用户名: 密码: 验证码:
周期性抽吸扰动对湍流边界层多尺度相干结构影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对风洞中平板流动边界层施加不同频率的局部周期性抽吸扰动控制湍流多尺度相干结构进行了实验研究。用IFA300热线风速仪和X形二分量边界层热线探针精细测量了平板流动边界层,在施加不同频率的局部周期性抽吸扰动前后不同法向位置的瞬时流向、法向速度分量的时间序列信号。
    运用湍流多尺度相干结构的新观点,描述湍流局部多尺度涡结构相对迁移运动和局部多尺度变形的局部平均速度结构函数的平均波形,研究了多尺度相干结构猝发时流向速度分量、法向速度分量和瞬时雷诺应力分量的动力学发展、演化过程,并提出三者之间的相位关系。
    通过平板底部表面沿展向切割一条5毫米宽的窄缝,用扬声器从壁面对平板湍流边界层施加不同频率的局部周期性抽吸扰动,通过改变平板湍流边界层中多尺度相干结构的发生概率、强度、能量分布、条件相位平均波形、间歇性等统计特征,对平板湍流边界层的不同尺度流动结构进行干扰和控制。研究不同频率的周期性扰动对平板边界层中的多尺度相干结构的影响。同时,确定16Hz周期性抽吸扰动在流向、法向的影响范围,对湍流边界层相干结构的干扰和控制有启示性作用。
In this paper, the measurement technique of constant temperatureanemometry, together with double-hot-wire-sensor probe, is used to carryout experimental study on the turbulent boundary layer, which iscontrolled by periodic blow-suction disturbance in the low turbulent levelwind channel. In the present experiment, time sequence of longitudinalvelocity component and normal velocity component within and withoutdifferent periodic blow-suction disturbance, along different normalpositions in a flat-plate turbulent boundary layer has been finelymeasured by IFA300 constant temperature anemometer with highresolution.
    It is employed that the coherent structures and intermittency are identifiedby multi-scale flatness factor based on locally averaged velocity structurefunctions. Phased-average waveforms for longitudinal and normalfluctuation velocity, as well as Reynolds stress of multi-scale coherenteddy structures in turbulent boundary layer are extracted by thisconditional sampling technique. It is determined the phase relationshipbetween the three. The dynamic course of multi-scale coherent eddystructures' bursting is studied.
    A periodic blowing/suction disturbance forcing, issued from a 5mm thinlatitudinal slot of the flat, is introduced to alter multi-scale ingredients ofcoherent eddy structure and their energy distribution in turbulentboundary layer, what is more, to research the influence of periodicblowing/suction disturbance forcing on the multi-scale coherentstructures in flat boundary layer. It is found that within periodic suctiondisturbance forcing, both the intensity and energy of coherent structuresincrease, moreover coherent structures at each scales are detected. In themeanwhile, the flow filed, in which a 16Hz blowing/suction disturbanceforcing influences, is determined.
引文
[1] 佘振苏,苏卫东,湍流中的层次结构和标度律 [J],力学进展,2000,29卷,第 3 期:289-303。
    [2] 黄永念,湍流与混沌之间关系的发展近况 [C],第三届全国湍流与流动稳定性学术会议论文集,第三届全国湍流与流动稳定性学术会议,天津,1991,1-6。
    [3] Douady S, Couder Y. & Brachet M E, Direct observation of intermittency of intense vorticity filaments in turbulence [J]. Phys.Rev.Lett.1991, 67: 983-986
    [4] Siggia E D, Numerical study of small-scale intermittency in 3-dimensional turbulence [J], J. Fluid Mech. 1981, 107: 375-406
    [5] Vincent A & Meneguzzi M, The spatial structure and statistical properties of homogeneous turbulence [J]. J. Fluid Mech. 1991, 225: 1-20
    [6] She Z-S, Jackson E & Orszag S A, Intermittent vortex structures in homogeneous isotropic turbulence [J]. Nature 1990, 344: 226-228
    [7] G. Ruiz Chavarria, S. Ciliberto, C. Baudet et al. Scaling properties of the streamwise component of velocity in a turbulent boundary layer, Physica D 141, 183-198.
