [10] P. R. Barbier and G. Moddel. Spatial light modulators: processing light in real time[J]. Opt. Photonics News. 1997, 8: 17-21.
    [11] 李维諟,郭强编著,液晶显示应用技术[M].北京:电子工业出版社,2000.
    [12] David. A, Thackara. J. I, Eades. W. D. Photoaddressed liquid crystal spatial light modulators[J]. Applied Optics, 1989, 28(22): 4763-4771.
    [13] Erich. H, Hans. L, Frank. R. Optically addressable liquid crystal spatial light modulatored for VIS to NIR light modulation[J]. SPIE, 1998, 3292: 13-24.
    [14] Broomfield. S. E, Neil. M. A. A, Paige. E. G. S. Four-level, phase-only, spatial light modulator[J]. Electronics Letters, 1993, 29(18): 1661-1663.
    [15] Broomfield. S. E, Neil. M. A. A, Paige. E. G. S, Yang. G. G. Programmable binary phase-only optical device based on ferroelectric liquid crystal SLM[J]. Electronics Letters, 1992, 28(1): 26-28.
    [16] Takaji. N, Mitsuhiro. K. Driving waveforms of partial writing scheme for FLCD[J]. Displays, 1993, 14(3): 139-143.
    [17] Frederic. P, Crossland. W. A. Optimization of ferroelectric liquid crystal optically addressed spatial light modulator performance[J]. Opt. Eng., 1997, 36(8): 2294-2301.
    [18] Meyer R. Ferroelectric liquid crystal: A review[J]. Mol. Cryst. Liq. Cryst., 1977, 40(1)33-48.
    [19] Clark N, Lagerwall S. Submicrosecond bistable electro-optic switching in liquid crystals[J]. Appl. Phys. Lett., 1980, 36(11): 899-901
    [20] Yasuda A, Takanashi H, Nito k. et. al.. A novel gray-scale method for ferroelectric liquid crystal displays utilizing ultro-fine particle[J]. Jpn. J. Appl. Phys., 1997, 36(1A): 228-231.
    [21] Andersson G, Dahl I, Komitov L. et. al.. Device physics of the soft-mode ferroelectric liquid crystal display[J]. J. Appl. Phys., 1989, 66(10): 4983-4995.
    [22] Beresnev L, Chigrinov V, Dergachev D. et. al.. Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystal[J]。Liquid Crystal, 1989, 5(4): 1171-1177.
    [23] 张舒雁,徐克璹,吕瑞波.表面稳定铁电液晶器件灰度特性的测量研究[J].光学学报,2001,21(5):621-625.
    [24] Gregory, D. A., J. C. Kirsch and E. C. Tam. Full complex modulation using liquid crstal televisions[J]. Appl. Opt., 1992, 31: 163-165.
    [25] Thu-Lan Kelly and Jesper Munch. Genetic optimization of modulation characteristics for two twisted nematic liquid crystal spatial light modulators[J]. Optical and Quantum Electronics, 1999, 31: 515-523.
    [26] Kanghua. L, Bahaa. E. A. S. Complex amplitude reflectance of the liquid crystal light valve[J]. Applied Optics, 1991, 30(17): 2354-2362.
    [27] Jeffrey. A. D, David. B. A, Kevin. G. D, Michael. L. W., Ignacio. M. Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators[J]. Opt. Eng., 1999, 38(4): 705-709.
    [28] N. Konforti, E. Marom and Sin-Tson Wu. Phase-only modulation with Twisted nematic liquid crystal spatial light modulation[J]. Opt. Lett. 1988, 13(3): 251-254.
    [29] Andres. M, Juan. C, Maria. J. Y, Ignacio. M, Jeffrey. A. D, Claudio. I, Alfonso. M, Arnau. R. Characterization of edge effects in twisted nematic liquid crystal displays[J]. Opt. Eng. 2000, 39(12): 3301-3307.
