用户名: 密码: 验证码:
湍流边界层沟槽壁面减阻机理的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对V型沟槽壁面湍流边界层的减阻机理进行了实验研究。用IFA300热线风速仪和TSI-1211-T1.5、TSI-1240-T1.5、TSI-1243-T1.5、TSI-1244-T1.5四种型号热线探针精细测量了沟槽壁面及光滑壁面湍流边界层在不同雷诺数下、不同法向位置的瞬时流向、法向、展向速度分量的时间序列信号。
     利用壁湍流对数律平均速度剖面与壁面摩擦速度、流体黏性系数等内尺度物理量的关系,以及壁面摩擦速度与壁面摩擦切应力的关系,测量沟槽壁面及光滑壁面湍流边界层壁面摩擦速度、壁面摩擦切应力和壁面摩擦系数,结果证明沟槽壁面使得边界层近壁区黏性底层增厚,缓冲层和对数律层上移,沟槽壁面消弱了缓冲层内与多尺度相干结构相联系的脉动速度和雷诺应力分量。
     将湍流多尺度相干结构的概念引入沟槽壁面湍流边界层减阻机理的研究。以湍流边界层瞬时流向脉动速度子波系数作为特征量,检测、提取了沟槽壁面及光滑壁面湍流边界层中的多尺度相干结构流向、法向、展向速度分量和瞬时雷诺应力分量的条件相位平均波形。与光滑平板相比,不论喷射过程还是扫掠过程,沟槽壁面相干结构在喷射和扫掠过程中的流向、法向、展向脉动速度分量和雷诺应力分量< u ' v'>、< u ' w'>幅值均明显降低,过程趋缓,时间尺度缩短。其中沟槽壁面使相干结构展向脉动强度降低最明显,使相干结构的展向动量交换减小,削弱了相干结构对湍流产生的贡献。
     搭建了一套包括流动显示水槽、氢气泡发生装置、数字图像采集及分析软件相结合的氢气泡流动显示实验系统。应用“帧间比较”定量分析方法,通过处理和分析水槽中近壁面区湍流相干结构的氢气泡流动显示图像,获得了平面流场中流向脉动速度、展向脉动速度和法向涡量的平面分布。研究表明,沟槽壁面使壁湍流大尺度高低速条带结构间的动量交换减小,有效削弱了壁湍流流向、展向脉动,降低了脉动动量和脉动涡量的强度。
In this paper, the mechanism of drag reduction in turbulent boundary layer with a V-groove riblets surface was studied experimentally. Time sequence of longitudinal, vertical and spanwise velocity component along different normal positions in turbulent boundary layer which is controlled by a V-grooved plate and a flat-plate with different Reynolds numbers has been finely measured by IFA300 constant temperature anemometer with TSI-1211-T1.5、TSI-1240-T1.5、TSI-1243-T1.5、TSI-1244-T1.5 four types probes.
     According to the relationship of the logarithmic law of mean velocity profile and skin friction velocity, fluid viscosity coefficient etc.,inner scale physics quantities the relationship of skin friction velocity and skin friction shear stress,nonlinear iterating was carried out to calculate the parameter of the logarithmic law and skin friction velocities for turbulent boundary layers over a V-grooved plate and a flat-plate respectively. The result verified the thickening of the viscous sublayer and the up-shift of logarithmic and buffer sublayer in the near wall region over V-grooved surface. It is confirmed that the V-grooved surface weakens the fluctuations of velocities and Reynolds stresses related to multi-scale coherent structures in buffer sublayer.
     It is employed the concept of multi-scale coherent structures to study the mechanism of riblet surface drag reduction in turbulent boundary layer. Wavelet coefficients of longitudinal velocity component are used as the index of detecting multi-scale coherent structures and extracting the phased-average waveforms of streamwise, vertical and spanwise fluctuating velocities, as well as Reynolds stress of in turbulent boundary layer over riblets and plate surface. Compared with smooth plate surface, both for eject and sweep process, the amplitudes of streamwise, vertical and spanwise fluctuating velocity components, as well as Reynolds stress , < u ' v'>,< u ' w'> are reduced clearly, progress tend to be laggardly, temporal scales of multi-scale coherent structures are becoming shorten. Among them, the reduction of spanwise fluctuation intensity of coherent structure over V-grooved surface is apparent, and spanwise momentum exchanges of coherent structures are reduced, so the contribution of coherent structures to turbulence production is decreased.