    [8] F. Toschi, G.Amiti, S. Succi et al. Intermittency and structure functions in channel flow turbulence, Physical Review Letters, Volume 32, Number 25, 5044-5047
    [9] F. Toschi, E. Leveque, and G. Ruiz-Chavarria, Shear effects in nonhomogeneous turbulence, Physical Review Letters, Volume 85, Number 7, 1436-1439.
    [10] R.Camussi, G.Guj, Orthonormal wavelet decomposition of turbulent flows: intermittency and coherent structures [J], J. Fluid Mech. (1997), vol. 348. pp 177-199.
    [11] Ciguel Onorato, Roberto Camussi, Gaetano Iuso, Small scale intermittency and bursting in a turbulent channel flow, Physical Review E, Volume 61, Number 2, 1447-1454
    [12] Farge M 1992 Annu. Review Fluid Mech. 24 395
    [13] Charles Meneveau, Analysis of turbulence in the orthonormal wavelet representation [J], J. Fluid Mech. (1991), Vol. 232: 469~520.
    [14] Corrsin S,Kistler A L.NACA,Tech Notes,No.3133,1954
    [15] Townsend A A.The Structure of Turbulent Shear Flow,Combridge Press 1956
    [16] Einstein H A, Li H. Proc Amer Soc Civ Engers,1956, EM-2:1
    [17] Kline S J, Runstadler P W. Trans ASME,1959,No.2:166-167
    [18] Kline S J, Reynolds W C, Schraub F H, Runstadler P W, The structure of turbulent boundary layer [J], J Fluid Mech., 1967, 30: 741-774.
    [19] Corino E R, Brodkey R S, A visual investigation of the wall region in turbulent flow [J], J Fluid Mech., 1969, 37: 1-30.
    [20] Kim H T,Kline S J and Reynolds W C. The Production of Turbulence Near a Smooth Wall in a Turbulent Boundary Layer [J],J. Fluid Mech.,1971,50:133-160.
    [21] Smith C R, Metzler S P, The characteristics of low speed streaks in the near wall region of a turbulent boundary layer [J], J. Fluid Mech.,1983,129:27-54.
    [22] Tu B,Willmarth W W.College of Engineering Universityof Michigan Rept O2920-d-T,1966
    [23] Rao K N,Narasimha,Badri Narayanan M A.Rept of Areospace Engineering.Rept 69FM8,India,Bangalore,India Institute of Science.
    [24] Rao K N,Narasimha,Badri Narayanan M A.J Fluid Mech,1971,48:339-396
    [25] Laufer J,Badri Narayanan M A.Phys Fluids,1971,14:18
    [26] Kavasznay L S G, Kiben V,Blackwelder R F.J Fluid Mech,1970,41:283-307
    [27] Luchik T S,Tiedermann W G.,Time scale and the structure of ejections and bursts in turbulent channal flow.J Fluid Mech,1987 174:529-577
    [28] Blackwelder R F,Kaplan R E.On the wall structure of the turbulent boundary layer.J Fluid Mech,1976,76:89-108
    [29] Brodkey R S,Wallance J M,Eckelmann H.Some properties of truncated turbulence signals in bounded shear flows.J Fluid Mech,1974,63:209-237
    [30] Simpson R L.Rept No.188,Gorttingen,MPI Stromurgsforschung,1976.
    [31] Blackwelder R F,Eckelmann H.Rept No.121,Gorttingen,MPI Stromurgsforschung,1977
    [32] 孙葵花,舒玮,湍流猝发的检测方法,力学学报,1994,26(4):488-493
    [33] 石建军,固壁温度对壁湍流相干结构的影响,天津大学硕士论文,1995
    [34] 姜楠,王振东,舒玮,辨识子波分析壁湍流猝发事件的能量最大准则 [J],力学学报,1997, 29(4):406-411。
    [35] Taylor G. I., Eddy motion in the atmosphere, Philosophical Transaction of the Royal Society, A, Vol. Ccxv, 1915, p:1-26.