    [30] Thomas H. Barnes, Tomoaki Eiju, Kiyofumi Matusda and Naotake Ooyama. Phase-only modulation using a twisted nematic liquid crystal television[J]. 1989, 28(22): 4845-4852.
    [31] Kanghua Lu and Bahaa E. A. Saleh. Theory and design of the liquid crystal TV as an optical spatial phase modulator[J]. Optical Engineering, 1990, 29(3): 240-248
    [32] J. L. Pezzaniti and R. A. Chipman. Phase-only modulation of a twisted nematic liquid-crystal TV by use of the eigenpolarization states[J]. Optics Letters., 1993, 18(18): 1567-1569.
    [33] Luiz Gonoalves Nero, Danny Roberge and Yunlong Sheng. Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions [J]. Applied Optics. 1996. 35(23): 4567-4576.
    [34] 黄锡珉.LCOS技术的发展[J].液晶与显示,2002,17(1):1-5.
    [35] Vass DG, Hossack WJ, Nath S, et al. Ahigh resolution, full colour, head mounted ferroelectric liquid crystal-over-silicon display[J]. FERROELECTRICS, 1998, 213(1-4): 603-612.
    [36] Kazlas PT, Johnson KM, McKnight DJ. Miniature liquid-crystal-on-silicon display assembly[J]. OPTICS LETTERS, 1998, 23(12): 972-974.
    [37] Schuck MH, McKnight DJ, Johnson KM. Spin-cast planarization of liquid-crystal-on-silicon microdisplays[J]. OPTICS LETTERS, 1997, 22(19): 1512-1514.
    [38] Jepsen ML, Ammer MJ, Bolotski M, et al. High resolution LCOS microdisplay for single-, double-or triple-panel projection systems[J]. DISPLAYS, 2002, 23(3): 109-114.
    [39] Robinson MG, Tombling C. Alpha-Si: H-FLC: Ferroelectric liquid-crystalamorphous silicon novelty filter[J] APPLIED OPTICS, 1997, 36(2): 443-454.
    [40] Wilkinson TD, Crossland WA, Coker T, et al. Ferroelectric liquid crystal on silicon spatial light modulator designed for high yield and low cost fabrication: The fast bitplane SLM[J]. FERROELECTRICS, 1998, 213(1-4): 613-617
    [41] MCKNIGHT DJ, JOHNSON KM, FOLLETT MA. analog distorted helix ferroelectric liquid-crystal-on-silicon spatial light-modulator[J] OPTICS LETTERS, 1995, 20(5): 513-515.
    [42] MAO CC, MCKNIGHT DJ, JOHNSON KM. high-speed liquid-crystal-on-silicon spatial light modulators using high-voltage circuitry[J]. OPTICS LETTERS, 1995, 20(3): 342-344.
    [43] Meuret Y, De Visschere P. Optical engines for high-performance liquid crystal on silicon projection systems[J] OPTICAL ENGINEERING, 2003, 42(12): 3551-3556.
    [44] Chou WY, Hsu CH, Chang SW, et al.. A novel design to eliminate fringe field effects for liquid crystal on silicon[J] JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2002 41(12): 7386-7390.
    [45] Wilkinson TD, Crossland WA, Davey AB. Applications of ferroelectric liquid crystal LCOS devices[J] FERROELECTRICS, 2002, 278: 799-804.
    [46] Zhao QL, Wang ZQ, Guo HQ, et al. Head-mounted display with LCOS using diffractive optical element[J]. OPTIK, 2004, 115(1): 11-14
    [47] Doo Jin Cho et. al. Characteristics of 128×128 liquid-crystal spatial light modulator for wave-front generation[J]. Optics letters, 1998, 23(12)969-971.
    [48] IgnacioMoreno, JeffreyA. Davis, Kevin G. D'Nelly, David B. Allison. Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid crystal spatial light modulators[J]. Opt. Eng., 1998, 37(11): 3048-3052.