     A set of flow visualization experimental apparatus including of water channel, hydrogen bubble producing equipment and flow digital image acquisition and procession software is established. Using a‘comparing-two-frame’quantitative analysis technique, the two-dimensional plane distributions of streamwise, spanwise velocity and vertical vorticity are obtained through processing and analyzing hydrogen bubble flow visualization images. The results indicate that the V-groove riblets surface weakens the streamwise, spanwise velocity and vorticity fluctuation through manipulating momentum exchanges of large-scale high and low-speed streaks in turbulent boundary layer.
引文
[1] Corrsin S, Kistler A L. Preliminary measurements of turbulence and temperature fluctuations behind a heated grid [R],NACA, Tech Notes,No.3133,1954
    [2] Townsend A A. The Structure of Turbulent Shear Flow [M], //Combridge Press 1956
    [3] Marie Farge, Nicholas Kevlahan, Valerie Perrier. Wavelets and turbulence [J]. Proceedings of the IEEE,84(4):639-669
    [4] Kline S J, Runstadler P W. Some preliminary results of visual studies of the flow model of the wall layers of the turbulent boundary layer [J],J Appl Mech Trans A SME,1959,2:166-170
    [5] Kline S J, Reynolds W C, Schraub F H, Runstadler P W, The structure of turbulent boundary layer [J], J Fluid Mech., 1967, 30: 741-774.
    [6] Corino E R, Brodkey R S, A visual investigation of the wall region in turbulent flow [J], J Fluid Mech., 1969, 37: 1-30.
    [7] Kim H T,Kline S J and Reynolds W C. The Production of Turbulence Near a Smooth Wall in a Turbulent Boundary Layer [J],J. Fluid Mech.,1971,50:133-160.
    [8] Smith C R, Metzler S P, The characteristics of low speed streaks in the near wall region of a turbulent boundary layer [J], J. Fluid Mech.,1983,129:27-54.
    [9] Tu B, Willmarth W W. College of Engineering University of Michigan [R] Rept O2920-d-T,1966
    [10] Rao K N, Narasimha, Badri Narayanan M A. Rept of Aerospace Engineering[C]. Rept 69FM8, India, Bangalore, India Institute of Science.
    [11] Rao K N, Narasimha, Badri Narayanan M A. The 'Bursting' Phenomenon in a Turbulent Boundary Layer [J],J Fluid Mech,1971,48:339-396
    [12] Laufer J, Badri Narayanan M A. Mean Period of the Turbulent Production Mechanism in a Boundary Layer [J], Phys. Fluids,1971,14:182-197
    [13] Kavasznay L S G, Kiben V, Blackwelder R F, The Turbulent Boundary Layer [J], Annu. Rev. Fluid Mech.,1970,2:95-112
    [14] Luchik T S, Tiedermann W G., Time scale and the structure of ejections and bursts in turbulent channel flow [J],J Fluid Mech,1987 174:529-577
    [15] Blackwelder R F, Kaplan R E. On the wall structure of the turbulent boundary layer [J],J Fluid Mech,1976,76:89-108
    [16] Brodkey R S, Wallance J M, Eckelmann H. Some properties of truncated turbulence signals in bounded shear flows [J], J. Fluid Mech,1974,63:209-237
    [17] Smith, C. R., Metzler, S. P., The Characteristics of Low-Speed Streaks in the Near-Wall Region of a Turbulent Boundary Layer [J], Fluid Mech., 1976,129,:27-54
    [18] Blackwelder R F,Eckelmann H, Streamwise Vortices Associated With the Bursting Phenomenon [J],J Fluid Mech,1979,94:577-594
    [19]孙葵花,舒玮,湍流猝发的检测方法[J],力学学报,1994,26(4):488-493
    [20]石建军,固壁温度对壁湍流相干结构的影响[D],天津大学硕士论文,1995
    [21]姜楠,王振东,舒玮,辨识子波分析壁湍流猝发事件的能量最大准则[J],力学学报,1997, 29(4):406-411。
    [22] Marie Farge. Wavelet transforms and their applications to turbulence [J], Annu. Rev. Fluid Mech.,1992,24:395-457
    [23] Liepmann H W, Narasimha R. Turbulence management and relaminarisation [C]. In: IUTAM symposium’87. India: Bangalore.
    [24] Bushnell D M, Hefner J N, Ash R L, Effect of compliant wall motion on turbulent boundary layers [J], AGARD Report, n654, Spec Course on Concepts for Drag Reduction, 1977, 9: 1-26
    [25] Shu Wei, Liu Wei Ming, The effect of compliant coating on coherent structure in turbulent boundary layers [J], ACTA MECHANICA SINICA, 1990, 6(2): 29-40
    [26]王玉春、姜楠、周兴华、舒玮,柔性壁面湍流边界层相干结构控制的实验研究[J],实验力学,2004,19(1): 45-50.