    [36] Kolmogorov A N, Dissipation of energy in the locally isotropic turbulence [J]. Dokl Akad Nauk SSSR, 1941, 32(1): 19-21.
    [37] LIU Wei, JIANG Nan, Three Kinds of Velocity Structure Function in Turbulent Flows, CHIN.PHYS.LETT. Vol.21,No.10(2004):1989
    [38] R.Camussi, G.Guj, Orthonormal wavelet decomposition of turbulent flows: intermittency and coherent structures [J], J. Fluid Mech. (1997), vol. 348. pp 177-199.
    [39] 黄永念,湍流与混沌之间关系的发展近况 [C],第三届全国湍流与流动稳定性学术会议论文集,第三届全国湍流与流动稳定性学术会议,天津,1991.1-6。
    [40] G Ruiz Chavarria, S Ciliberto, C Baudet, E Leveque, Scaling properties of the streamwise component of velocity in a turbulent boundary layer [J]. Physica D, 2000, 141: 183-198.
    [41] F Toschi, G Amati, S Succi, R Benzi, R Piva, Intermittency and structure functions in channel flow turbulence [J]. Phys Rev Lett, 1999, 82(25): 5044-5047.
    [42] F. Toschi, E. Leveque, and G. Ruiz-Chavarria, Shear effects in nonhomogeneous turbulence, Physical Review Letters, Volume 85, Number 7, 1436-1439.
    [43] R.Camussi, G.Guj, Orthonormal wavelet decomposition of turbulent flows: intermittency and coherent structures [J], J. Fluid Mech. (1997), vol. 348. pp 177-199.
    [44] Miguel Onorato, Roberto Camussi, Gaetano Iuso, Small scale intermittency and bursting in a turbulent channel flow [J], Physical Review E, 61(2): 1447-1454.
    [45] Kolmogorov A N, A refinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number [J]. J Fluid Mech., 1962, 13 (1): 82-85.
    [46] Benzi R,Cilibert S ,Tripiccione R, Extended self-similarity in turbulent flow [J]. Phys.Rev.E, 1993, 48(1): 29-32.
    [47] King L V., On the convection of heat from small cylinders in a stream of fluid: Determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Phil. Trans. Roy. Soc., 1914,A214, 373-432.
    [48] Walsh, M.J. Riblets. Viscous drag reduction in boundary layers. NASA Technical Report, Virginia, 1990: 203-261.
    [49] Walsh, M.J. Riblets as a viscous drag reduction technique. Am. Inst. Aeronaut. J., April 1983,21(4): 485-486.
    [50] Hooshmand, D., Younis, R. and Wallace, J.M. An experimental study of changes in the structure of a turbulent boundary layer due to surface geometry changes. AIAA paper, January 1983, 83,0230.
    [51] Gaudet L, An assessment of the drag-reduction properties of riblets and the penalties of off design conditions. RAE Tech. Memo., Aerosp, 1987, 2113.
    [52] B. Lazos, S.P. Wilkinson. Trubulent Viscous Drag Reduction with Thin-Element Riblets, J. FOURNAL Vol.26, NO 4, 496.
    [53] Bacher, E. V. & Smith, C. R. 1985. A combined visualization-anemometry study of the turbulent drag reduction mechanisms of triangular micro-groove surface modification. AIAA Paper, 85,0548.
    [54] Gallagher, J.A. and Thomas, A.S.W., Turbulent boundary layer characteristics over streamwise grooves. AIAA paper, 1984, 84, 2185.
    [55] Jinjun Wang, Shilong Lan, Guang Chen. Experimental study on the turbulent boundary layer flow over riblets surface.
    [56] Choi, H., Moin, P. and Kim, J.1991a, On the effect of riblets in fully developed laminar channel flows. Phys.Fluis A3, 1892-1896.
    [57] F. Anselmet, M. Benhalilou, and L. Fulachier, Experimental determination of the velocity field within and over riblets in a turbulent boundary layer, 11th Australasian Fluid Mechanics Conference, Hobart, Australia, 1992.