    [49] Andres Marquez et. al. Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model[J]. Opt. Eng., 2001, 40(11): 2558-2564.
    [50] Xinyu Zhu et. al. Eigenmodes of a reflective twisted-nematic liquid crystal cell[J]. J. Appl. Phys., 2003, 94(5): 2868-2873.
    [51] 谢毓章.液晶物理学[M].北京:科学出版社,1988:24-51.
    [52] P.G.de.Gennes著,孙政民,王新久译.液晶物理学[M].上海:上海翻译出版公司,1990:70-79.
    [53] 宋菲君.近代光学信息处理[M].北京:北京大学出版社,1999:218-222.
    [54] S. T. Tang and H. S. Kwok. Application of 2×2 and 4×4 matrices to the modeling of all nematic liquid crystal displays[J]. SPIE, 1999, 3800: 87-92.
    [55] S. Stallinga. Equivalent retarder approach to reflective liquid crystal displays[J]. J. Appl. Phys., 1999, 86(9): 4756-4766.
    [56] I. Moreno et. al. Jones Matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display[J]. J. Appl. Phys., 2003, 94(6): 3697-3702.
    [57] Deng-Ke Yang and Xiang-Dong Mi. Modelling of the reflection of cholesteric liquid crystals using the Jones matrix[J]. J. Phys. D: Appl. Phys., 2000, 33: 672-676.
    [58] H. S. Kwok. Parameter space representation of liquid crystal display operation modes[J]. J. Appl. Phys., 1996, 80(7): 3687-3693.
    [59] A. Lien. Extend Jones matrix representation for the twisted nematic liquid crystal display at oblique incidence[J]. Appl. Phys. Lett. 1990, 57(26): 2767-2769.
    [60] G. Gu, P. Yeh. Extended Jones matrix method and its application in the analysis of compensators for liquid crystal displays[J]. Displays, 1999, 20: 237-257.
    [61] D. W. Berreman. Optics in stratified and anisotropic mediea: 4×4-Matrix Formulation[J]. J. Opt. Soc. A. A, 1972, 62(4): 502-510.
    [62] D. W. Berreman. Optics in smoothly varying anisotropic planar structures: Application to liquid-crystal twist cells[J]. J. Opt. Soc. A. A, 1973, 63(11): 1374-1380.
    [63] S. Stallinga. Berreman 44 matrix method for reflective liquid crystal displays[J]. J. Appl. Phys., 1999, 85(6): 3023-3031.
    [64] Hiap Liew Ong. Elimination of Fabry-Perot Effect in 4×4 propagation Matrix Method and Its Application to Liquid Crystal Displays[J]. Jpn. J. Appl. Phys. Part 1, 1994, 33(2): 1085-1087.
    [65] Tae-Hoon Yoon and Jae Chang Kim. A simple method oft the fast elimination of interference fringes in the 4×4 matrix optics[J]. Jpn. J. Appl. Phys. Part 1, 1998, 37(2): 529-531.
    [66] H. Wohler, G. Hass, M. Fritsch and D. A. Mlynski. Faster 44 matrix method for uniaxial inhomogeneous media[J]. J. Opt. Soc. Am. A, 1988, 5(9): 1554-1557.
    [67] Em. E. Kriezis and S. J. Elston. A wide angel beam propagation method for the analysis of tilted nematic liquid crystal structures[J]. J. Mod. Opt., 1999, 46: 1201-1212.
    [68] Em. E. Kriezis and S. J. Elston. Light wave propagation in periodic tilted liquid crystal structures: a periodic beam propagation method[J]. Liq. Cryst., 1999, 26: 1663-1669.
    [69] Em. E. Kriezis and S. J. Elston. Awide angle beam propagation method for liquid crystal device calculations[J]. Appl. Opt., 2000, 39: 5707-5714.