    [27] J. W. Delfs, N. F. Yurchenko, Nonlinear development of the forced vertical structure in flows used centrifugal forces [C], 11th International Couette-Taylor Workshop, Germany, July 20th-23rd, 1999,19(1).
    [28] N. F. Yurchenko, Optimization of heat transfer control based on a receptivity approach, Proc [C], Turbulent Heat Transfer Conference, Manchester, UK, May-June, 1998: 78-82.
    [29]颜大椿,实验流体力学[M],//北京:高等教育出版社,1992
    [30] Taneda, S., Visual study of unsteady sperated flows around bodies [J], Prog. Aerospace Sci, 1978, 17: 287-348.
    [31] Savchenko, Y. N., Hydrodynamic effects of a traveling wave [J], JPRS L/9420, 1980.
    [32] Zaman K B M Q, Effect of acoustic excitation on the flow over a low-Re airfoil[J],J. Fluid Mech., 1987, 182: 127-148.
    [33] Baron a, Sibilla S, Applied Scientific Research (The Hague), 1997-1998, 59(4): 331-352
    [34] Luckhik TS and Tiederman WG. Turbulent structure in low-concentration drag-reducing channel flows [J], J. Fluid Mech., 1988, 190: 241-263.
    [35] Migirenko GS, Evseev AR, Turbulent boundary layer with gas saturation. Problems of thermophysics and physical hydrodynamics. Novosibirsk, Nauka, Russian, 1974.
    [36] Walsh, M.J. Riblets viscous drag reduction in boundary layers[R], NASA Technical Report, Virginia, 1990: 203-261.
    [37] Walsh, M.J. Riblets as a viscous drag reduction technique [J],Am. Inst. Aeronaut. J., April 1983, 21(4): 485-486.
    [38] Bacher, E. V. & Smith, C. R. 1985. A combined visualization-anemometry study of the turbulent drag reduction mechanisms of triangular micro-groove surface modification [R], AIAA Paper, 85, 0548.
    [39] Gallagher, J.A. and Thomas, A.S.W., Turbulent boundary layer characteristics over streamwise grooves [R], AIAA paper, 1984, 84, 2185.
    [40] Coustols E. Behavior of internal manipulators:“riblet”models in subsonic and transonic flows [R], AIAA -89-0963, 1989.
    [41] Park S R, Wallace J M. Flow alteration and drag reduction by riblets in a turbulent boundary layer [J], AIAA Journal, 1994, 32(1): 31~38.
    [42] Berchert D W, Bruse M , Hage W , et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry [J], Journal of fluid mechanics ,1997,338:59-87.
    [43] Hooshmand, D., Younis, R. and Wallace, J.M. An experimental study of changes in the structure of a turbulent boundary layer due to surface geometry changes [R], AIAA paper, January 1983, 83,0230.
    [44] Gaudet L, An assessment of the drag-reduction properties of riblets and the penalties of off design conditions [R], RAE Tech. Memo., Aerosp, 1987, 2113.
    [45] B. Lazos, S.P. Wilkinson, Trubulent Viscous Drag Reduction with Thin-Element Riblets [J], J. FOURNAL 26(4):496-510.
    [46] Jinjun Wang, Shilong Lan, Guang Chen, Experimental study on the turbulent boundary layer flow over riblets surface [J], Fluid Dynamics Research Series B,2000,27:217-229.
    [47] Choi, H., Moin, P. and Kim, J., On the effect of riblets in fully developed laminar channel flows [J], Phys. Fluids 1991, A3:1892-1896.
    [48] F. Anselmet, M. Benhalilou, and L. Fulachier, Experimental determination of the velocity field within and over riblets in a turbulent boundary layer [C], 11th Australasian Fluid Mechanics Conference, Hobart, Australia, 1992.
    [49] P. Vukoslavcevic, J.M.Wallace, and J.L. Baliant. Viscous drag reduction using streamwise aligned riblets [J], AIAA J. 1992, 30, 1119-1123.
    [50] A. Pollard. Passive and active control of near-wall turbulence [J], Prog. Aerospace Sci. 1997, 33, 689-708.
    [51]王晋军,陈光.沟槽面湍流边界层近壁区拟序结构实验研究[J],航空学报,2001,5(22):400-405.
    [52] Choi, H., Moin, P. and Kim, J., On the effect of riblets in fully developed laminar channel flows [J], Phys. Fluids, 1991, A3, 1892-1896.
    [53] Chu,D.C. and Karniadakis, G.E. A direct numerical simulation of laminar and turbulent flow over riblet mounted surfaces [J], J. Fluid Mech.1993,250: 1-42
    [54] Chu,D.C., Henderson,R. and Karniadakis, G.E. Parallel spectral element Fourier simulation of turbulent flow over riblet mounted surfaces [J], Theoretical and Computational Fluid Dynamics 1992,3: 219-229.