    [58] P. Vukoslavcevic, J.M.Wallace, and J.L. Baliant. Viscous drag reduction using streamwise aligned riblets. AIAA J. 1992, 30,1119.
    [59] A. Pollard. Passive and active control of near-wall turbulence. Prog. Aerospace Sci. 1997, 33, 689-708.
    [60] 王晋军,陈光. 沟槽面湍流边界层近壁区拟序结构实验研究. 航空学报,2001,5(22):400-405.
    [61] Chu,D.C., Henderson,R. and Karniadakis, G.E.(1992). Parallel spectral element Fourier simulation of turbulent flow over riblet mounted surfaces. Theoretical and Computational Fluid Dynamics 3: 219-229.
    [62] Chu,D.C. and Karniadakis, G.E.(1993). A direct numerical simulation of laminar and turbulent flow over riblet mounted surfaces. J. Fluid Mech.250: 1-42
    [63] Chu,D.C., Henderson,R. and Karniadakis, G.E.(1992). Parallel spectral element Fourier simulation of turbulent flow over riblet mounted surfaces. Theoretical and Computational Fluid Dynamics 3: 219-229.
    [64] Suzuki Y. and Kasagi, N. 1994, Turbulent drag reduction mechanism above a riblet surface. AIAA J.32: 1781-1790.
    [65] Bushnell D M, Hefner J N, Ash R L, Effect of compliant wall motion on turbulent boundary layers, [J]. AGARD Report, n654, Spec Course on Concepts for Drag Reduction, 1977, 9: 1-26
    [66] Shu Wei, Liu Wei Ming, The effect of compliant coating on coherent structure in turbulent boundary layers, [J]. ACTA MECHANICA SINICA, 1990, 6(2).
    [67] 王玉春、姜楠、周兴华、舒玮,柔性壁面湍流边界层相干结构控制的实验研究,实验力学,2004,19(1): 45-50。
    [68] N. F. Yurchenko, Optimization of heat transfer control based on a receptivity approach, Proc. Turbulent Heat Transfer Conference, Manchester, UK, May-June, 1998: 78-82.
    [69] Savchenko, Y. N., Hydrodynamic effects of a traveling wave, JPRS L/9420, 1980.
    [70] Taneda, S., Visual study of unsteady sperated flows around bodies, Prog. Aerospace Sci, 1978, 17: 287-348.
    [71] Savchenko, Y. N., Hydrodynamic effects of a traveling wave, JPRS L/9420, 1980.
    [72] Wu, J.M., Wu C. J., Wu, J.Z. ,Vakilli, A. D., Preliminary studying of nonlinear flow over traveling wavy wall. In:Nonsteady Fluid Dynamics (J. A. Miller and D. P. Telionis eds.), SIAM, Philadelphia. 1990: 359-368.
    [73] Wu, J.Z. , and Wu, J.M. Vorticity dynamics on boundaries. Advances in Applied Mechincs 32 (J. H. Huchinson and T.Y.Wu eds.), Academic press. 1996: 119-275.
    [74] Yang,Z. Study of periodic separated flow over traveling wavy wall of infinite axisymmetric column. BS thesis, Peking University, 2001.
    [75] G Ruiz Chavarria, S Ciliberto, C Baudet, E Leveque, Scaling properties of the streamwise component of velocity in a turbulent boundary layer [J]. Physica D, 2000, 141: 183-198.
    [76] Baron a, Sibilla S, Applied Scientific Research(The Hague), 1997-1998, 59(4): 331.
    [77] Luckhik TS and Tiederman WG. Turbulent structure in low-concentration drag-reducing channel flows[J], J. Fluid Mech., 1988, 190: 241-263.
    [78] King L V. On the convection of heat from small cylinders in a stream of fluid:Determination of the convection costants of small platinum wires with applications to hot-wire anemoetry. Phil. Trans. Roy. Soc.,1914, A214,373-432.北京

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700