    [70] Nandana D. Amarasinghe, Eugene C. Gartland, Kack R. Kelly. Modeling optical properties of liquid-crystal devices by numerical solution of time-harmonic Maxwell equations[J]. J. Opt. Soc. Am. A, 2004, 21(7): 1344-1361
    [71] H. S. Kwok, F. H. Yu, S. T. Tang and J. Chen. Design and fabrication of reflective nematic displays with only one polarizer[J]. SPIE, 1997, 3143: 39-50.
    [72] Tang ST, Yu FH, Chen J, et al.. Reflective twisted nematic liquid crystal displays. 1. Retardation compensation[J]. JOURNAL OF APPLIED PHYSICS, 1997, 81(9): 5924-5929.
    [73] Yu FH, Chen J, Tang ST, et al.. Reflective twisted nematic liquid crystal displays. 2. Elimination of retardation film and rear polarizer[J]. JOURNAL OF APPLIED PHYSICS, 1997, 82(11): 5287-5294.
    [74] Xie ZL, Dong YM, Xu SY, et al.. pi/ 2 and 5 pi/2 twisted bistable nematic liquid crystal display[J], JOURNAL OF APPLIED PHYSICS, 2000, 87(6): 2673-2676.
    [75] J. Grinberg A. Jacobson et. al. Areal-time non-coherent to coherent light image converter, the hybrid field effect liquid crystal light valve[J]. Optical Engineering, 1975, 14(3): 217-225.
    [76] T. Sonehara. Photo-addressed liquid crystal SLM with twisted nematic ECB (TNEEB) mode[J]. Jap. J. Appl. Phys., 1990, 29(70): 1231-1234.
    [77] K. Lu, B. E. A. Saleh. Optimal twist and polarization angles for the reflective liquid crystal light modulator[J]. Journal of Modern Optic, 1991, 38(12): 2401-2410.
    [78] S. T. Wu and C. S. Wu. Mixed-mode twisted nematic liquid crystal cells for reflective displays[J]. Appl. Phys. Lett., 1996, 68(11): 1455-1457.
    [79] S. T. Wu and C. S. Wu. High-brightness projection displays using mixed-mode twisted nematic liquid crystal cells[R]. SID'96, Digest of Technical Papers, 1996, 763-766.
    [80] K. H. Yang. A self-compensated twisted nematic mode for reflective light valve[J]. Euro Display, 1996: 449-451.
    [81] Xie ZL, Gap HJ, Xu SY, et al.. Optimization of reflective bistable twisted nematic liquid crystal displays[J]. JOURNAL OF APPLIED PHYSICS, 1999, 86(5): 2373-2378.
    [82] Pain F, Coquille R, Vinouze B, et al.. Comparison of twisted and parallel nematic liquid crystal polarisation controllers. Application to a 4X4 free space optical switch at 1.5μm[J]. Optics Communications, 1997, 139 (4-6): 199-204.
    [83] Ignacio Moreno et. al. . Transmission and phase measurement for polarization eigenvectors in twisted nematic liquid crystal spatial light modulators[J]. Opt. Eng., 1998, 37(11):3048-3052.
    [84] Yamauchi M, Marquez A, Davis JA, et al.. Interferometric phase measurements for polarization eigenvectors in twisted nematic liquid crystal spatial light modulators[J]. Optics Communications, 2000, 181 (1-3): 1-6.
    [85] Ignacio Moreno, et. al. Polarization eigenvectors for reflective twisted nematic liquid crystal displays[J]. Opt. Eng. , 2001, 40(10):2220-2226.
    [86] Qing Cao and Jurgen Jahns. Modified Frenel zone plates that produce sharp Gaussian focal spots [J]. J. Opt. Soc. Am. A, 2003, 20(8):1576-1581.
    [87] Cao Q, Jahns J. Comprehensive focusing analysis of various Fresnel zone plates[J]. Journal Of The Optical Society Of America A-Optics Image Science And Vision , 2004,21 (4): 561-571.
    [88] JonesBey HA. Terahertz imaging - Fresnel lens yields three-dimensional measurements [J] Laser Focus World, 2002, 38 (10): 7-7 .