    [55] Suzuki Y. and Kasagi, N. Turbulent drag reduction mechanism above a riblet surface [J], AIAA J., 1994, 32: 1781-1790.
    [56] S.–J. Lee, S.–H. Lee, Flow field analysis of a turbulent boundary layer over a riblet surface [J], Experiments in Fluids, 2001, 30: 153-166.
    [57] D.W. Bechert and M. Bartenwerfer. The viscous flow on surface with longitudinal ribs [J], J Fluid Mech, 1989, 206: 105-129.
    [58] Schwarz-van Manen,A.D. and Stouthart,J.C., Beschrijving van de LDA opsetlling van het waterkanaal [R], Internal Report no.R-1061-D,Eindhoven University of Technology, The Netherlangs,1990.
    [59] WANG Jinjun,LAN Shilong,MIAO Fuyou.Drag-reduction characteristics of turbulent boundary layer flow over riblets surfaces [J].Shipbuilding of China,2001,42(4):1—5.
    [60] YANG Hongwei,GAO Ge.Experimental study for turbulent drag reduction using a novel boundary control technique [J].Acta aeronautica et astronautica sinica,1997.18(4): 455-457.
    [61]赵志勇、董守平,小尺度沟槽面边界层湍流参数的测量[J],石油化工高等学校学报,2004.17(3): 76-80.
    [62]李新华、董守平、赵志勇,平板及减阻沟槽表面雷诺切应力的实验研究[J],实验流体力学,2006.20(1): 40-44.
    [63]宫武旗、李新、黄淑娟,沟槽壁面减阻机理实验研究,工程热物理学报[J],2002.23(5): 579-582.
    [64] LI Yubin,QIAO Zhide,WANG Zhiqi.An experimental research of drag reduction using riblets for the Y-7 airplane [J]Aerodynamic experiment and measurement&control,1995,9(3):21-26.
    [65] PAN Jiazheng.The experimental approach to drag reduction of the transverse ribbons on turbulent flow [J].Acta aeronautica sinica,1996,14(3):305—310.
    [66] Nitschke P.Experimental investigation of turbulent flow in smooth and longitudinal grooved tubes[R], NASA TM 1984:77480.
    [67] King L V. On the convection of heat from small cylinders in a stream of fluid: Determination of the convection costants of small platinum wires with applications to hot-wire anemometry [J], Phil. Trans. Roy. Soc., 1914, A214, 373-432.
    [68] Squire,L.C., Savill,A.M.Some experiences of riblets at transonic speeds. Proc. Intl Conf. Turbulent Drag Reduction by Passive Means, London.1987
    [69] K. Kim and Hyung Jin Sung, Effects of unsteady blowing through a spanwise-slot on a turbulent boundary layer[J], J. Fluid Mech. 2006(557):423-450
    [70] Sumitani, Y. and Kasagi, N., Direct numerical simulation of turbulent transport with uniform wall injection and suction[J], AIAA J.,1995(33):1220-1228
    [71] Chung YM, Sung HJ, Krogstad P?, Modulation of the near-wall turbulence structure with wall blowing and suction[J], AIAA J 2002,40:1529-1535
    [72] Imaichi K, Ohmi K. Numerical processing of flow-visualization pictures-measurement of two-dimensional vortex flow [J]. J. Fluid Mech, 1983, 129(3):283-311.
    [73] Utami T, Ueno T. Experimental study on the coherent structure of turbulent open-channel flow using visualization and picture processing [J]. J. Fluid Mech, 1987, 174(2) :399-440.
    [74] Schraub F A. Use of Hydrogen Bubbles for Quantitative Determination of Time—Dependent Velocity Fields in Low Speed Water Flows [J], Trans ASME J Basic Engng, 1965, 87(1) :429-444.
    [75] Lu L J,Smith C R. Image processing of hydrogen bubble flow visualization for determination of turbulence statistics and bursting characteristics [J], Exp. Fluids, 1985, 79(3) :349-356.
    [76] Smith C R,Paxson R D. A technique for exaluation three-dimensional behavior layers using computer augmented hydrogen bubble-wire flow visualization [J], Exp.Fluids,1983, 77(1):43-49.
    [77] Lu L J,Smith C R. Image processing of hydrogen bubble flow visualization for determination of turbulence statistics and bursting characteristics [J]. Exp. Fluids, 1985, 79(3) :349-356.
    [78] Tang Y P, Clark D G, On near-wall turbulence-generating events in a turbulent boundary layer on a riblet surface [J], Applied Scientific Research.1993,50(3~4):215~2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700