    [89] Zhang XC. Three-dimensional terahertz wave imaging[J]. Philosophical Transactions Of The Royal Society Of London Series A-Mathematical Physical And Engineering Sciences, 2004,362 (1815): 283-298
    [90] Budiarto E, Pu NW, Jeong S, et al.. Near-field propagation of terahertz pulses from a large-aperture antenna[J]. OPTICS LETTERS , 1998,23 (3): 213-215.
    [91] Y Wang, W. Yun and C.Jacobsen, Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging[J]. Nature, 2003,424:50-53.
    [92] L. Kipp, M. Skibowski et. al.. Sharer images by focusing soft x-rays with photon sieves[J]. Nature, 2001,414:184-188.
    
    [93] 张济忠.分形[M].北京:清华大学出版社,1995,80-84.
    [94] Shaotong Feng. An optical study of the fractional Fourier transforms for a regular fractal pattern[J]. SPIE, 2002, 4929:427-430,
    [95] Zunino L, Garavaglia M. Moire by fractal structures[J]. Journal Of Modern Optics, 2003, 50 (9): 1477-1486.
    [96] Trabocchi O, Granieri S, Furlan WD. Optical propagation of fractal fields. Experimental analysis in a single display[J]. Journal Of Modern Optics, 2001, 48 (7): 1247-1253.
    [97] C. Allain and M. Cloitre. Optical diffraction on fractals[J]. Phys. Rev. B., 1986, 33 (5):3566-3569.
    [98] AlievaT, AgulloLopez F. Optical wave propagation of fractal fields [J]. OPTICS COMMUNICATIONS,1996, 125 (4-6): 267-274.
    [99] Zunino L, Garavaglia M. Fraunhofer diffraction by Cantor fractals with variable lacunarity[J]. JOURNAL OF MODERN OPTICS,2003, 50 (5): 717-727.
    [100] Jaggard AD, Jaggard DL. Cantor ring diffractals[J]. OPTICS COMMUNICATIONS, 1998,158 (1-6): 141-148.
    [101] SUN XG, JAGGARD DL. WAVE INTERACTIONS WITH GENERALIZED CANTOR BAR FRACTAL MULTILAYERS[J]. JOURNAL OF APPLIED PHYSICS , 1991,70 (5): 2500-2507.
    [102] Jaggard AD, Jaggard DL. Scattering from fractal superlattices with variable lacunarity[J]. Journal Of The Optical Society Of America A-Optics Image Science And Vision, 1998, 15 (6): 1626-1635.
    [103] Jaggard DL, Jaggard AD. Polyadic Cantor superlattices with variable lacunarity[J]. OPTICS LETTERS, 1997, 22 (3): 145-147.
    [104] Bertolotti M, Masciulli P, Sibilia C. Spectral Transmission Properties Of A Self-Similar Optical Fabry-Perot Resonator [J]. Optics Letters, 1994, 19(11): 777-779.
    [105] Courtial J, Padgett MJ. Monitor-outside-a-monitor effect and self-similar fractal structure in the eigenmodes of unstable optical resonators[J]. Physical Review Letters,2000, 85 (25): 5320-5323.
    [106] Furan W. Fractal zone plates produce fractal intensity distributions[J]. LASER FOCUS WORLD,2004, 40 (10): 11-11.
    [107] Saavedra G, Furlan WD, Monsoriu JA. Fractal zone plates[J]. OPTICS LETTERS, 2003, 28 (12): 971-973.
    [108] Davis JA, Ramirez L, Martin-Romo JAR, et al. . Focusing properties of fractal zone plates: experimental implementation with a liquid-crystal display [J]. OPTICS LETTERS, 2004,29 (12): 1321-1323.
    [109] Monsoriu JA, Saavedra G, Furlan WD. Fractal zone plates with variable lacunarity[J]. OPTICS EXPRESS, 2004, 12 (18): 4227-4234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700